Experimental Design

Design principles and artifacts in genomic data
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Basic principles of experimental design

» Questions / goals of the experiment.
» Comparison / control.

» Replication.

» Randomization.

» Stratification (aka blocking).

» Factorial experiments.
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Confounding

UC Berkeley 1973 Admission Data

Accepted Rejected

Males 1,198 1,493

Females 557 1,278

Major | Male | Female

A 62% | 82%

B 63% | 68%

Stratified by major ¢ 37% | 34%

D 33% | 35%

E 28% | 24%

F 6% 7%
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Confounding

Player

1995 1996

Combined

Derek Jeter

250 (12/48) | .314(183/582)

.310 (195/630)

David Justice

253 (104/411) | .321(45/140)

271 (149/551)
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Confounding
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Without randomization of “treatments”, the confounding variable
may be correlated with the treatment. Any observed association

between treatment and covariates will be difficult to distinguish from
an association between the confounding variable and the covariates.
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Common genetic variants account for differences in
gene expression among ethnic groups

Richard S Spielman!, Laurel A Bastone?, Joshua T Burdick®, Michael Morley®, Warren J Ewens* &

Vivian G Cheung!*>

Variation in DNA sequence contributes to individual
differences in quantitative traits, but in humans the specific
sequence variants are known for very few traits. We
characterized variation in gene expression in cells from
individuals belonging to three major population groups. This
quantitative phenotype differs significantly between European-
derived and Asian-derived populations for 1,097 of 4,197 genes
tested. For the phenotypes with the strongest evidence of cis
determinants, most of the variation is due to allele frequency
differences at cis-linked regulators. The results show that
specific genetic variation among populations contributes
appreciably to differences in gene expression phenotypes.
Populations differ in prevalence of many complex genetic
diseases, such as diabetes and cardiovascular disease. As some
of these are probably influenced by the level of gene
expression, our results suggest that allele frequency differences
at regulatory polymorphisms also account for some population

differences in prevalence of complex d
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genetic diseases. The marked population differences in prevalence of
these qualitative phenotypes (such as cystic fibrosis® and Tay-Sachs
disease!®) are entirely due to differences in frequencies of the mutant
alleles. However, genetic differences among populations in quantita-
tive phenotypes are potentially just as important functionally.

Here we extend the comparative genetic analysis of population
differences from qualitative phenotypes to a particular quantitative
phenotype, the expression level of genes. The choice of gene expres-
sion as a phenotype provides a large set of comparable traits, all
measured at the same time in each individual. Our goals are to
determine what proportion of gene expression phenotypes differs
significantly between populations and to what extent the phenotypic
differences are attributable to specific genetic polymorphisms. We find
that at least 25% of the gene expression phenotypes differ significantly
between the major populations studied, and specific genetic variation
(in allele frequency) accounts for the difference in the most significant
instances among the phenotypes that are cis regulated.

We measured the expression of genes in Epstein-Barr virus (EBV)-

1
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REPORT

Gene-Expression Variation Within and Among Human Populations

John D. Storey, Jennifer Madeoy, Jeanna L. Strout, Mark Wurfel, James Ronald, and Joshua M. Akey

Understanding patterns of gene-expression variation within and among human populations will provide important
insights into the molecular basis of phenotypic diversity and the interpretation of patterns of expression variation in
disease. However, little is known about how gene-expression variation is apportioned within and among human pop-
ulations. Here, we characterize patterns of natural gene-expression variation in 16 individuals of European and African
ancestry. We find extensive variation in gene-expression levels and estimate that ~83% of genes are differentially expressed
among individuals and that ~17% of genes are differentially expressed among populations. By decomposing total gene-
expression variation into within- versus among-population components, we find that most expression variation is due
to variation among individuals rather than among populations, which parallels observations of extant patterns of human
genetic variation. Finally, we performed allele-specific quantitative polymerase chain reaction to demonstrate that cis-
regulatory variation in the lymphocyte adaptor protein (SH2B adapter protein 3) contributes to differential expression
between European and African samples. These results provide the first insight into how human population structure

manifests itself in gene-expression levels and will help guide the search for regulatory quantitative trait loci.
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To the Editor:

In a recent Nature Genetics Letter entitled
“Common genetic variants account for differ-
ences in gene expression among ethnic groups;”
Spielman et al.! estimate the number of genes
differentially expressed between individuals
of European (CEU) and Asian (ASN) ances-
try and suggest that these differences can be
accounted for by measured genetic variants.
We recently performed a similar study com-
paring differences in gene expression among
individuals of European and Yoruban ances-
try’. Given the scientific, medical and societal
implications of this research area, it is impor-
tant for the scientific community to carefully
revisit and critically evaluate the conclusions
of such studies. To this end, we have reanalyzed
the data in Spielman et al.' to provide a com-
mon basis for comparison with our study. In
doing so, we found that important issues arise
about the accuracy of their results.

