Differential Expression

Empirical Bayes and shrinkage
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A spike-in experiment
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A spike-in experiment
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ANOVA models for microarray data

A microarray experiment may involve multiple arrays to compare multiple samples. Every measurement
in a microarray experiment is associated with a particular combination of an array in the experiment, a
dye (red or green), a variety, and a gene. Let y;jig denote the measurement from the jth array, j’h dye,
Kt variety, and g™ gene. To account for the multiple sources of variation in a microarray experiment,
consider the model

log(yijkg) =+ Ai + Dj + Vi + Gg + (AG)ig + (VG)ig + €ijkg» (€9)

where u is the overall average signal, A; represents the effect of the i*" array, D ; represents the effect of
the j™ dye, Vi represents the effect of the k' variety, G, represents the effect of the g'" gene, (AG);g
represents a combination of array i and gene g (i.e., a particular spot on a particular array), and (VG)g
represents the interaction between the K variety and the g™ gene. The error terms €;jxg are assumed
to be independent and identically distributed with mean 0. The array effects A; account for differences

[ PMID 11382364 ]
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Jose Iglesias
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#1 SS | Bats: R, Throws: R = Detroit Tigers

Birth Date  January 5, 1990 (Age: 24)
Birthplace  Havana, Cuba
Experience 3 years
College None

5-11, 185 Ibs.

DATE OPP RESULT AB R H 2B 3B HR RBI BB SO SB cs OBP SLG OPS AVG
Apr 1 @ NYY W 8-2 5 1 3 0 0 0 1 0 1 0 0 .600 .600 1.200 .600
Apr 3 @ NYY W 7-4 4 1 2 1 0 0 0 0 1 0 0 .556 .667 1.223 .556
Apr 4 @ NYY L4-2 3 0 2 0 0 0 0 0 0 0 0 .583 .667 1.250 .583
Apr 5 @ TOR W 6-4 0 0 0 0 0 0 0 0 0 0 0 .615 .667 1.282 .583
Apr 6 @ TOR L 5-0 Did not play

Apr 7 @ TOR W 13-0 5 1 2 1 0 0 0 0 1 0 0 .556 .647 1.203 .529
Apr 8 vs BAL W 3-1 3 0 0 0 0 0 0 0 0 0 476 .550 1.026 .450
Monthly Totals 20 3 9 2 1] 1] 1 1] 3 1] 1] .476 .550 1.026 .450

espn.go.com
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200 260 320

A (rough) sketch of the MLB batting average distribution.
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A hierarchical model

2
0 ~ N(u,77)
2
Y6 ~ N(0,c?)
Here, 8 denotes any batting average among the MLB players, and Y
denotes the player’s batting average. The parameter T quantifies the

prior standard deviation, and o describes the sampling standard
deviation. Specifically:

0 ~ N(260,34%)
Y0 ~ N(6,110%)
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A hierarchical model

Best guess for the players batting average, given the observed data:
E@®)Y)=Bu+ (1-B)Y
= u+(1-B)Y - )

0.2

B=—-7__
o2+ 72

Specifically:
E(0)Y =450) = B x 260 + (1 — B) x 450
= 260 + (1 — B)(450 — 260)

1102
1102 + 342
E(0]Y = 450) ~ 270
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A better solution

Beta distribution with different parameters
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A better solution

In this context, we can express our model as:
k; ~ Binomial(n;, p;)

pi; ~ Beta(a,b),i = 1..N

where N is total number of observations and a and b are parameters to be estimated. Such model is also called
Empirical Bayes. Unlike traditional Bayes, in which we pull prior distribution and it's parameters out of the
thin air, Empirical Bayes estimates prior parameters from the data.

In order to estimate parameters of the prior, we calculate marginal distribution as

N N .\ D(a+b)T(a+k)T(n;—ki+b)
m(kla,b) = [[li, fkilp)z(@la, b)dp = [1i, (Z,) R e

where f and 7 are density functions of binomial and beta distributions, respectively. Parameter estimates a

and b can be obtained by maximizing the log likelihood of the marginal distribution.

Finally, Empirical Bayes estimator can be constructed as expectation of posterior distribution:

P = E@pilk;,a,b) = 2%

a+b+n;

blog.supplyframe.com/2013/09/10/empirical-bayes-estimation-of-p-using-r/
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An iTRAQ experiment
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o Assume that the true (unobservable) protein variances follow a scaled
inverse y? distribution:

1 1 5
X X
2 2 do
05 do X S§

We estimate the parameters dy and s3 later from the observed data.

o If the data for a particular protein are normally distributed with

variance 012,, it follows for the observed sample variance that

2 2 T 2
P
Splop ~ PRESRIC'S
P
where d,, are the degrees of freedom associated with the experiment.
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o This implies that the observed sample variances s follow a scaled F
distribution: s2 ~ sg X Fd, do-

2
So % Fap,do

5 - I Here, the estimate for s} is 0.032, and the estimate for do is 4.43.

111 -
f T T T T 1
0.0 0.1 0.2 03 0.4 0.5

observed variances

@ For the test statistics the observed variances are shrunk towards the
prior values with the degree of shrinkage depending on the relative
sizes of the observed and prior degrees of freedom:

2 2
2 _ do X s5+dp XS
P [ moderated ] - do + dp
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Ordinary t-statistic:

estimated logfold change ~ Xp — Yy
p = : = )
estimated standard error Sp /2 /n

Moderated t-statistic:

. estimated log foldchange Xp—Yp
P [moderated] — =
moderate moderated standard error Sp [moderated] /2 /n

[ PMID 25821719 ]
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At a false discovery rate control of 1% only 1 protein is declared differentially expressed when
using ordinary t-statistics, compared to 23 proteins when moderated t-statistics are used.

FDR of 5%: 30 and 98 proteins, respectively; FDR of 10%: 120 and 184 proteins, respectively.

[ PMID 25821719 ]
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-log10 p-value

observed -log10 p-value
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expected -log10 p-value

[ PMID 25821719 ]
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Limma

Observed gene sample variance

Variability between genes

Moderated gene variance
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Variances as scaled
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Moderated sample variances

N
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