Multiple Hypothesis Testing

Type | error and false discovery control
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Hypothetical example (no differential expression):

v

Microarray with 10,000 genes.

v

Calculate 10,000 p-values.

v

Call genes “significant” if p-value < 0.05.

v

Expected Number of False Positives:

10,000 x 0.05 = 500.
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» Many procedures have been developed to control the
Family Wise Error Rate (the probability of at least one
type | error).

» Two general types of FWER corrections:

» Single step: equivalent adjustments made to each p-value.

» Sequential: adaptive adjustment made to each p-value.
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Simple single step approach: Bonferroni.

» Very simple method for ensuring that the overall type |
error rate of « is maintained when performing m hypothesis
tests.

» Rejects any hypothesis with p-value < a/m.

» The Bonferroni adjusted p-value is

Bonf

pj =min{m x p;,1}

» For example, if we want to have an experiment wide type |
error rate of 0.05 when we perform 10,000 hypothesis
tests, we needed a p-value of 0.05/ 10,000 = 5x10°° to
declare significance.
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Simple sequential method: Holm-Bonferroni.

» Order the unadjusted p-values such that
P1<p2<-< Pm.

» Holm-Bonferroni uniformly delivers more power than the
Bonferroni correction by testing only the most extreme p
value against the strictest criterion, and the others against
progressively less strict criteria.

» The Holm adjusted p-value is
PO = min{m—j+1 x p;, 1}

» The point here is that we do not multiply every p; by the
same factor m.
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» The FWER is appropriate when you want to guard against
any false positives.

» For example, this is usually done in genome-wide
association studies.
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» The general null hypothesis (that all the null hypotheses
are true) is rarely of interest.

» There is a high probability of type 2 errors, i.e. of not
rejecting the general null hypothesis when important
effects exist.
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\4

In many cases (particularly in genomics) we can live with a
certain number of false positives.

v

This is for example the case in gene expression studies,
when we suspect a fair number of genes to be differentially
expressed.

v

In these cases, the more relevant quantity to control is the
False Discovery Rate (FDR).

v

The FDR is designed to control the proportion of false
positives among the set of rejected hypotheses.
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» Bonferroni and such control the family-wise error rate.

5 V/(V+U).

» The FDR controls the false positive rate.

5 V/(V+S).
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Benjamini and Hochberg FDR.

To control FDR at level §:

» Order the unadjusted p-values: p1 < po < --- < Pm.

» Find the test with the highest rank j for which the p-value p;
is less than or equal to (j / m) x 4.

» Declare the tests of rank 1, 2, .. ., j as significant.
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Difference in interpretation:

Suppose 550 out of 10,000 genes are significant at the 0.05
level.

» False Discovery Rate < 0.05:
Expect 0.05x550 = 27.5 false positives.

» Family Wise Error Rate < 0.05:
The probability of at least 1 false positive < 0.05.

» In most settings, the latter is extremely unlikely, unless the
sample size is huge!
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John Storey’s positive FDR (pFDR):
4
FDR = E{ﬁ | Fi’>0} x P(R > 0)

PFDR = E{%|Fn’>0}

» Since P(R > 0) is ~ 1 in most genomics experiments, the
FDR and the pFDR are very similar.

» Omitting P(R > 0) facilitated the development of a
measure of significance in terms of the FDR for each
hypothesis.
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Q-values:

» The g-value is defined as the minimum FDR that can be
attained when calling that gene significant (i.e., expected
proportion of false positives incurred when calling that
gene significant).

» The estimated g-value is a function of the p-value for that
test and the distribution of the entire set of p-values from
the family of tests being considered.

» In testing for differential expression, if a gene has a g-value
of 0.10 it means that we can expect 10% of genes that
show p-values at least as small as this gene to be false
positives.
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We begin by estimating the FDR when calling all genes
significant with p-values <'t.

A heuristic motivation:

CEV()]  El#{nulp <] moxt
PR~ ERD] = EMm <] ~ EFHp <0

Thus:
FDR(t) = —
#{pi < t}
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» We first estimate the more easily interpreted term
mo = Mg/ m, the proportion of truly null (non-differentially
expressed) genes.

