
Hypothesis Testing

Tests of hypotheses

Confidence interval: Form an interval (on the basis of data)
of plausible values for a population pa-
rameter.

Test of hypothesis: Answer a yes or no question regarding
a population parameter.

Examples:

→→ Do the two strains have the same average response?

→→ Is the concentration of substance X in the water supply
above the safe limit?

→→ Does the treatment have an effect?



Example

We have a quantitative assay for the concentration of antibodies
against a certain virus in blood from a mouse.

We apply our assay to a set of ten mice before and after the injec-
tion of a vaccine. (This is called a “paired” experiment.)

Let X i denote the differences between the measurements (“after”
minus “before”) for mouse i.

We imagine that the X i are independent and identically distributed
Normal(µ, σ).

→→ Does the vaccine have an effect? In other words: Is µ #= 0?

The data
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Hypothesis testing

We consider two hypotheses:

Null hypothesis, H0: µ = 0 Alternative hypothesis, Ha: µ #= 0

Type I error: Reject H0 when it is true (false positive)

Type II error: Fail to reject H0 when it is false (false negative)

We set things up so that a Type I error is a worse error (and so
that we are seeking to prove the alternative hypothesis). We want
to control the rate (the significance level, α) of such errors.

→→ Test statistic: T = (X → 0)/(S/
√

10)

→→ We reject H0 if |T| > t#, where t# is chosen so that

Pr(Reject H0 | H0 is true) = Pr(|T| > t# | µ = 0) = α.
(generally α = 5%)

Example (continued)

Under H0 (i.e., when µ = 0),

T = (X → 0)/(S/
√

10) ∼ t(df = 9)

We reject H0 if |T| > 2.26.

t(df=9) distribution

2.26−2.26  

2.5% 2.5%

As a result, if H0 is true, there’s a 5% chance that you’ll reject it!

For the observed data:

x̄ = 1.93, s = 2.24, n = 10 Tobs = (1.93 - 0) / (2.24/
√

10) = 2.72

→→ Thus we reject H0.



The goal

→→ We seek to prove the alternative hypothesis.

→→ We are happy if we reject H0.

→→ In the case that we reject H0, we might say:

Either H0 is false, or a rare event occurred.

Example (continued)

What if we knew that antibody levels could not decrease in truth?

→→ We would use a one-tailed (or one-sided) test.

Null hypothesis, H0: µ = 0 Alternative hypothesis, Ha: µ > 0

t(df=9) distribution

1.83

5%

We reject H0 if T > 1.83.



One-tailed vs two-tailed tests

If you are trying to prove that a treat-
ment improves things, you want a
one-tailed (or one-sided) test.

You’ll reject H0 only if T > t#.

t(df=9) distribution

1.83

5%

If you are just looking for a differ-
ence, use a two-tailed (or two-sided)
test.

You’ll reject H0 if T < t# or T > t#.

t(df=9) distribution

2.26−2.26  

2.5% 2.5%

Another example

Question: is the concentration of substance X in the water supply
above the safe level?

X 1,X 2, . . . ,X 4 ∼ iid Normal(µ, σ).

→→ We want to test H0: µ ≥ 6 (unsafe) versus Ha: µ < 6 (safe).

Test statistic: T =
X → 6

S/
√

4

If we wish to have the significance
level α = 5%, the rejection region is
T < t# = –2.35.

t(df=3) distribution

−2.35  

5%



P-values

P-value: →→ the smallest significance level (α) for which you
would fail to reject H0 with the observed data.

→→ the probability, if H0 was true, of receiving data as
extreme as what was observed.

X 1, . . . ,X 10 ∼ iid Normal(µ, σ), H0: µ = 0; Ha: µ #= 0.

x̄ = 1.93; s = 2.24

Tobs = 1.93→0
2.24/

√
10

= 2.72

P-value = Pr(|T| > Tobs) = 2.4%.

pt(-2.72,9) + pt(2.72,9,lower=F)

2*pt(-2.72,9)

t(df=9) distribution

Tobs−Tobs

1.2%1.2%

Another example

X 1, . . . ,X 4 ∼ Normal(µ, σ) H0: µ ≥ 6; Ha : µ < 6.

x̄ = 5.51; s = 0.43

Tobs =
5.51→6
0.43/

√
4

= –2.28

P-value = Pr(T < Tobs | µ = 6) = 5.4%.

pt(-2.28, 3)

t(df=3) distribution

Tobs

5.4%

→→ The P-value quantifies how likely it is to get data as extreme
as the data observed, assuming the null hypothesis was true.

Recall: We want to prove the alternative hypothesis (i.e., reject H0, receive a small P-value)



Hypothesis tests and confidence intervals

→→ The 95% confidence interval for µ is the set of values, µ0,
such that the null hypothesis H0 : µ = µ0 would not be re-
jected by a two-sided test with α = 5%.

The 95% CI for µ is the set of plausible values of µ. If a value of µ
is plausible, then as a null hypothesis, it would not be rejected.

For example:

9.98 9.87 10.05 10.08 9.99 9.90 assumed to be iid Normal(µ,σ)

x̄ = 9.98; s = 0.082; n = 6; qt(0.975,5) = 2.57

The 95% CI for µ is

9.98 ± 2.57 × 0.082 /
√

6 = 9.98 ± 0.086 = (9.89,10.06)

Power

The power of a test = Pr(reject H0 | H0 is false).

0 ncp C−C  

Null dist’n Alt dist’n

Area = power

The power depends on: • The null hypothesis and test statistic

• The sample size

• The true value of µ

• The true value of σ



Why “fail to reject”?

If the data are insufficient to reject H0, we say,

The data are insufficient to reject H0.

We shouldn’t say, We have proven H0.