The authors categorized genes as differ-
entially expressed if they had P values <105,
corresponding to a Sidak corrected P value
of <0.05 for multiple hypothesis tests. At
this significance threshold, they report that
approximately 26% of genes are differentially
expressed between the CEU and ASN samples
(ASN denotes the combined HapMap Beijing
Chinese (CHB) and Japanese (JPT) HapMap
individuals'). As a Sidak correction is similar
to a Bonferroni correction, the proportion of
genes found to be significant is a conservative
estimate of the true overall proportion of dif-
ferentially expressed genes. A more widely used
and less conservatively biased approach is to
analyze the complete distribution of P values,
which provides a lower bound estimate of the
proportion of truly differentially expressed
genes>*, Applying this methodology to the
distribution of P values obtained by ¢ tests on
genes expressed in lymphoblastoid cell lines as
defined in Spielman et al.', we estimate that
at least 78% of these genes are differentially
expressed between the CEU and ASN samples
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On the design and analysis of gene expression studies
in human populations
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Figure 1 Distribution of P values for tests of differential expression. (a) P values resulting from tests of
differential expression between the CEU and ASN samples. (b) Pvalues resulting from tests of ditferential
expression with respect to year in which the microarrays were processed. (c) Pvalues resulting from tests
of differential expression between the CEU and ASN samples while controlling for the year in which the
sample was processed. (d) Pvalues resulting from tests of differential expression with respect to year

in which the microarrays were processed only among the CEU samples. The y-axis in each plot is drawn
to reflect a histogram density, where the total area of all rectangles is 1. Under the null hypothesis of

no differential expression, we expect the Pvalues to be uniformly distributed between 0 and 1, forming

a histogram with frequencies following the dashed black line. Using well-established methodology3,

we estimate the proportion of differentially expressed genes in a-d to be 78%, 94%, 0% and 79%,
respectively. The odd shape of the histogram in ¢ is attributable to the almost complete confounding of
year of processing and population, llustrating the underlying problem with the study design.

(Fig. 1a). Estimates of this proportion were
nearly identical regardless of whether P values
were obtained from standard ¢ tests, permuta-
tion t tests, bootstrap t tests or nonparametric
Wilcoxon rank-sum tests (data not shown).

NATURE GENETICS | VOILUMF 39 | NUMBFR 7 | JULY 2007
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It seems implausible that as many as 78% of
genes are differentially expressed between the
CEU and ASN samples. For example, based on
the complete distribution of P values, we have
recently estimated that approximately 17% of

PMID 17597765
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T = treated, C = control, pink = female, blue = male
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MECHANISMS OF DISEASE

[ Mechanisms of disease |

A Use of proteomic patterns in serum to identify ovarian cancer

Emanuel F Petricoin Ill, Ali M Ardekani, Ben A Hitt, Peter J Levine, Vincent A Fusaro, Seth M Steinberg, Gordon B Mills,
Charles Simone, David A Fishman, Elise C Kohn, Lance A Liotta

Summary

Background New technologies for the detection of early-
stage ovarian cancer are urgently needed. Pathological
changes within an organ might be reflected in proteomic
patterns in serum. We developed a bioinformatics tool and
used it to identify proteomic patterns in serum that
distinguish neoplastic from non-neoplastic disease within
the ovary.

Methods Proteomic spectra were generated by mass
spectroscopy (surface-enhanced laser desorption and
ionisation). A preliminary “training” set of spectra derived
from analysis of serum from 50 unaffected women and
50 patients with ovarian cancer were analysed by an
iterative searching algorithm that identified a proteomic
pattern that completely discriminated cancer from non-
cancer. The discovered pattern was then used to classify
an independent set of 116 masked serum samples: 50
from women with ovarian cancer, and 66 from unaffected
women or those with non-malignant disorders.

Findings The algorithm identified a cluster pattern that, in
the training set, completely segregated cancer from non-
cancer. The discriminatory pattern correctly identified all
50 ovarian cancer cases in the masked set, including all
18 stage | cases. Of the 66 cases of non-malignant
disease, 63 were recognised as not cancer. This result
yielded a sensitivity of 100% (95% CI 93-100), specificity
of 95% (87-99), and positive predictive value of 94%
(84-99).

Interpretation These findings justify a prospective
population-based assessment of proteomic pattern
technology as a screening tool for all stages of ovarian
cancer in high-risk and general populations.

