Sample Size & Power Calculations

Power

 X_1, \ldots, X_n iid Normal (μ_A, σ_A) Y_1, \ldots, Y_m iid Normal (μ_B, σ_B)

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$ at α = 0.05.

Test statistic: $T = \frac{\overline{X} - \overline{Y}}{\widehat{SD}(\overline{X} - \overline{Y})}$.

 \longrightarrow Critical value: C such that $\Pr(|\mathsf{T}| > \mathsf{C} \mid \mu_\mathsf{A} = \mu_\mathsf{B}) = \alpha$.

Power: $Pr(|T| > C \mid \mu_A \neq \mu_B)$

Power depends on...

- The design of your experiment
- What test you're doing
- ullet Chosen significance level, α
- Sample size
- \bullet True difference, $\mu_{\rm A}-\mu_{\rm B}$
- Population SD's, σ_A and σ_B .

The case of known population SDs

Suppose σ_A and σ_B are known.

Then
$$\overline{X} - \overline{Y} \sim \text{Normal}(\; \mu_{\text{A}} - \mu_{\text{B}}, \sqrt{\frac{\sigma_{\text{A}}^2 + \frac{\sigma_{\text{B}}^2}{\text{m}}}\;)$$

Test statistic:
$$\tilde{Z} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{A}^{2}}{\mathsf{n}} + \frac{\sigma_{B}^{2}}{\mathsf{m}}}}$$

If H₀ is true (i.e. $\mu_A = \mu_B$), we have $\tilde{Z} \sim \text{Normal}(0,1)$.

$$\longrightarrow \ \mathbf{C} = \mathbf{z}_{\alpha/2} \ \text{so that } \Pr(|\tilde{\mathbf{Z}}| > \mathbf{C} \mid \mu_{\mathsf{A}} = \mu_{\mathsf{B}}) = \alpha.$$

For example, for $\alpha = 0.05$, C = qnorm(0.975) = 1.96.

Power when the population SDs are known

If
$$\mu_{A} - \mu_{B} = \Delta$$
, then $Z = \frac{(\overline{X} - \overline{Y}) - \Delta}{\sqrt{\frac{\sigma_{A}^{2}}{n} + \frac{\sigma_{B}^{2}}{m}}} \sim \text{Normal}(0,1)$

$$\Pr\left(\frac{|\overline{X}-\overline{Y}|}{\sqrt{\frac{\sigma_{A}^{2}}{n}+\frac{\sigma_{B}^{2}}{m}}} > 1.96\right) = \Pr\left(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_{A}^{2}}{n}+\frac{\sigma_{B}^{2}}{m}}} > 1.96\right) + \Pr\left(\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{\sigma_{A}^{2}}{n}+\frac{\sigma_{B}^{2}}{m}}} < -1.96\right)$$

$$= \Pr\left(\frac{\overline{X} - \overline{Y} - \Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right) + \Pr\left(\frac{\overline{X} - \overline{Y} - \Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}} < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}}}\right)$$

$$= \Pr\left(Z > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}{n + \frac{\sigma_B^2}{m}}}}\right) + \Pr\left(Z < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}{n + \frac{\sigma_B^2}{m}}}}\right)$$

Calculations in R

Power = Pr
$$\left(Z > 1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}}}\right) + \text{Pr} \left(Z < -1.96 - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}{n}}}\right)$$

```
C <- qnorm(0.975)
se <- sqrt( sigmaA^2/n + sigmaB^2/m )
power <- 1-pnorm(C-delta/se) + pnorm(-C-delta/se)</pre>
```

Power curves

Special case: equal standard deviations and sample sizes.

Power =
$$\Pr\left(Z > 1.96 - \frac{\Delta}{\sqrt{\frac{2\sigma^2}{n}}}\right) + \Pr\left(Z < -1.96 - \frac{\Delta}{\sqrt{\frac{2\sigma^2}{n}}}\right)$$

Power curves

Power depends on ...

$$\text{Power} = \text{Pr}\left(Z > C - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}{n + \frac{\sigma_B}{m}}}}\right) + \text{Pr}\left(Z < -C - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}{n + \frac{\sigma_B}{m}}}}\right)$$

- Choice of α (which affects C) Larger $\alpha \to less$ stringent \to greater power.
- $\Delta = \mu_{\text{A}} \mu_{\text{B}} =$ the true "effect." Larger $\Delta \rightarrow$ greater power.
- Population SDs, σ_A and σ_B Smaller σ 's \rightarrow greater power.
- Sample sizes, n and m
 Larger n, m → greater power.

Choice of sample size

We mostly influence power via n and m.

Power is greatest when $\frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}$ is as small as possible.

Suppose the total sample size N = n + m is fixed.

$$\longrightarrow \frac{\sigma_A^2}{n} + \frac{\sigma_B^2}{m}$$
 is minimized when $n = \frac{\sigma_A}{\sigma_A + \sigma_B} \times N$ and $m = \frac{\sigma_B}{\sigma_A + \sigma_B} \times N$

For example:

- If $\sigma_A = \sigma_B$, we should choose n = m.
- If $\sigma_A=2~\sigma_B$, we should choose n = 2 m. That means, if $\sigma_A=4$ and $\sigma_B=2$, we might use n=20 and m=10.

Calculating the sample size

Suppose we seek 80% power to detect a particular value of $\mu_A - \mu_B = \Delta$, in the case that σ_A and σ_B are known.

