
Simulated Annealing

Terminology and Definitions

The annealing algorithm is defined on astate spaceS, which is a collection of individualstates.
Each of these states represents aconfiguration of the problem under investigation. The states are
related by a neighborhood system, and the set of neighbor pairs inS defines a substructureM in
S × S. The elements inM are calledmoves. Two statess, s′ are calledadjacent, if they can be
reached by a single move (i. e.(s, s′) ∈ M). Similarly, (s, s′) ∈ Mk are said to be connected
via a set ofk moves. We require the state space to be finite. The size of the state space is fixed,
but can be arbitrarily large, therefore this assumption does not result in a loss of generality - for
our purposes a computer must be able to distinguish all states anyways. The following functions
govern the search through the state space.

Definition 1 Thescore function

ε : S → IR+ (1)

assigns a positive real number (score) to each state.

The score is understood as a measure of the quality of the state. In the following we always assume
that lower scores are associated with states that represent better quality configurations. Since the
state space is finite, there exists at least one state with a minimal score. This score is denoted by
ε0.

Definition 2 Theselection probability is a function

β : S × S → [0, 1] (2)

such that

∀(s,s′)/∈Mβ(s, s′) = 0, (3)

∀(s,s′)∈Mβ(s, s′) 6= 0, (4)

∀s∈S

∑

s′∈S

β(s, s′) = 1. (5)

The selection probability therefore is the probability that states′ is proposed as new state, given
that the current state iss. Therefore the move set can be defined as

M := {(s, s′) ∈ S × S : β(s, s′) > 0} (6)

We call the move setM symmetric if

∀s∈S∀s′∈S [(s, s′) ∈ M ⇒ (s′, s) ∈ M ] (7)
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Definition 3 Theacceptance function

α : IR3
+ → (0, 1] (8)

assigns a positive probability to a pair of scores and a positive real number, called thetempera-
ture.

The acceptance function decides whether or not the proposed state will be accepted as the new state.
Note that for any fixed temperature, this probability only depends on the scores of the current and
proposed state, but not on those states themselves.

Definition 4 Thetransition probability is a function

τ : IR3
+ → [0, 1] (9)

defined as

τ(s, s′, t) :=

{
α(ε(s), ε(s′), t)× β(s, s′) s 6= s′

1−∑
s′′∈S α(ε(s), ε(s′′), t)× β(s, s′′) s = s′.

(10)

Therefore, the transition probabilityτ(s, s′, t) can be understood as the probability that the next
step is a move to states′, given that the current state iss and the temperature ist. The probability
that the state aftern moves iss′, given the current states and temperature thet, will be denoted
τn(s, s′, t).

A process that possesses the above property is called aMarkov process. A sequence of events
as a special case of such a Markov process is called aMarkov chain . A Markov chain in which
the transition probabilities between the pairs of states are constant throughout the process is called
homogeneous. A Markov chain is calledirreducible if any state in the chain is connected to any
other state by only a finite number of moves, i. e. if

⋃

k

Mk = S × S. (11)

A Markov chain is calledaperiodic if for every states the greatest common divisor of all integers
n ≥ 1 with τn(s, s, ·) > 0 is equal to 1.
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Properties of Markov Chains

Theorem 1 below is usually referred to as the Chain Limit Theorem. It states that an irreducible
and aperiodic (homogeneous) Markov chain has a limiting distribution.

Theorem 1 For each irreducible and aperiodic chain there exists a density function

π : S × IR+ → (0, 1], (12)

in s for any givent > 0, with

π(s, t) = lim
n→∞ τn(s′, s, t), (13)

(independent ofs′) and satisfying the following equations:
∑

s′∈S

π(s′, t)τ(s′, s, t) = π(s, t), (14)

∑

s∈S

π(s, t) = 1. (15)

Hence, if we constructed an irreducible and aperiodic (homogeneous) Markov chain for the an-
nealing algorithm (i. e. run the chain at a fixed temperature), the distribution of states we sample
from approaches a limit. However, the search through the state space should yield low scoring
states. Some simple additional requirements will guarantee this.

Theorem 2 An irreducible and aperiodic chain with a symmetric move set has the property

∀s∈S[ε(s) 6= ε0 ⇒ lim
t↓0

π(s, t) = 0] (16)

if it has an acceptanceα function satisfying

ε ≥ ε′ ⇒ α(ε, ε′, t) = 1, (17)

ε > ε′ > ε′′ ⇒ α(ε, ε′, t)× α(ε′, ε′′, t) = α(ε, ε′′, t), (18)

ε < ε′ ⇒ lim
t↓0

α(ε, ε′, t) = 0. (19)

Hence, if the requirements (17), (18) and (19) are satisfied, the likelihood of a non-optimal scoring
state in the limiting distributions goes to zero as the temperature goes to zero. Therefore, if the
annealing is run as a sequence of homogeneous Markov chains with decreasing temperatures, the
search is guided towards optimal scoring states. The above mentioned requirements only affect
the acceptance function and do not pose any constraints onβ or M . In general it is quite easy to
construct a state space with a symmetric move set that guarantees irreducibility and aperiodicity
for the chain in the search algorithm. The desirable properties of the chains as stated in Theorem 2
can be achieved by choosing the right acceptance function.

Otten and van Ginneken make the point that “it seems reasonable that smaller score increases
are accepted with higher probability than bigger ones, and that this probability varies smoothly
with the score difference”. Sufficient but not necessary for this would be the requirement that the
acceptance only depends on the score difference.

3



Theorem 3 The only acceptance functionsα(ε, ε′, t)

• that are differentiable inε′,

• whose values depend ont and the difference ofε andε′

• that satisfy the conditions of Theorem 2

have the form

α(ε, ε′, t) = min{1, e(ε′−ε)c(t)}, (20)

wherec(t) is a negative, monotonic and continuous function satisfying

lim
t↓0

c(t) = −∞. (21)

The standard choice isc(t) = −1/t, yielding the acceptance function

α(ε, ε′, t) = min{1, e−(ε′−ε)/t}. (22)

This acceptance function has been used by far the most in the literature. This is presumably the case
because condensed matter physics is the origin of simulated annealing and the above acceptance
function has a striking similarity to the Boltzmann distribution, which characterizes a system of
particles in thermal equilibrium. However, it also has been established that this acceptance function
has many desirable properties, as described above.

Great references are:

P J van Laarhoven and E H Aarts (1987), ”Simulated Annealing: Theory and Applications”,
Kluwer Academic Publishers.

R H Otten and L P Ginneken (1989), ”The Annealing Algoritm”, Kluwer Academic Pub-
lishers.

4