Lancet 2002; 359: 572-77
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Introduction

Application of new technologies for detection of ovarian
cancer could have an important effect on public health,’
but to achieve this goal, specific and sensitive molecular
markers are essential.” This need is especially urgent in
women who have a high risk of ovarian cancer due to
family or personal history of cancer, and for women with
a genetic predisposition to cancer due to abnormalities
in predisposition genes such as BRCA! and BRCA2.
There are no effective screening options for this
population.

Ovarian cancer presents at a late clinical stage in more
than 80% of patients,' and is associated with a 5-year
survival of 35% in this population. By contrast, the
5-year survival for patients with stage I ovarian cancer
exceeds 90%, and most patients are cured of their
disease by surgery alone.'® Therefore, increasing the
number of women diagnosed with stage I disease should
have a direct effect on the mortality and economics of
this cancer without the need to change surgical or
chemotherapeutic approaches.

Cancer antigen 125 (CA125) is the most widely
used biomarker for ovarian cancer."® Although
concentrations of CA125 are abnormal in about 80% of
patients with advanced-stage disease, they are increased
in only 50-60% of patients with stage I ovarian cancer.”*
CA125 has a positive predictive value of less than 10%
as a single marker, but the addition of ultrasound
screening to CA125 measurement has improved the
positive predictive value to about 20%.¢

Low-molecular-weight serum protein profiling might
reflect the pathological state of organs and aid in
the early detection of cancer. Matrix-assisted laser
desorption and ionisation time-of-flight (MALDI-TOF)
and surface-enhanced laser desorption and ionisation
time-of-flight (SELDI-TOF) mass spectroscopy can profile
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Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani,'* Nadia Solovieff,' Annibale Puca,? Stephen W. Hartley,I Efthymia Melista, Stacy
Andersen,* Daniel A. Dworkis,? Jemma B. Wilk,” Richard H. Myers,5 Martin H. Steinberg,6 Monty
Montano,’ Clinton T. Baldwin,®” Thomas T. Perls**

lDepartment of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. 2IRCCS Multimedica,
Milano, Italy; Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, 20122, Italy. *Department of
Medicine, Boston University School of Medicine, Boston, MA 02118, USA. 4Section of Geriatrics, Department of Medicine,
Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA. *Department of Neurology,
Boston University School of Medicine, Boston, MA 02118, USA. 6Depanments of Medicine and Pediatrics, Boston University
School of Medicine and Boston Medical Center, Boston, MA 02118, USA. "Center for Human Genetics, Boston University

School of Medicine, Boston, MA 02118, USA.

*To whom correspondence should be addressed. E-mail: sebas@bu.edu (P.S.); thperls@bu.edu (T.H.P.)

Healthy aging is thought to reflect the combined influence
of environmental factors (lifestyle choices) and genetic
factors. To explore the genetic contribution, we undertook
a genome-wide association study of exceptional longevity
(EL) in 1055 centenarians and 1267 controls. Using these
data, we built a genetic model that includes 150 single
nucleotide polymorphisms (SNPs) and found that it could
predict EL with 77% accuracy in an independent set of
centenarians and controls. Further in-silico analysis
revealed that 90% of centenarians can be grouped into 19
clusters characterized by different combinations of SNP
genotypes—or genetic signatures—of varying predictive
value. The different signatures, which attest to the genetic
complexity of EL, correlated with differences in the
prevalence and age of onset of age-associated diseases
(e.g., dementia, hypertension, and cardiovascular disease)
and may help dissect this complex phenotype into
subphenotypes of healthy aging.

Based upon the hypothesis that exceptionally old
individuals are carriers of multiple genetic variants that
influence human lifespan (4), we conducted a genome-wide
association study (GWAS) of centenarians. Centenarians are
amodel of healthy aging, as the onset of disability in these
individuals is generally delayed until they are well into their
mid-nineties (5, 6 ). We studied 801 unrelated subjects
enrolled in the New England Centenarian Study (NECS) and
926 genetically matched controls. NECS subjects were
Caucasians who were born between 1890 and 1910 and had
an age range of 95 to 119 years (median age 103 years).
Figure S1 in the Supporting Online Material (7) describes the
age distribution. Approximately one-third of the NECS
sample included centenarians with a first-degree relative also
achieving EL, thus enhancing the sample’s power (8).
Controls included 243 NECS referent subjects who were
spouses of centenarian offspring or children of parents who
died at the mean age of 73 years, and genome-wide SNP data
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Raw high throughput genomic data always contain artifacts. No
exceptions. Really.

Identifying genomic signatures is a super hard problem.
Technical artifacts in the data are often much larger than any
biological signal.

Not addressing those artifacts can have nasty consequences,
in particular when coupled with poor experimental design.

These artifacts include:

» Known systematic biases.
For example genomic waves due to GC content.

» Random but possibly reproducible biases.
For example laboratory specific artifacts.

