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ARTICLE

Rapid and Accurate Haplotype Phasing and Missing-Data
Inference for Whole-Genome Association Studies
By Use of Localized Haplotype Clustering
Sharon R. Browning* and Brian L. Browning*

Whole-genome association studies present many new statistical and computational challenges due to the large quantity
of data obtained. One of these challenges is haplotype inference; methods for haplotype inference designed for small
data sets from candidate-gene studies do not scale well to the large number of individuals genotyped in whole-genome
association studies. We present a new method and software for inference of haplotype phase and missing data that can
accurately phase data from whole-genome association studies, and we present the first comparison of haplotype-inference
methods for real and simulated data sets with thousands of genotyped individuals. We find that our method outperforms
existing methods in terms of both speed and accuracy for large data sets with thousands of individuals and densely
spaced genetic markers, and we use our method to phase a real data set of 3,002 individuals genotyped for 490,032
markers in 3.1 days of computing time, with 99% of masked alleles imputed correctly. Our method is implemented in
the Beagle software package, which is freely available.
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Multilocus analysis can provide improved power to detect
associations between complex traits and densely spaced
genetic markers, compared with that of single-marker
methods.1 Most methods for multilocus analysis that are
suitable for whole-genome association data require phased
haplotypes because methods that allow for uncertainty in
haplotype phase typically use small sliding windows of
markers, which cannot make full use of the correlation
structure in the data. Inference of haplotype phase for
whole-genome association data can be performed with a
high degree of accuracy, as we demonstrate, but is com-
putationally challenging and requires methods that scale
well to thousands of individuals, as well as to hundreds
of thousands or millions of genetic markers. It has been
common to compare haplotype-inference methods with
HapMap data2,3; however, because each of the ethnicities
in the HapMap study has at most 60 unrelated individuals,
results from such comparisons are not necessarily good
predictors of haplotype-phasing performance for data sets
with thousands of individuals.

We propose a new haplotype-inference method and
show that our method outperforms existing methods in
terms of both computational speed and measures of ac-
curacy for large whole-genome data sets with thousands
of individuals and hundreds of thousands of or even a
million genetic markers. The method is one or two orders
of magnitude faster than the most accurate competing
methods, enabling accurate haplotype phasing of data
from whole-genome association studies in a few days of
computing time, instead of months or years. An efficient

software implementation of our method is freely available
in version 2.1 of the Beagle genetic analysis software pack-
age,1 which is written in Java and includes software for
haplotype and missing-data inference, single-marker and
multilocus association analysis, and permutation testing.

Early methods for haplotype inference were based on a
multinomial model for haplotype frequencies that used
no prior information about the haplotype frequency dis-
tribution.4–6 Such methods include those commonly re-
ferred to as “expectation-maximization (EM) methods,”
reflecting the algorithm that is used to maximize the like-
lihood. These methods should be referred to as “multi-
nomial model methods,” because EM algorithms are also
used in methods employing more-complex statistical
models, such as fastPHASE7 and HaploRec.8 The multi-
nomial model methods work fairly well on a small handful
of markers but break down with larger numbers of mark-
ers. When the number of markers increases, so does the
number of observable haplotypes, and the frequencies of
these haplotypes become too small to estimate directly.
Also, the computational time quickly becomes intractable,
since all feasible haplotypes must be considered. Exten-
sions such as partition-ligation (PL)–EM9 have extended
the usefulness of the multinomial model to a somewhat
larger number of markers, but multinomial methods are
still less accurate than are other types of models.8

PHASE10 and later related methods applied a coalescent
model to haplotype frequencies. This model implies that
haplotypes similar to ones we have already seen are more
likely to be seen than are completely different haplotypes,
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since changes to haplotypes occur through recombination
and mutation. Although it produces very accurate results,
application of the coalescent model is computationally
intensive, limiting its applicability for large data sets.

A variety of other approaches has been proposed, some
of which make use of haplotype blocks.11 Although the
concept of haplotype blocks is useful, haplotype blocks
do not adequately explain all the correlation structure be-
tween markers, because linkage disequilibrium (LD) can
extend beyond block boundaries and can have complex
patterns within blocks.2

Another haplotype-phasing method is needed because
all existing methods for haplotype inference either are too
slow for routine application to whole-genome association
studies or have severely suboptimal accuracy. We address
these two issues with the method that we propose here.
Our method is a novel application of the recently pro-
posed localized haplotype-cluster model that has been
used for association testing.1,12 The localized haplotype-
cluster model is an empirical LD model that adapts to the
local structure in the data. Relative to other methods, it
does particularly well with large sample sizes, where the
data are, in a sense, allowed to speak for themselves. The
model can be fit to haplotypes by use of an algorithm that
is very fast, and we apply an iterative approach to hap-
lotype phasing in which an initial guess of haplotype
phase is made, the model is fit, improved estimates of
haplotype phase are obtained, the model is refit, and so
forth. This is essentially an EM approach, as are most other
non-Bayesian haplotype-inference methods. (Bayesian
methods also employ iteration, by means of Markov
chain–Monte Carlo techniques.)

