Goodness of Fit

Goodness of fit - 2 classes

A B
/8 22

— Do these data correspond reasonably to the proportions 3:17

We previously discussed options for testing pa = 0.75!

e Exact p-value
e Exact confidence interval

e Normal approximation




Goodness of fit - 3 classes

AA AB BB
35 43 22

— Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

Let (pq, P2, P3) = (0.25, 0.50, 0.25) and n = 100.

Using the Multinomial distribution function:

100!
P(X1=35, X,=43, X3=22) = % 0.25%° 0.50*% 0.25%

=7.3x10*




Goodness of fit test

We observe (n1, Nz, n3) ~ Multinomial(n,p={p+, P», P3})-

We seek to test Hp : p; = 0.25,p, = 0.5,p5 = 0.25.

versus H, : Hg is false.

We need two things:

—— A test statistic.

—— The null distribution of the test statistic.

The likelihood-ratio test (LRT)

Back to the first example:

Test HO : (pA7 pB) - <7TA7 7TB) Versus Ha : (pA7 pB) 7é <7TA7 7TB>'

— MLE under Hy:  pa =na/n  where n = nu + Ng.

Likelihood under Ha:  La = Pr(nalpa = pa) = (1) X PR x (1 — pa)"™

Likelihood under Ho: Lo = Pr(nalpa = ma) = (1) X mp* x (1 — 7a)" "

— Likelihood ratio test statistic: LRT =2 x In (La/Lo)

— Some clever people have shown that if Hg is true, then LRT
follows a y?(df=1) distribution (approximately).




Likelihood-ratio test for the example

We observed n, = 78 and ng = 22.

Ho : (pa, Pg) = (0.75,0.25)

Ha : (Pa, Ps) # (0.75,0.25)

La = Pr(na=78 | p,=0.78) = (%) x 0.78"® x 0.22% = 0.096.
Lo = Pr(na=78 | p,=0.75) = (%) x 0.75"® x 0.25% = 0.075.
— LRT =2 x In (La/Lo) = 0.49.

Using a x?(df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.

INR: p-value=1 - pchisqg(0.49,1)
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A little math ...

Nn=na+ng, NI=E[nNa|Hol=nxm, nd=E[ng|Hol=nx .

Then Lulo= (”—A) " (2_(2)%

no

Or equivalently  LRT = 2xn,xIn <”A> + 2xngxIn <:—§>
B

=)
Na

—» Why do this?

Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

LRT = 2x 3K, nix In (%)

If Hp is true, LRT ~ x?(df=k-1)




Example

In a dihybrid cross of tomatos we expect the ratio of the pheno-
types to be 9:3:3:1. In 1611 tomatos, we observe the numbers
926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype n n® n/n®  nixIn(n/nf)

Tall, cut-leaf 926 906.2 1.02 20.03

Tall, potato-leaf 288  302.1 0.95 -138.73

Dwarf, cut-leaf 293 302.1 0.97 -8.93

Dwarf, potato-leaf 104  100.7 1.03 3.37

Sum 1611 0.74
Results
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The test statistics LRT is 1.48. Using a y?(df=3) distribution, we
get a p-value of 0.69. We therefore have no evidence against the
hypothesis that the ratio of the phenotypes is 9:3:3:1.




The chi-square test

There is an alternative technique. The test is called the chi-square
test, and has the greater tradition in the literature. For two groups,
calculate the following:

2 2
x2 = (=) o (ne—ng)
na ng

— If Hy is true, then X2 is a draw from a y2(df=1) distribution
(approximately).

Example

In the first example we observed n, = 78 and ng = 22. Under the
null hypothesis we have nd = 75 and n3 = 25. We therefore get

X2 = UBTS" | 22257 _ 0121 0.36 = 0.48.

This corresponds to a p-value of 0.49. We therefore have no evi-
dence against the hypothesis (p,, pg) = (0.75,0.25).

— Note: using the likelihood ratio test we got a p-value of 0.48.

INR: chisg.test (c(78,22),p=c(0.75,0.25))




Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more
than just two groups.

