Dimension Reduction

PCA, SVD, MDS, and clustering
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Example: height of identical twins
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Expression between two ethnic groups
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Ethnicity is confounded with year

Year ASN CEU
2002 0 32
2003 0 54
2004 0 13
2005 80 3
2006 3 0
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Two batches within ethnic groups
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12 males and females, 2 months, 109 genes

Female Male
June 2005 3 9
October 2005 9 3 =
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Finding an unknown batch

1 & 1 ni+na
A=Y, YA /na, ..., 1 /ny, —1/ng, ..., —1 =Ny, - — Y; ;
L e A DL R D DL
= =nN1

Find n, and n, that make this difference large for many genes.
More precisely, maximize:
1 m
o
m -
1=1

[RI']
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Finding an unknown batch

More generally, let v be any vector with mean 0 and variance 1, find
the v that maximizes

2
m

Z ZYiajvj :(menvnxl)/(Yanvnxl)
1 | j=1

1=

The v that maximizes this variance is called the first principal
component direction or eigenvector, and

Yan/Unxl

is the first principal component.
[ RI']
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Principal components

We can remove the variability explained by v, and find the vector
v, that maximizes the variability in these residuals.

By continuing this process we end up with n eigenvectors:

Unxn = (V1 ...0p)

[RI']
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Singular value decomposition (SVD)

SVD is a powerful mathematical approach that permits us to
compute matrices U, D and V such that

/
Yan — anDanV

nXxn

and V are the eigenvectors.

U and V are both orthogonal matrices and D is diagonal.

U orthogonal means that the columns of U are such that

U{Uzzl and U{UJZO

In other words, the sample standard deviation of each column
is 1 and the sample correlation of any two columns is 0.
[ RI']
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RMSD from SVD

Native Model 3

PMID 11835488
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Principal components from SVD

Notice that we can get the principal components from U and D

YanVan — anDan

and the variance from D:

(YanVan)/(YanVan) = DU'UD = D2

nxn

[RI']
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Example: height of identical twins
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Example: principal components
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Second PC
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Example: eigenvectors and SDs

Voo — (0706 0708\ 1 (1 1

227 \0.708 —0.706) ~ /2 \1 -1
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Gene expression example
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Genetic heterogeneity
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Genetic heterogeneity
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A heatmap
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Another heatmap

Global Z Score
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Distance

Clustering organizes things that are “close” into groups.

What does it mean for two genes to be close?

What does it mean for two samples to be close?

Once we know this, how do we define groups?
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Distance in two dimension

(X27}/2)

V(X2 — X1)2+ (Yo — Y7)? v, - 1)

(X1, Y1) k -

(X2 — X1)

[RI']
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Subset of a 22,215 x 189 gene expression table:

Gene expression

kidney kidney kidney hippocampus

hippocampus hippocampus

201342_at 10.1 10.3 10.1 10.1 10.1 10.4
201343_at 9.1 9.6 9.2 9.6 9.7 9.0
201344 _at 6.2 6.3 6.2 7.6 7.8 7.0
201345_s_at 9.1 10.0 9.3 9.4 9.3 8.3
201346_at 9.0 9.5 9.2 11.4 10.7 10.1
201347 _x_at 12.0 10.0 11.5 9.4 9.3 8.6
201348_at 14.0 12.3 13.9 8.2 8.2 8.2
201349_at 10.4 9.7 10.0 9.2 8.8 8.9
201350_at 9.7 10.0 9.7 9.3 9.1 9.9
201351_s_at 8.4 8.8 8.5 8.0 8.2 6.8
201352_at 10.0 10.1 9.9 9.6 10.0 8.8
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Distances

There are 17,776 pairs of samples for which we can compute a distance:

There are 246,742,005 pairs of genes for which we can compute a distance:

>

J

d(h,i) =

22,215
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(Xn,j — Xij)?

[RI']




The similarity / distance matrices

DATA MATRIX GENE SIMILARITY MATRIX

[ 140.688 ]
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The similarity / distance matrices

SAMPLE SIMILARITY MATRIX

DATA MATRIX

[ 140.688 ]
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Multidimensional scaling

We can find a linear transformation for the data

Z =AX

such that

22,215
D (X — Xip)? & \/(Zl,j = Z1k)? + (22, — Z2,1)?
=1

[RI']
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Multidimensional scaling
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Single cell RNAseq
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Single cell RNAseq
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Single cell RNAseq

Retinal pigmented
epithelium

Cones

Rods

Horizontal cell
Bipolar cells

Mdiller glia
Amacrine cell

Retinal ganglion cells
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TSNE 2

PMID 26000488

Clustering

Hierarchical
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Partitioning (K-means)

[ 140.688 ]




K-means

 We start with some
data.

o)
. . o ®
For example: ®
— We are showing °
expression for two ®
samples for 14 genes. o®
, ® o0
— We are showing o °
expression for two genes ®
for 14 samples.
e This is simplifaction. Iteration = 0
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K-means
* Choose K centroids.
* These are starting ®
o)
values that the user % ®e
picks. °
* There are some data :. % X
driven ways to do it. ® )
o)
O
o)
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Iteration =0