» Random non-reproducible biases.
For example plate and batch effects.
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Proteomics 2003, 3, 1667-1672  DOI 10.1002/pmic.200300522 1667

Short Communication

JKEfifth A-S B:ngger'v A comprehensive approach to the analysis of
effrey S. Morris ’ : 9 . A: . 5
Jing Wang matrix-assisted laser desorption/ionization-time
DavidGold of flight proteomics spectra from serum samples

Lian-Chun Xiao
Kevin R. Coombes
For our analysis of the data from the First Annual Proteomics Data Mining Conference,

Department of Biostatistics, we attempted to discriminate between 24 disease spectra (group A) and 17 normal
UT M.D. Anderson spectra (group B). First, we processed the raw spectra by (i) correcting for additive
Cancer Center, sinusoidal noise (periodic on the time scale) affecting most spectra, (i) correcting for
Houston, TX, USA the overall baseline level, (iii) normalizing, (iv) recombining fractions, and (v) using vari-

able-width windows for data reduction. Also, we identified a set of polymeric peaks (at
multiples of 180.6 Da) that is present in several normal spectra (B1-B8). After data
processing, we found the intensities at the following mass to charge (m/z) values to
be useful discriminators: 3077, 12886 and 74 263. Using these values, we were able
to achieve an overall classification accuracy of 38/41 (92.6%). Perfect classification
could be achieved by adding two additional peaks, at 2476 and 6955. We identified
these values by applying a genetic algorithm to a filtered list of m/z values using Maha-
lanobis distance between the group means as a fitness function.

Keywords: Cross validation / Data cleaning / Discrimination / Genetic algorithm / Mahalanobis
distance PRO 0522
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Sinusoidal noise removal. Visual inspection of the raw
spectra revealed systematic distortions, particularly at
the high m/z values: regular sinusoidal noise affected
most of the spectra (Fig. 1). This noise was periodic on
the time scale, not on the m/z scale. We applied a Fourier
transform to several affected spectra, restricting the
transform to regions where larger peaks were absent.
The period of the noise (roughly 1760 clock ticks) was
found to be nearly constant across different fractions
and samples, but the phase appeared to be random. We
suspect that this phenomenon is linked to the frequency
of the alternating current in the power source, but cannot
confirm this suspicion without more information. We are
certain that it is not due to biology. Sinusoids of the ap-
propriate frequency were fit to the tails of each spectrum,
extended to the full spectrum length, and subtracted out.
This processing is illustrated in Fig. 2.
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The clock is visible in the spectra. Summing the corrected
spectra uncovered an unexpected periodic phenomenon
— a recurrent dip in intensity every 4096 = 2'2 clock ticks.
Smaller, more complicated periodicities occurred at other
powers of 2. These periodicities differed from the sinusoi-
dal noise discussed earlier. The sinusoidal noise was ran-
dom in phase, and so largely canceled between spectra.
Here, we were able to detect the new dip because of rein-
forcement across spectra. Further, this dip was uniformly
present in all 41 averaged spectra. Because this phenom-
enon occurred at powers of 2, we strongly suspect that it
is an artifact related to a computer chip inside the instru-
ment recording the data.
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affected by both biological and non-biological
factors. Here we focus on batch effects, a
common and powerful source of variation
in high-throughput experiments.

Batch effects are sub-groups of measure-
ments that have qualitatively different
behaviour across conditions and are unre-
lated to the biological or scientific variables
in a study. For example, batch effects may
occur if a subset of experiments was run on
Monday and another set on Tuesday;, if two
technicians were responsible for different
subsets of the experiments or if two different
lots of reagents, chips or instruments were
used. These effects are not exclusive to high-
throughput biology and genomics research’,
and batch effects also affect low-dimensional
molecular measurements, such as northern
blots and quantitative PCR. Although batch
effects are difficult or impossible to detect
in low-dimensional assays, high-throughput
technologies provide enough data to detect
and even remove them. However, if not
properly dealt with, these effects can have
a particularly strong and pervasive impact.
Specific examples have been documented

OPINION

Tackling the widespread and
critical impact of batch effects
in high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha,
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry

Abstract | High-throughput technologies are widely used, for example to assay
genetic variants, gene and protein expression, and epigenetic modifications. One
often overlooked complication with such studies is batch effects, which occur
because measurements are affected by laboratory conditions, reagent lots and
personnel differences. This becomes a major problem when batch effects are
correlated with an outcome of interest and lead to incorrect conclusions. Using
both published studies and our own analyses, we argue that batch effects (as well
as other technical and biological artefacts) are widespread and critical to address.
We review experimental and computational approaches for doing so.

