Confidence Intervals for Proportions

Example

[Carroll, J Med Entomol 38:114–117, 2001]

Place tick on clay island surrounded by water, with two capillary tubes: one treated with deer-gland-substance; one untreated.

Tick sex	Leg	Deer sex	treated	untreated
male	fore	female	24	5
female	fore	female	18	5
male	fore	male	23	4
female	fore	male	20	4
male	hind	female	17	8
female	hind	female	25	3
male	hind	male	21	6
female	hind	male	25	2

- \longrightarrow Is the tick more likely to go to the treated tube?

Test for a proportion

Suppose $X \sim \text{Binomial}(n, p)$.

Test $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$.

 $\text{Reject } H_0 \text{ if } X \geq H \text{ or } X \leq L.$

Choose H and L such that

 $\Pr(X \ge H \mid p = \frac{1}{2}) \le \alpha/2$ and $\Pr(X \le L \mid p = \frac{1}{2}) \le \alpha/2$.

Thus $Pr(Reject H_0 | H_0 \text{ is true}) \leq \alpha$.

 \rightarrow The difficulty: The Binomial distribution is hard to work with. Because of its discrete nature, you can't get exactly your desired significance level (α).

Rejection region

Consider $X \sim \text{Binomial}(n=29, p)$.

Test of $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$.

Lower critical value:

qbinom(0.025, 29, 0.5) = 9 $Pr(X \le 9)$ = pbinom(9, 29, 0.5) = 0.031 \rightarrow L = 8

Upper critical value:

qbinom(0.975, 29, 0.5) = 20

 $Pr(X \ge 20)$ = 1-pbinom(19,29,0.5) = 0.031 \rightarrow H = 21

Reject H_0 if $X \le 8$ or $X \ge 21$. (For testing $H_0 : p = \frac{1}{2}$, H = n - L)

Significance level

Consider X \sim Binomial(n=29, p).

Test of $H_0 : p = \frac{1}{2}$ vs $H_a : p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$. Reject H_0 if $X \le 8$ or $X \ge 21$.

Actual significance level:

$$\begin{aligned} \alpha &= \Pr(X \le 8 \text{ or } X \ge 21 \mid p = \frac{1}{2}) \\ &= \Pr(X \le 8 \mid p = \frac{1}{2}) + [1 - \Pr(X \le 20 \mid p = \frac{1}{2})] \\ &= \texttt{pbinom}(8, 29, 0.5) + 1 - \texttt{pbinom}(20, 29, 0.5) \\ &= 0.024 \end{aligned}$$

If we used instead "Reject H_0 if $X \le 9$ or $X \ge 20$ ", the significance level would be

pbinom(9,29,0.5) + 1-pbinom(19,29,0.5) = 0.061

Example 1

Observe X = 24 (for n = 29).

Reject $H_0: p = \frac{1}{2}$ if $X \le 8$ or $X \ge 21$.

Thus we reject H_0 and conclude that the ticks were more likely to go to the deer-gland-substance-treated tube.

P-value = 2 × Pr(X ≥ 24 | p =
$$\frac{1}{2}$$
)
= 2 * (1-pbinom(23, 29, 0.5))
= 0.0005.

→ Alternatively: binom.test(24,29)

Example 2

Observe X = 17 (for n = 25); assume X \sim Binomial(n=25, p).

Test of $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$.

Rejection rule: Reject H_0 if $X \le 7$ or $X \ge 18$.

```
qbinom(0.025, 25, 0.5) = 8
pbinom(8, 25, 0.5) = 0.054
pbinom(7, 25, 0.5) = 0.022
```

Significance level:

pbinom(7,25,0.5) + 1-pbinom(17,25,0.5) = 0.043

Since we observed X = 17, we fail to reject H_0 .

P-value = 2*(1-pbinom(16,25,0.5)) = 0.11

Confidence interval for a proportion

Example 1

 $X \sim Binomial(n=29, p);$ observe X = 24.

Lower bound of 95% confidence interval:

Largest p_0 such that $\text{Pr}(X \geq 24 \mid p = p_0) \leq 0.025$

Upper bound of 95% confidence interval:

Smallest p_0 such that $Pr(X \le 24 \mid p = p_0) \le 0.025$

 \rightarrow binom.test(24,29)

95% CI for p: (0.642, 0.942)

Note: $\hat{p} = 24/29 = 0.83$ is not the midpoint of the CI.

Example 2

 $X \sim Binomial(n=25, p);$ observe X = 17.

Lower bound of 95% confidence interval:

 p_L such that 17 is the 97.5 percentile of Binomial(n=25, p_L)

Upper bound of 95% confidence interval:

 p_H such that 17 is the 2.5 percentile of Binomial(n=25, p_H)

 \rightarrow binom.test(17,25)

95% CI for p: (0.465, 0.851)

Again, $\hat{p} = 17/25 = 0.68$ is not the midpoint of the CI

Rule of thumb: a good approximation for the upper bound of the 95% confidence interval is 3/n.

A mad cow example New York Times, Feb 3, 2004: The department [of Agriculture] has not changed last year's plans to test 40,000 cows nationwide this year, out of 30 million slaughtered. Janet Riley, a spokeswoman for the American Meat Institute, which represents slaughterhouses, called that "plenty sufficient from a statistical standpoint."

chosen at random from the population of 30 million cows, and suppose that 0 (or 1, or 2) are found to be infected.

- No. infected

 Obs'd
 Est'd
 95% CI

 0
 0
 0 2767

 1
 750
 19 4178

 2
 1500
 182 5418
- → How many of the 30 million total cows would we estimate to be infected?
- → What is the 95% confidence interval for the total number of infected cows?

The case X = n

Suppose $X \sim \text{Binomial}(n, p)$ and we observe X = n.

Upper limit of 95% confidence interval for $p\colon \to 1$

Lower limit of 95% confidence interval for p:

 p_L such that

$$\begin{split} & \mathsf{Pr}(\mathsf{X} \geq n \mid \mathsf{p} = \mathsf{p}_{\mathsf{L}}) = 0.025 \\ \Longrightarrow & \mathsf{Pr}(\mathsf{X} = n \mid \mathsf{p} = \mathsf{p}_{\mathsf{L}}) = 0.025 \\ \Longrightarrow & (\mathsf{p}_{\mathsf{L}})^n = 0.025 \\ \Longrightarrow & \mathsf{p}_{\mathsf{L}} = \sqrt[n]{0.025} \end{split}$$

In the case n = 30 and X = 30, the 95% CI for p is (0.88, 1.00).

Rule of thumb: a good approximation for the lower bound of the 95% confidence interval is 1 - 3/n.

Large n and medium p