→→ We may only have low power to detect anything but extreme
differences.

→→ We control the rate of type I errors (“false positives”) at 5%
(or whatever), but we may have little or no control over the
rate of type II errors.

Testing the difference between two means

Strain A: X 1, . . . ,X n ∼ iid Normal(µA, σA)

Strain B: Y 1, . . . ,Y m ∼ iid Normal(µB, σB)

Test H0 : µA = µB vs Ha : µA #= µB

Test statistic: T =
X → Y√

S2
A

n + S2
B

m

Reject H0 if |T| > tα/2 tα 2− tα 2  

2.5% 2.5%

If H0 is true, then T follows (approximately) a t distr’n with k d.f.

k according to the nasty formula from a previous lecture.



Example

85 90 95 100 105 110 115

A

B

Strain A: n = 12, sample mean = 103.7, sample SD = 7.2

Strain B: n = 9, sample mean = 97.0, sample SD = 4.5

ŜD(X → Y ) =
√

7.22

12 + 4.52

9 = 2.57

Tobs = (103.7 – 97.0)/2.57 = 2.60.

k = . . . = 18.48, so C = 2.10. Thus we reject H0 at α = 0.05.

What to say

When rejecting H0:

• The difference is statistically significant.

• The observed difference can not reasonably be explained by
chance variation.

When failing to reject H0:

• There is insufficient evidence to conclude that µA #= µB.

• The difference is not statistically significant.

• The observed difference could reasonably be the result of
chance variation.



What about a different significance level?

Recall Tobs = 2.60 k = 18.48

If α = 0.10, C = 1.73 =⇒ Reject H0

If α = 0.05, C = 2.10 =⇒ Reject H0

If α = 0.01, C = 2.87 =⇒ Fail to reject H0

If α = 0.001, C = 3.90 =⇒ Fail to reject H0

P-value: the smallest α for which you would still reject H0 with the
observed data.

With these data, P = 2*pt(2.60,18.48,lower=FALSE)= 0.018.

Another example

Suppose I measure the blood pressure of 6 mice on a low salt diet
and 6 mice on a high salt diet. We wish to prove that the high salt
diet causes an increase in blood pressure.

40 50 60 70 80

L

H

We imagine X 1, . . . ,X n ∼ iid Normal(µL, σL) low salt

Y 1, . . . ,Y m ∼ iid Normal(µH, σH) high salt

We want to test H0 : µL = µH versus Ha : µL < µH

→→ Are the data compatible with H0?



A one-tailed test

Test statistic: T =
X → Y

ŜD(X → Y )

Since we seek to prove that µL is smaller than µH, only large neg-
ative values of the statistic are interesting.

Thus, our rejection region is T < C for some critical value C.

We choose C so that Pr( T < C | µL = µH ) = α.

C

5%

vs

C−C  

2.5% 2.5%

The example

40 50 60 70 80

L

H

Low salt: n = 6; sample mean = 51.0, sample SD = 10.0

High salt: n = 6; sample mean = 69.1, sample SD = 15.1

x̄ → ȳ = –18.1 ŜD(X →Y ) = 7.40 Tobs = –18.1 / 7.40 = –2.44

k = 8.69. If α = 0.05, then C = –1.84.

Since T < C, we reject H0 and conclude that µL < µH.

Note: P-value = pt(-2.44,8.69)= 0.019.



Always give a confidence interval!

40 50 60 70 80

L

H

P = 0.019

95% CI: (–34.9, –1.2)

40 50 60 70 80

L

H

P = 0.019

95% CI: (–13.6, –0.5)

→→ Make a statistician happy: draw a picture of the data.

Example

Suppose I do some pre/post measurements.

I make some measurement on each of 5 mice before and after
some treatment.

Question: Does the treatment have any effect?

Mouse 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0
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Pre/post example

In this sort of pre/post measurement example, study the differ-
ences as a single sample.

Why? The pre/post measurements are likely associated, and as
a result one can more precisely learn about the effect of
the treatment.

Mouse 1 2 3 4 5

Before 18.6 14.3 21.4 19.3 24.0
After 17.8 24.1 31.9 28.6 40.0

Difference –0.8 9.8 10.5 9.3 16.0

n = 5; mean difference = 8.96; SD difference = 6.08.

95% CI for underlying mean difference = . . . = (1.4, 16.5)

P-value for test of µbefore = µafter : 0.03.

Summary

• Tests of hypotheses → answering yes/no questions regarding
population parameters.

• There are two kinds of errors:

⇒ Type I: Reject H0 when it is true.

⇒ Type II: Fail to reject H0 when it is false.

• We seek to reject the null hypothesis.

• If we fail to reject H0, we do not “accept H0”.

• P-value → the probability, if H0 is true, of obtaining data as ex-
treme as was observed. Pr( data | no effect ) rather than Pr( no effect | data ).

• Power → the probability of rejecting H0 when it is false.



Was the result important?

• Statistically significant is not the same as important.

• A difference is “statistically significant” if it cannot reasonably
be ascribed to chance variation.

• With lots of data, small (and unimportant) differences can be
statistically significant.

• With very little data, quite important differences will fail to be
significant.

• Always look at the confidence interval as well as the P-value.

Does the difference prove the point?

• A test of significance does not check the design of the study.

• With observational studies or poorly controlled experiments, the
proof of statistical significance may not prove what you want.

• Example: consider the tick/deer leg experiment. It may be
that ticks are not attracted to deer-gland-substance but rather
despise the scent of latex gloves and deer-gland-substance
masks it.

• Example: In a study of gene expression, if cancer tissue sam-
ples were always processed first, while normal tissue samples
were kept on ice, the observed differences might not have to do
with normal/cancer as with iced/not iced.

• Don’t forget the science in the cloud of data and statistics.