Many technologies used in biology —
including high-throughput ones such as
microarrays, bead chips, mass spectrom-
eters and second-generation sequencing
— depend on a complicated set of reagents

and hardware, along with highly trained per-
sonnel, to produce accurate measurements.
When these conditions vary during the
course of an experiment, many of the quan-
tities being measured will be simultaneously

in published studies?® in which the biologi-
cal variables were extremely correlated with
technical variables, which subsequently led
to serious concerns about the validity of the
biological conclusions**.
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Genomic signatures to guide the use of
chemotherapeutics

Anil Potti?, Holly K Dressman'?, Andrea Bild"?, Richard F Riedel"?, Gina Chan*, Robyn Sayer?,
Janiel Cragun?, Hope Cottrill%, Michael J Kelley?, Rebecca Petersen®, David Harpole®, Jeffrey Marks>,
Andrew Berchuck®, Geoffrey S Ginsburg"?, Phillip Febbo!™3, Johnathan Lancaster* &

Joseph R Nevins!—3

Using in vitro drug sensitivity data coupled with Affymetrix microarray data, we developed gene expression signatures that predict
sensitivity to individual chemotherapeutic drugs. Each signature was validated with response data from an independent set of cell
line studies. We further show that many of these signatures can accurately predict clinical response in individuals treated with
these drugs. Notably, signatures developed to predict response to individual agents, when combined, could also predict response
to multidrug regimens. Finally, we integrated the chemotherapy response signatures with signatures of oncogenic pathway
deregulation to identify new therapeutic strategies that make use of all available drugs. The development of gene expression
profiles that can predict response to commonly used cytotoxic agents provides opportunities to better use these drugs, including
using them in combination with existing targeted therapies.
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Using Cell Lines to Predict Sensitivity

Genomic signatures to guide the use of
chemotherapeutics

Anil Potti2, Holly K Dressman'?, Andrea Bild3, Richard F Riedel?, Gina Chan?, Robyn Sayer“,
Janiel Cragun®, Hope Cottrill*, Michael J Kelley?, Rebecca Petersen®, David Harpole®, Jeffrey Marks®,
Andrew Berchuck!®, Geoffrey S Ginsburg!?, Phillip Febbo!~3, Johnathan Lancaster* &

Joseph R Nevins'—
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Potti et al (2006), Nature Medicine, 12:1294-1300.

The main conclusion is that we can use microarray data from
cell lines (the NCI60) to define drug response “signatures”,
which can be used to predict whether patients will respond.

They provide examples using 7 commonly used agents.

[ Keith Baggerly ]
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Their Gene List and Ours

> temp <- cbind(

sort (rownames (pottiUpdated) [fuRows]),

sort (rownames (pottiUpdated) [
fuTQNorm@p.values <= fuCut]);
> colnames (temp) <- c("Theirs", "Ours");
> temp
Theirs Ours

"1881_at™" "1882_g_at"
"31321_at" "31322_at"
"31725_s_at" "31726_at"
"32307_r_at" "32308_r_at"
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[ Keith Baggerly ]

Predicting Docetaxel Response

m Docetaxel sensitive

’ { J—({ H 4 Docetaxel resistant
1 T 5T T
X .%[ﬁ ﬁ Accuracy 22/24 (91.6%)

resistance

Probability of docetaxel
Probability of docetaxel
resistance

L)
. —— P <0.001

5 10 15 20 25 Docetaxel Docetaxel
Sample number sensitive resistant

Potti et al, Nat Med 2006, 12:1294-300, Fig 1d

[[] sensitive tumours
["] Resistant tumours
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Chang et al, Lancet 2003, 362:362-9, Fig 2 top
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[ Keith Baggerly ]




Pharmacogenomic Strategies Provide a Rational Approach
to the Treatment of Cisplatin-Resistant Patients With
Advanced Cancer

David S. Hsu, Bala S. Balakumaran, Chaitanya R. Acharya, Vanja Vlahovic, Kelli S. Walters,
Katherine Garman, Carey Anders, Richard F. Riedel, Johnathan Lancaster, David Harpole, Holly K. Dressman,
Joseph R. Nevins, Phillip G. Febbo, and Anil Potti

J Clin Oncol, Oct 1, 2007, 25:4350-7.
Same approach, using Cisplatin and Pemetrexed.

For cisplatin, U133A arrays were used for training. ERCC1,
ERCC4 and DNA repair genes are identified as “important”.

[ Keith Baggerly ]
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The 4 We Can’t Match (Reply)

203719_at, ERCC1,

210158_at, ERCC4,

228131 _at, ERCC1, and

231971 _at, FANCM (DNA Repair).

Another problem —

The last two probesets aren’t on the U133A arrays that were
used. They're on the U133B.