#{pi > \}

mo(A) = mx(1—2X\)

» We then use Mg = #p x m.

» Note that 1 — 7 is the estimated proportion of differentially
expressed genes.

» The g-value is formally defined as the minimum FDR that
can be attained when calling that gene significant:

§(p;) = min FDR(?)

t>p;

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017 PM I D 12883005




q p.bonf

.92e-0
.90e-0
.43e-0
.35e-0
.11e-0
.14e-0
.14e-0
.22e-0
.24e-0 11814
44e-0 11814
.44e-05 0.11814
.64e-05 0.11997
.76e-05 0.11997
.97e-05 0.11997
.99e-05 0.11997
.53e-05 0.14035
.64e-05 0.14035
.03e-05 0.14795
.11e-05 0.14795
.67e-05 0.15919

0.11814 0.19188
0.11814 0.38955
0.11814 0.84317
0.11814 0.93497
0.11814 1.
0.11814
0.11814
0.11814
Q.
0.

OWo~NOUVTL A WNBRE
uuvumiununununuoooOoOoOT

WWWNNRRRRRRBRRRRBR©OWR

R RERPRRRRRRRBRRBRRBR @

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

0.0

0.2

0.4 0.6 0.8 1.0

p-values

q
2.05e-26
4.0%e-08
1.02e-07
5.80e-07
3.97e-05
2.8%e-02
5.03e-02
5.94e-02
6.9%e-02
6.9%e-02
6.9%e-02
6.9%e-02
6.9%e-02
6.9%e-02
6.9%e-02
6.9%e-02
7.22e-02
7.22e-02
7.77e-02
7.95e-02

OWoo~NOOUVLE WNR

RRRRPRRPRRPROOCOUVTIWRNNWORN
RPRRRRPRRPRRERRRBROOOUIWRERNNWON

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

0.0

0.2

0.4 0.6 0.8 1.0

p-values




1.2 4
6 -
1.0
5 .o
% .
0.8 %
s
. -
0.6 E—’
s 37
:
0.4 2
S 2
0.2
14
0.0 -
T T T T T 1 Y T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
p expected -logyg (p—value)
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017
0a Normal (u=0,0=1) o Cumulative Distribution Function
0.8
0.3
. 06~
x
< | Vi
= 02 =
T
0.4
0.1
0.2
0.0 T T T T T 0.0 T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
X X

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017




1.0

o
[¢]
o°
0.8 . 1 ér&gﬁ
e}
o
(0] f
S o
.6 o
= 0.6 S o4 9
>\2 | % &
T S &
_ O °
0.4 4} o
§ -1
N
5 °
0.2 °
—2 - o
o
0.0 \ T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
Theoretical quantiles Theoretical quantiles
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017
10000 1000 100 10
1 1 1 1
1.2 4
s —
1.0 M- gt 11 X B A
! LI H L 5
B
0.8 2
>
by,
0.6 E—’
1 3
el
:
0.4 2
S 2
0.2
14
0.0 -
T T T T 1 Y T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
p expected -logyg (p—value)

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017




||.1..,..1.1. o _I_ e M —

p N o |_||-A,I. 'I. n Moo on ol o
"q MMTH T TTH T M. THIEATITHTH

fhn d
il

r T T T T
0.0 0.2 0.4 0.6 08

p
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

observed -log, (p-value)

observed -log, (p-value)

10000

-

10000
L

T T
2 3

expected -log, (p-value)

1000 100
1 1

-’ *

expected -log, (p-value)

1.2

1.0

0.8

0.0

o
|

r T T T T
0.0 0.2 0.4 0.6 0.8

p
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

observed -logy, (p-value)

observed -log;, (p-value)

10000

-

10000
L

T T
2 3

expected -log, (p-value)

1000 100
1 1

-

expected -log, (p-value)




Iterson et al. Genome Biology (2017) 18:19

DOI 10.1186/513059-016-1131-9 Genome BIOlOgy

METHOD Open Access

Controlling bias and inflation in @
epigenome- and transcriptome-wide
association studies using the empirical null
distribution

1%

Maarten van Iterson . Erik W. van Zwet?, the BIOS Consortium and Bastiaan T. Heijmans'

Abstract

We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant
inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed.
Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias
and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of
the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power
while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS
meta-analyses of age and smoking.