(For convenience here, let's pretend that $\sigma_A = \sigma_B$ and that we plan to have equal sample sizes for the two groups.)

Power
$$\approx \Pr\left(Z > C - \frac{\Delta}{\sqrt{\frac{\sigma_A^2 + \frac{\sigma_B^2}{n}}}}\right) = \Pr\left(Z > 1.96 - \frac{\Delta\sqrt{n}}{\sigma\sqrt{2}}\right)$$

$$\longrightarrow$$
 Find n such that $\Pr\!\left(Z>1.96-\frac{\Delta\sqrt{n}}{\sigma\sqrt{2}}\right)=80\%.$

Thus
$$1.96 - \frac{\Delta\sqrt{n}}{\sigma\sqrt{2}} = \text{qnorm}(0.2) = -0.842.$$

$$\longrightarrow \ \sqrt{n} = \tfrac{\sigma}{\Delta} \ \{1.96 - (-0.842)\} \ \sqrt{2} \qquad \longrightarrow \ n = 15.7 \times (\tfrac{\sigma}{\Delta})^2$$

Equal but unknown population SDs

 X_1, \ldots, X_n iid Normal (μ_A, σ) Y_1, \ldots, Y_m iid Normal (μ_B, σ)

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$ at $\alpha = 0.05$.

$$\hat{\sigma}_{p} = \sqrt{\frac{s_{A}^{2}(n-1) + s_{B}^{2}(m-1)}{n+m-2}} \qquad \qquad \widehat{SD}(\overline{X} - \overline{Y}) = \hat{\sigma}_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}$$

Test statistic: $T = \frac{\overline{X} - \overline{Y}}{\widehat{SD}(\overline{X} - \overline{Y})}$.

In the case $\mu_A = \mu_B$, T follows a t distribution with n + m – 2 d.f.

 \rightarrow Critical value: C = qt (0.975, n+m-2)

Power: equal but unknown pop'n SDs

Power =
$$Pr\left(\frac{|\overline{X}-\overline{Y}|}{\hat{\sigma}_p\sqrt{\frac{1}{n}+\frac{1}{m}}} > C\right)$$

 \longrightarrow In the case $\mu_{\rm A} - \mu_{\rm B} = \Delta$, the statistic $\frac{\overline{X} - \overline{Y}}{\hat{\sigma}_{\rm p} \sqrt{\frac{1}{\rm n} + \frac{1}{\rm m}}}$ follows a noncentral t distribution.

This distribution has two parameters:

- → The degrees of freedom (as before)
- \longrightarrow The non-centrality parameter, $\frac{\Delta}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}}$

Power: equal population SDs

A built-in function: power.t.test()

Calculate power (or determine the sample size) for the t-test when:

- Sample sizes equal
- Population SDs equal

Arguments:

- n = sample size
- \bullet delta = Δ = $\mu_2 \mu_1$
- $sd = \sigma = population SD$
- sig.level = α = significance level
- power = the power
- type = type of data (two-sample, one-sample, paired)
- alternative = two-sided or one-sided test

Examples

A. n = 10 for each group; effect = Δ = 5; pop'n SD = σ = 10

power.t.test(n=10, delta=5, sd=10)
$$\longrightarrow 18\%$$

B. power = 80%; effect =
$$\triangle$$
 = 5; pop'n SD = σ = 10

$$\longrightarrow$$
 n = 63.8 \longrightarrow 64 for each group

C. power = 80%; effect =
$$\triangle$$
 = 5; pop'n SD = σ = 10; one-sided

$$\longrightarrow$$
 n = 50.2 \longrightarrow 51 for each group

Unknown and different pop'n SDs

$$X_1, \ldots, X_n$$
 iid Normal (μ_A, σ_A) Y_1, \ldots, Y_m iid Normal (μ_B, σ_B)

Test $H_0: \mu_A = \mu_B$ vs $H_a: \mu_A \neq \mu_B$ at $\alpha = 0.05$.

Test statistic:
$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_A^2}{n} + \frac{s_B^2}{m}}}$$

To calculate the critical value for the test, we need the null distribution of T (that is, the distribution of T if $\mu_A = \mu_B$).

To calculate the power, we need the distribution of T given the value of $\Delta = \mu_{\rm A} - \mu_{\rm B}$.

We don't really know either of these.

Power by computer simulation

- Specify n, m, σ_A , σ_B , $\Delta = \mu_A \mu_B$, and the significance level, α .
- Simulate data under the model.
- Perform the proposed test and calculate the P-value.
- Repeat many times.

→ Example:

$$n = 5$$
, $m = 10$, $\sigma_A = 1$, $\sigma_B = 2$,

$$\Delta$$
 = 0.0, 0.5, 1.0, 1.5, 2.0 or 2.5.

Example

Example

Determining sample size

The things you need to know:

- Structure of the experiment
- Method for analysis
- Chosen significance level, α (usually 5%)
- Desired power (usually 80%)
- Variability in the measurements
 - \rightarrow If necessary, perform a pilot study, or use data from prior experiments or publications.
- The smallest meaningful effect

Reducing sample size

- Reduce the number of treatment groups being compared.
- Find a more precise measurement (e.g., average survival time rather than proportion dead).
- Decrease the variability in the measurements.
 - Make subjects more homogenous.
 - o Use stratification.
 - o Control for other variables (e.g., weight).
 - o Average multiple measurements on each subject.