[ Keith Baggerly ]
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Validation of gene signatures that predict the response of
breast cancer to neoadjuvant chemotherapy: a substudy of
the EORTC 10994/BIG 00-01 clinical trial

Hervé Bonnefoi, Anil Potti, Mauro Delorenzi, Louis Mauriac, Mario Campone, Michéle Tubiana-Hulin, Thierry Petit, Philippe Rouanet, Jacek Jassem,
Emmanuel Blot, Véronique Becette, Pierre Farmer, Sylvie André, Chaitanya R Acharya, Sayan Mukherjee, David Cameron, Jonas Bergh,

Joseph R Nevins, Richard D Iggo

Lancet Oncology, Dec 2007, 8:1071-8. (early access Nov 14)

Similar approach, using signatures for Fluorouracil,
Epirubicin, Cyclophosphamide, and Taxotere to predict
response to combination therapies: FEC and TET.

[ Keith Baggerly ]
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How Are Results Combined?

Potti et al predict response to TFAC, Bonnefoi et al to TET
and FEC. Let P() indicate prob sensitive. The rules used are
as follows.

P(TFAC) = P(T)+P(F)+P(A)+P(C)—P(T)P(F)P(A)P(C).

P(ET) = max|[P(E), P(T)).

P(FEC) = g[P(F) + P(E) + P(C)] - le

Each rule is different.

[ Keith Baggerly ]
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DERIVING CHEMOSENSITIVITY FROM CELL LINES:
FORENSIC BIOINFORMATICS AND REPRODUCIBLE
RESEARCH IN HIGH-THROUGHPUT BIOLOGY

By KEITH A. BAGGERLY* AND KEVIN R. CooMBES’
U.T. M.D. Anderson Cancer Center

High-throughput biological assays such as microarrays let us ask
very detailed questions about how diseases operate, and promise to
let us personalize therapy. Data processing, however, is often not de-
scribed well enough to allow for exact reproduction of the results,
leading to exercises in “forensic bioinformatics” where aspects of raw
data and reported results are used to infer what methods must have
been employed. Unfortunately, poor documentation can shift from an
inconvenience to an active danger when it obscures not just methods
but errors. In this report, we examine several related papers purport-
ing to use microarray-based signatures of drug sensitivity derived
from cell lines to predict patient response. Patients in clinical trials
are currently being allocated to treatment arms on the basis of these
results. However, we show in five case studies that the results incor-
porate several simple errors that may be putting patients at risk. One
theme that emerges is that the most common errors are simple (e.g.,
row or column offsets); conversely, it is our experience that the most
simple errors are common. We then discuss steps we are taking to
avoid such errors in our own investigations.

projecteuclid.org/euclid.aoas/1267453942

0

000 [¥) Duke Lawsuit.pdf (page 1 of 90)
D G COEEE @ @ @
Previous  Next Zoom Move Text Select  Annotate Sidebar

Ingo Rus

NORTH CAROLINA i“ﬁ“@uﬂﬁh\] HE GENERAL COURT OF

Fi =D JUSTICE

DURHAM COUNTY SEp 7 ROI SUPERIOR Cj}fi’li/Dl l ISION
(_(/ l& \ Q 1CVS

Richard Aiken, Jean K. C. §
Executrix of the Estate of Harold
Carroll, Jean K. Carroll, Individually,
Peggy Cox, as Administratrix of the Estate
of Paul F. Cox, Peggy Cox, Individually,
Helene L. Fligel, Jason Gannon, as
Personal Representative of the Estate of
Jennifer L. Gannon, John Haddock, as
Executor of the Estate of Karen Heath, COMPLAINT
Walter Jacobs, as Executor of the Estate of (JURY TRIAL DEMANDED)
Juliet J. Jacobs, Walter Jacobs,
Individually, Polly Johnson, as Executor
of the Estate of Malcom W. Johnson, and
Polly Johnson, Individually,

Plaintiffs

VS.

Duke University, Duke University Health
System, Inc., Private Diagnostic Clinic,
PLLC, Joseph Nevins, Ph.D., Anil Potti,
M.D., Michael Cuffe, M.D., Sally
Kornbluth, M.D., John M. Harrelson,
M.D., and CancerGuide Diagnostics, Inc.
f/k/a Oncogenomics, Inc,

Defendants

«»(

N\




\. A Saga Starter Set, Feb 2012 x\+

€ ) @ bioinformatics.mdanderson.org/Supplements/ReproRsch-All/Modified/StarterSet/ (< P ,E'Goog\e Q)

"Starter Set" Materials for the Saga

This web page derives from our web site for the ipt Deriving C} itivity from Cell Lines: Forensic Bioinformatics and Reproducible Research in High-Throughput Biology by Keith A. Baggerly and Kevin R. Coombes. The
‘main page is here.

Particularly since the story was covered by 60 Minutes, we've gotten requests for more details. A ivel) list of inks we've found ourselves suggesting frequently is given below. Hope some of these prove useful!