If we have k groups, the chi-square test statistic we use is

X2=vk <”i;_[,‘i°>2 ~ y2(df=k-1)

Tomato example

For the tomato example we get

926-906.2)° (288-302.1)° (293-302.1)> (104-100.7)°

X2:(
9062 | 3021 3021 | 1007

= 0.43+0.65+0.27 +0.11 = 1.47

Using a \?(df=3) distribution, we get a p-value of 0.69. We there-
fore have no evidence against the hypothesis that the ratio of the
phenotypes is 9:3:3:1.

— Using the likelihood ratio test we also got a p-value of 0.69.

INR: chisg.test (c(926,288,293,104),p=c(9,3,3,1)/16)




Test statistics

Let n® denote the expected count in group i if Hy is true.

LRT statistic

Pr(data | p = MLE)
LRT =21n { Pridata | o) } =...=25..n/In(n;/n?)

v’ test statistic

o>~ (observed — expected)® <— (m—n?)?
X = Z expected B Z

Null distribution of test statistic

What values of LRT (or X?) should we expect, if Hy were true?

The null distributions of these statistics may be obtained by:
e Brute-force analytic calculations
e Computer simulations

e Asymptotic approximations
— If the sample size n is large, we have
LRT ~ x?(k — 1) and X2 ~ x?(k — 1)




The brute-force method

PrLRT>g|Ho) = ) Pr(ny,nzng|Ho)

ny,N2,N3
giving LRT > ¢

This is not feasible.

Computer simulation

1. Simulate a table conforming to the null hypothesis.
E.g., simulate (ny, na, ng) ~ Multinomial(n=100, {1/4, 1/2, 1/4})

2. Calculate your test statistic.

3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value — the 95th percentile of the results.

Estimated P-value — the prop’n of results > the observed value.

INnR,use rmultinom(n, size, prob) todon simulations ofa Multinomial(size, prob).




Example

We observe the following data:
AA  AB BB
35 43 22

We imagine that these are counts

(n1, N2, n3) ~ Multinomial(n=100,{p;, P, P3})-
We seek totest Hy: py = 1/4, p, =1/2, p3 = 1/4.
We calculate LRT = 4.96 and X2 = 5.34,

Referring to the asymptotic approximations (y? dist'n with 2 de-
grees of freedom), we obtain p = 8.4% and p = 6.9%.

With 10,000 simulations under Hy, we get p = 8.9% and p = 7.4%.

Example

Est’d null dist’n of LRT statistic

Observed 95th %ile = 6.06

5 10 15

o

LRT

Est’d null dist’n of chi-square statistic

Observed 95th %ile = 6.00

10 15

o
[}




Summary and recommendation

For either the LRT or the y? test:

— The null distribution is approximately y?(k — 1) if the sample
size is large.

— The null distribution can be approximated by simulating data
under the null hypothesis.

If the sample size is sufficiently large that the expected count in
each cell is > 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not  paa = 0.25, pag = 0.5, pgg = 0.25

But rather something like:

Pan = 2, Pag = 2f(1 — 1), pgg = (1 — )2 for some f.

For example: Consider the genotypes, of a random sample of in-
dividuals, at a diallelic locus.

— Is the locus in Hardy-Weinberg equilibrium (as expected
in the case of random mating)?

Example data:

AA  AB BB




Another example

ABO blood groups — 3 alleles A, B, O.

Phenotype A  genotype AA or AO
B  genotype BB or BO
AB genotype AB
O genotype O

Allele frequencies: fa, fg, fo (Note that fpo + fg + fo = 1)

Under Hardy-Weinberg equilibrium, we expect

pa=fa+2fafo  ps=f2a+2fafo  pas=2fafs Po=1

O A B AB
104 91 36 19

Example data:

LRT for example 1

Data: (naa, Nas, Nee) ~ Multinomial(n,{paa; Pas; Pes})
We seek to test whether the data conform reasonably to

HO: pAA - f2, pAB — 2f(1 - f), pBB — (1 - f>2 for some f.

General MLEs:

Paa = Naa/N, Pag = Nag/N, Pgg = Nes/N

MLE under Hy:
. ~ 2 . A N
f=(naa+nNnag/2)/n — Paa =T ,Pag=2f(1 —f),pgg = (1 —f)?