Keywords: Epigenome- and transcriptome-wide association studies, Bias, Inflation, Empirical null distribution, Gibbs
sampler, Meta-analysis

PMID 28129774
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Dependency in expression data

Since measured gene expression levels are not independent, the
statistics (p-values) are not independent.

Genes in the same pathway, near each other, with sequence
similarity, might be dependent.

Each of these dependencies is local. They probably occur in finite
clumps.

Given “clumpy microarray dependence” and a large number of
hypothesis tests, Storey et al showed that

1) the FDR is controlled, and

2) the estimated g-values conservatively estimate the true g-values.
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Practical guidelines for assessing power and false discovery rate
for a fixed sample size in microarray experiments

Tiejun Tong! and Hongyu Zhao? 3 * f

I Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, U.S.A.
2Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven,
CT 06520, U.S.A.
3Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, U.S.A.

SUMMARY

One major goal in microarray studies is to identify genes having different expression levels across different
classes/conditions. In order to achieve this goal, a study needs to have an adequate sample size to
ensure the desired power. Owing to the importance of this topic, a number of approaches to sample size
calculation have been developed. However, due to the cost and/or experimental difficulties in obtaining
sufficient biological materials, it might be difficult to attain the required sample size. In this article, we
address more practical questions for assessing power and false discovery rate (FDR) for a fixed sample
size. The relationships between power, sample size and FDR are explored. We also conduct simulations
and a real data study to evaluate the proposed findings. Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: false discovery rate; gene expression data; power; sample size; 7'-statistic

PMID 18338314
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FDR based sample size justification
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Data-driven hypothesis
weighting increases
detection power in genome-
scale multiple testing

Nikolaos Ignatiadis, Bernd Klaus, Judith B Zaugg
& Wolfgang Huber

Hypothesis weighting improves the power of large-scale
multiple testing. We describe independent hypothesis
weighting (IHW), a method that assigns weights using
covariates independent of the P-values under the null
hypothesis but informative of each test’s power or prior
probability of the null hypothesis (http://www.bioconductor.
org/packages/IHW). IHW increases power while controlling the
false discovery rate and is a practical approach to discovering
associations in genomics, high-throughput biology and other
large data sets.
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PMID 27240256

Table 1 | Examples of covariates

Application Covariate

Differential expression Sum of read counts per gene across all samples?2
GWAS Minor allele frequency

eQTL, chromatin Distance between genetic variant and locus of

immunoprecipitation-QTL expression, or comembership in a topologically

associated domain16

t-test Overall variance®
Two-sided tests Sign of the effect
Various applications Signal quality, sample size
a, b, C. d,
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Figure 1 | Histograms stratified by the covariate as a diagnostic plot.
(a) The histogram of all P-values shows a mixture of a uniform
distribution and an enrichment of small P-values to the left. Such a
well-calibrated histogram is the starting point for most multiple testing
methods. (b-d) Histograms after splitting the hypotheses into three
groups based on the values of the covariate.
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Reporting and interpretation in genome-wide
association studies

Jon Wakefield

Accepted 4 December 2007

Background In the context of genome-wide association studies we critique a
number of methods that have been suggested for flagging
associations for further investigation.

Methods The P-value is by far the most commonly used measure, but
requires careful calibration when the a priori probability of an
association is small, and discards information by not considering
the power associated with each test. The g-value is a frequentist
method by which the false discovery rate (FDR) may be controlled.

Results We advocate the use of the Bayes factor as a summary of the
information in the data with respect to the comparison of the
null and alternative hypotheses, and describe a recently-proposed
approach to the calculation of the Bayes factor that is easily imple-
mented. The combination of data across studies is straightforward
using the Bayes factor approach, as are power calculations.

Conclusions The Bayes factor and the g-value provide complementary informa-
tion and when used in addition to the P-value may be used to
reduce the number of reported findings that are subsequently not
reproduced.

Keywords Bayes theorem, epidemiologic methods, genetic polymorphism,
testing
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