1. A Video of Us Telling the Story
There are a few videos out there of us giving talks on this story. The one that we'd recommend at present is one from Cambridge in late 2010. This is about 35 minutes long, but should convey the gist of the types of problems we were seeing and how

we identified them. Fair warning -- one review of this on the web notes "Be warned, Dr. Baggerly is a fast-talking nerdish PhD who thinks you understand what he's saying [which you likely won't totally get], but watch at least some of it to get the
flavor of the genre" which is probably fair ;).

2. The 60 Minutes Segment and Transcript

‘This is certainly how most people have encountered the story. The clip and transcript are available here. In addition to the segment that aired, there's a short (1:30) clip of Paul Goldberg (of the Cancer Letter) discussing the Rhodes scholar angle, which
is well worth watching. We included both this clip and selected short bits from the main picce in talks we've given since the segment aired.

3. Slides from some Recent Talks

‘We try to update at least some of the slides in our talks, so more recent versions will at least mention later developments. The slides linked to here are from a talk I gave on Feb 15,2012. We included clips from the 60 Minutes segment at the end of slide
27.

The slides linked to here are from a presentation I gave on Jul 9, 2012, where I used now-available documents to clarify more of who knew what as things were going on.

4. Our 2009 Annals of Applied Statistics Paper

‘This is where we detail the specific problems we encountered. This may be an atypical statistics paper in that we include all of 3 formulas, all of which are wrong. A copy of the paper s available here.

5. A 2011 Editorial from Clinical Chemistry (Subscription Required)

‘This is a short (2.5pg) piece we wrote after listening to representatives from both NCI (Lisa McShane) and FDA (Robert Becker) give testimony to the Institute of Medicine (IOM). We use extracts from their talks to emphasize just what information
should be required to support clinical "omics” publications. The piece (subscription required) is here.

6. Various Notes from the Institute of Medicine Open Sessions

Sparked by this case, the IOM reviewed the level of evidence that should be required before "omics"-based assays are used to guide patient therapy in clinical trials. This committee began meeting in December of 2010, and issued its report on March
23,2012. Many of the mectings were open and recorded (audio only, but accompanying slides are typically available). Most of these are linked to from here.

‘We'd probably start with the testimony we gave on March 31, 2011. Be warned, this segment wound up being nearly 3 hours long. The other one we'd recommend listening to early is Lisa McShane's (biostatistician from the NCI) from December 20,
2010, where she laid out much of what the NCI knew and was doing behind the scenes while all of this was going on. Our annotation of the 550 pages (!) of documents the NCI released at this session is available from the link above. Our summary is
about 15 pages. The audio of Lisa McShane's presentation (about an hour) is available from The Cancer Letter linked to their Jan 28, 2011 issue.

7. The IOM Omics Report, and Some Subsequent Presentations by IOM Committee Members

We debated a bit about this, because the full Omics report (at 274p!) isn't really starter material. It s, however, a very thorough exploration of how studies should be performed if the goal is to translate the omics-based tests into clinical use. That said, a
*report brief" (Sp) is here, and if you really understand the figure on the last page, you're essentially there. I suspect, however, that you might not fully understand it. I thought I did, but listening to some of the recorded presentations by committce
‘members -- Gil Omenn, Joe Gray, Dan Hayes and Daniela Witten at AACR (Apr 3), and Daniela Witten and Larry Kessler at a U Washington session on research ethics (Jul 19) -- added further detail for me. If you're familiar with the background now, I
think I point you to the video of Kessler's summary of the recommendations first and suggest expanding from there.
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REPORT BRIEF  MARCH 2012 INSTITUTE OF MED|C|NE

OF THE NATIONA

Advising the nation + Improving health

For more information visit www.iom.edu/translationalomics

Evolution of
Translational Omics

Lessons Learned and the OMICS
Path Forward T

ing the h opened a new era in biomedical sci-
ence. Researchers have begun to untangle the complex roles of biology and
genetics in specific diseases, and now better understand why particular thera-
pies do or do not work in individual patients. New technologies have made it
feasible to measure an enormous number of molecules within a tissue or cell;
for example, genomics investigates thousands of DNA sequences, and pro-
teomics examines large numbers of proteins. Collectively, these technologies
are referred to as omics.
Patients look to the scientific community to develop innovative omics-

. . . . e 1 Patients look to the scientific
based tests to more reliably detect disease and to predict their likelihood of  community to develop innovative

responding to specific drugs. However, transforming the great promise of omics-based tests to more reliably
these new technologies into clinical laboratory tests that can help patients ~detect disease and to predict their
directly has happened more slowly than anticipated. likelihood of responding to specific

The process to translate omics-based discoveries into clinically useful drugs.

tests is much more demanding than has been widely recognized. For exam-
ple, verification of the complex computational procedures used to develop
omics-based tests requires adequate access to the data, computer code, and
computational steps used to develop that test. Also, regulatory oversight of
clinical laboratory tests differs from that of drugs. Thus far, the Food and Drug
Administration (FDA) has chosen not to review most of these clinical tests.
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The Real Reason Reproducible Research is Important
Posted on June 6, 2014 by Roger Peng

Reproducible research has been on my mind a bit these days, partly because it has been in
the news with the Piketty stuff, and also perhaps because I just published a book on it and
I'm teaching a class on it as we speak (as well as next month and the month after...).