[ 140.688 ]




K-means

* Make first partition by

finding the closest ®
. . . . .
centroid for each point X o
* This is where distance is ®
used. ®
e® X
@ ® o
@
®
Iteration = 1
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K-means
* Now re-compute the
centroids by taking the ®
middle of each cluster. L
% )
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Iteration =2

[ 140.688 ]




K-means

* Repeat until the
centroids stop moving
or until you get tired of
waiting.
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!
o :):’

Iteration = 3

[ 140.688 ]

Hierarchical clustering algorithm

oA
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1. Say every point is its
own cluster

2. Merge “closest” points

3. Repeat

Distance Between Two Sets of
Points

) @© Centroids @
o %e®

O Single Linkage @
O C\.
..

@




Linkage

Single linkage defines the distance between clusters as the distance between the closest
two points. Single linkage can lead to a lot of singleton clusters, and to clusters that look
stringlike in high dimensions.

Complete linkage defines the distance between clusters as the distance between the
farthest two points. Complete linkage tends to lead to more compact spherical structures.

Average linkage is the average of all the pairwise distances between points in the two

clusters. Average linkage is between single and complete linkage in terms of the type of
clusters it outputs.

- Simple linkage - Average linkage - Complete linkage

compbio.pbworks.com

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

A dendogram

Cluster Dendrogram
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A heatmap
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MACHINE LEARNING

Clustering by fast search and find of

density peaks

Alex Rodriguez and Alessandro Laio

Cluster analysis is aimed at classifying elements into categories on the basis of their
similarity. Its applications range from astronomy to bioinformatics, bibliometrics, and pattern
recognition. We propose an approach based on the idea that cluster centers are characterized
by a higher density than their neighbors and by a relatively large distance from points with
higher densities. This idea forms the basis of a clustering procedure in which the number of
clusters arises intuitively, outliers are automatically spotted and excluded from the analysis, and
clusters are recognized regardless of their shape and of the dimensionality of the space in which
they are embedded. We demonstrate the power of the algorithm on several test cases.
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PMID 24970081




The algorithm has its basis in the assumptions
that cluster centers are surrounded by neighbors
with lower local density and that they are at a
relatively large distance from any points with a
higher local density. For each data point i, we
compute two quantities: its local density p; and
its distance §; from points of higher density. Both
these quantities depend only on the distances d;;
between data points, which are assumed to satis-
fy the triangular inequality. The local density p;
of data point 7 is defined as

P =2 x(ds — o) (1)
J

where x(z) = 1ifz < 0 and y(x) = 0 otherwise,
and d_ is a cutoff distance. Basically, p, is equal to
the number of points that are closer than d. to
point . The algorithm is sensitive only to the rel-
ative magnitude of p; in different points, implying
that, for large data sets, the results of the analysis
are robust with respect to the choice of d..
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§; is measured by computing the minimum
distance between the point ¢ and any other
point with higher density:

8; = min (dy) (2)
JPi>p;

For the point with highest density, we con-
ventionally take §; = max;(d;;). Note that §; is
much larger than the typical nearest neighbor
distance only for points that are local or global
maxima in the density. Thus, cluster centers are

recognized as points for which the value of §; is
anomalously large.

PMID 24970081
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Fig. 1. The algorithm in two dimensions. (A) Point distribution. Data points are ranked in order of decreasing density. (B) Decision graph for the data in

(A). Different colors correspond to different clusters.
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Fig. 2. Results for synthetic point distributions. (A) The probability distribution from which point distributions are drawn. The regions with lowest intensity
correspond to a background uniform probability of 20%. (B and C) Point distributions for samples of 4000 and 1000 points, respectively. Points are colored
according to the cluster to which they are assigned. Black points belong to the cluster halos. (D and E) The corresponding decision graphs, with the centers
colored by cluster. (F) The fraction of points assigned to the incorrect cluster as a function of the sample dimension. Error bars indicate the standard error of the mean.
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Result 1

The distance is equivalent to the correlation when the data are standardized.

S\ 2
. —Y B
SX Sy

Sk
~
s
|
>
I
)~.<

1% X, - X 2+1§: Y, —Y\° 2% X;—X\ (Yi-YV\

M im1 Sx M im1 Sy M im1 Sx Sy -

2(1 —r)
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Result 2

The difference in the averages can drive the distance.

1MX Y2—1M Xi—X)— (Y, - V) + (X -7)V°

37 XK= Y)? =23 {(Xi = X) - (Vi - V) + (X - V)}
i=1 i=1

1 M ) 1 M M B B

= 2 AE - X) (=) 42X V) D {(X - X) -~ (Y- V) > (X -

=1 =1 =1

M

(assuming ;> (Xi-X)*=1)
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no mean removal

Four gene cluster
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Simulation

only differentially expressed genes
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Simulation

all genes
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Batch effects

Cluster Dendrogram
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Color represents tissue
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Color represents study
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Null distribution of p-values
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