LRT statistic: LRT =2 x In {Pr(nAA’ a8, N8B | Paa: Pas: ?BB>}
Pr(naa, Nag, Ne8 | Paa, Pag: PeB)




LRT for example 2

Data: (no, Na, Ns, Nag) ~ Multinomial(n,{po, Pa, Ps; Pas})

We seek to test whether the data conform reasonably to

Ho: ps = fa + 2fafo, ps = T3 + 2fafo, Pag = 2fafs, Po = 5

for some fg, fa, fg, where fg + o +fg = 1.
General MLEs:  pg, Pa, Pg, Pag:  like before.

MLE under Ho: Requires numerical optimization

Call them (]Eo, fA, ]ACB) — (ﬁo, fSAa fSBa E)AB)

Pr<n07 Na, N, NAB | ﬁOJ ﬁAv FA)Bv bAB)

LRT statistic: LRT=2 x In { — 0=
Pr<n07 Na, Ng, NAB | pO7 Pa; PB; pAB)

}

2 test for these examples

e Obtain the MLE(s) under Hy.
e Calculate the corresponding cell probabilities.
e Turn these into (estimated) expected counts under Hy.

(observed — expected)?
expected

e Calculate X* = Z




Null distribution for these cases

e Computer simulation (with one wrinkle)
o Simulate data under Hg (plug in the MLEs for the observed data)
o Calculate the MLE with the simulated data
o Calculate the test statistic with the simulated data
o Repeat many times

e Asymptotic approximation

o Under Hy, if the sample size, n, is large, both the LRT statis-
tic and the y? statistic follow, approximately, a y? distribution
with k —s — 1 degrees of freedom, where s is the number of
parameters estimated under Hy.

o Note that s = 1 for example 1, and s = 2 for example 2, and
so df = 1 for both examples.

Example 1
Example data: AAAB BB
5 20 75

MLE: f=(5+20/2)/100 = 15%

Expected counts: 225 255 7225

Test statistics:  LRT statistic = 3.87 X2 =4.65

Asymptotic \2(df = 1) approx’n: p=4.9% p=3.1%

10,000 computer simulations: p=8.2% p=2.4%




Example 1

Est’d null dist’'n of LRT statistic

95th %ile = 4.58
Observed
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Est’d null dist’n of chi-square statistic

95th %ile = 3.36
Observed
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Example 2

O A B AB

Example data:
104 91 36 19

MLE: fo =62.8%, fa=25.0%, fg=12.2%.

Expected counts: 985 942 420 153

Test statistics:  LRT statistic=1.99 X2=2.10

Asymptotic y?(df = 1) approxn: p=16% p=15%

10,000 computer simulations: p=17% p=15%




Example 2

Est’d null dist’'n of LRT statistic

95th %ile = 3.91
Observed
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Est’d null dist’n of chi-square statistic

95th %ile = 3.86

Observed
Example 3

Data on number of sperm bound to an egg:

N W
YN
- o

1 2
count 26 4 4

—— Do these follow a Poisson distribution?

MLE:

A =sample average=(0x26+1x4+...+5x1)/38=0.71

Expected counts —s n® =nx e * Al /il




Example 3

observed 26 4 4 2 1 1
expected 18.7 133 4.7 11 0.2 0.0

2 bs—exp)?
X2 =yl oel - =428
LRT =2 obs log(obs/exp) =...=18.8

Compare to x2(df =6 —1—1 = 4)
P-value =1 x 1078 (x2) and 9 x 10~* (LRT).

By simulation: p-value = 16/10,000 () and 7/10,000 (LRT)

Null simulation results

MObsirved

| | | | | | |
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Simulated ? statistic
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|

0 5 10 15 20

Simulated LRT statistic




A final note

With these sorts of goodness-of-fit tests, we are often happy when
our model does fit.

In other words, we often prefer to fail to reject Hp.

Such a conclusion, that the data fit the model reasonably well,
should be phrased and considered with caution.

We should think: how much power do | have to detect, with these
limited data, a reasonable deviation from Hy?