However, as I watch and read many discussions over the role of reproducibility in
science, I often feel that many people miss the point. Now, just to be clear, when I use the
word "reproducibility” or say that a study is reproducible, I do not mean "independent
verification" as in a separate investigator conducted an independent study and came to
the same conclusion as the original study (that is what I refer to as "replication"). By
using the word reproducible, I mean that the original data (and original computer code)
can be analyzed (by an independent investigator) to obtain the same results of the
original study. In essence, it is the notion that the data analysis can be successfully
repeated. Reproducibility is particularly important in large computational studies where
the data analysis can often play an outsized role in supporting the ultimate conclusions.

Many people seem to conflate the ideas of reproducible and correctness, but they are not
the same thing. One must always remember that a study can be reproducible and
still be wrong. By "wrong", I mean that the conclusion or claim can be wrong. If I claim
that X causes Y (think "sugar causes cancer"), my data analysis might be reproducible, but
my claim might ultimately be incorrect for a variety of reasons. If my claim has any value,
then others will attempt to replicate it and the correctness of the claim will be
determined by whether others come to similar conclusions.

Then why is reproducibility so important? Reproducibility is important because it is the
only thing that an investigator can guarantee about a study.

simplystatistics.org
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Estimates of the speed of light, with “confidence intervals”.
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Statistical Science

2006, Vol. 21, No. 1, 1-14

DOI 10.1214/088342306000000060

© Institute of Mathematical Statistics, 2006

Classifier Technology and
of Progress

David J. Hand

the lllusion

Abstract. A great many tools have been developed for supervised classi-
fication, ranging from early methods such as linear discriminant analysis
through to modern developments such as neural networks and support vec-
tor machines. A large number of comparative studies have been conducted
in attempts to establish the relative superiority of these methods. This paper
argues that these comparisons often fail to take into account important as-
pects of real problems, so that the apparent superiority of more sophisticated
methods may be something of an illusion. In particular, simple methods typi-
cally yield performance almost as good as more sophisticated methods, to the
extent that the difference in performance may be swamped by other sources
of uncertainty that generally are not considered in the classical supervised

classification paradigm.

Key words and phrases: Supervised classification, error rate, misclassifica-
tion rate, simplicity, principle of parsimony, population drift, selectivity bias,
flat maximum effect, problem uncertainty, empirical comparisons.
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Statistical Applications in Genetics
and Molecular Biology

Volume 3, Issue 1 2004 Article 19

Classifying Gene Expression Profiles from
Pairwise mRNA Comparisons

Donald Geman, Center for Cardiovascular Bioinformatics
and Modeling, Whitaker Biomedical Engineering Institute
and Department of Applied Mathematics and Statistics,
Johns Hopkins University
Christian d'Avignon, Center for Cardiovascular
Bioinformatics and Modeling, Whitaker Biomedical
Engineering Institute and Department of Biomedical
Engineering, Johns Hopkins University
Daniel Q. Naiman, Center for Cardiovascular
Bioinformatics and Modeling, Whitaker Biomedical
Engineering Institute and Department of Applied
Mathematics and Statistics, Johns Hopkins University
Raimond L. Winslow, Center for Cardiovascular
Bioinformatics and Modeling, Whitaker Biomedical
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TOP SCORING PAIR (TSP)

Patient A Patient B
Gene > Gene Gene < Gene

LW @OW

Assigned to Assigned to
Good Prognosis Group Poor Prognosis Group

PMID 23682826
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A 2-gene classifier for predicting response
to the farnesyltransferase inhibitor
tipifarnib in acute myeloid leukemia

1 Proceedings of the National Academy of Sciences of the United States of America
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Highly accurate two-gene classifier for differentiating
gastrointestinal stromal tumors and leiomyosarcomas

Nathan D. Price', Jonathan TrentT, Adel K. EI-Naggart, David Cogdelli, Ellen Taylori, Kelly K. Hunt§,
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Cancer Cell

Volume 5, Issue 6, June 2004, Pages 607-616

Article

cancer patients treated with tamoxifen
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A two-gene expression ratio predicts clinical outcome in breast
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