We compared the speed and accuracy of our proposed
method with those of a selection of alternative haplotype-
inference methods. We excluded any method that is ex-
cessively slow or whose current implementation does not
allow it to be applied to at least a few hundred densely
spaced genetic markers. We also excluded methods that
showed significantly lower accuracy than that of com-
peting methods in the only previous study that considered
large numbers of individuals.8 In particular, we excluded
Gerbil13 (version 1.0) and PL-EM9 (version 1.5), which had
low accuracy relative to that of HaploRec.8 The methods
we chose for comparison, on the basis of these criteria,
were fastPHASE (version 1.2.3), HaploRec (version 2.1),
HAP (version 2.9), and 2SNP (version 1.5.1, for 64-bit ar-
chitecture). All methods were used with the default set-
tings except as noted.

fastPHASE7 uses a haplotype-clustering model with a
fixed number of clusters. For data sets with small numbers
of individuals, such as the HapMap data, fastPHASE is al-
most as accurate as PHASE but is much faster.7 Although
an earlier study found that fastPHASE performed poorly
compared with HaploRec for large data sets,8 we included
it because we knew that we could decrease the running
time by turning off the default cross-validation procedure
(as recommended for data sets with only several hundred

markers) and because we felt that the default choices of
5, 10, and 15 for the number of clusters, K, used in the
previously published comparison of fastPHASE version
1.1.3 and HaploRec were too low for accurate phasing of
large numbers of individuals. Because the default numbers
of clusters that are considered by fastPHASE version 1.2.3
in the cross-validation procedure (which was omitted to
reduce running times) are and , we ranK p 10 K p 20
fastPHASE with each of these values.

HaploRec8 uses frequencies of haplotype fragments in a
segmentation model (HaploRec-S) or in a variable-order
Markov-chain model (HaploRec-VMM). HaploRec was run
with increased memory allocation (as was necessary for
its operation) and with both the segmentation model and
the variable-order Markov model. The segmentation
model is generally slower but more accurate than is the
variable-order Markov model.8 One limitation of HaploRec
is that it does not currently have the capability to impute
missing data, which limits its usefulness for genetic as-
sociation studies.

HAP11 uses haplotype blocks with imperfect phylogeny
constraints that limit inference of haplotypes that would
imply back-mutations or recombinations within blocks.
2SNP14 uses a very fast algorithm based on consideration
of two-marker haplotypes.

Methods

We first describe the localized haplotype-cluster model, which is
a special class of directed acyclic graph. We show how the local-
ized haplotype-cluster model defines a hidden Markov model
(HMM) that can be used to sample haplotype pairs or to find the
most likely haplotype pair for each individual conditional on the
individual’s genotypes. We then describe the phasing algorithm,
which involves iteratively sampling haplotype pairs and building
the localized haplotype-cluster model from the sampled haplo-
type pairs. We conclude with a description of the real and sim-
ulated data sets and the metrics we used to compare haplotype-
inference algorithms.

The Localized Haplotype-Cluster Model

Correlation between markers is a localized phenomenon, since
LD decays with distance. If this localization is not considered
when genotype data are phased over an extended region, noise
will be introduced by sampling variation, resulting in apparent
correlations observed between distant markers, which reduces the
accuracy of the haplotype inference. Existing approaches to this
problem include explicitly modeling the recombination in the
coalescent model,15 using haplotype blocks,11,13 taking a sliding-
window approach with window size varying with LD structure,16

employing an HMM,7 and using frequent haplotype fragments.8

Our approach to making use of the localized LD structure is a
localized haplotype-cluster model,1,12 which empirically models
haplotype frequencies on a local scale.

The localized haplotype-cluster model clusters haplotypes at
each marker to improve prediction of alleles at markers ,t � 1

, , given alleles at markers t, , on a hap-t � 2 t � 3, … t � 1 t � 2, …
lotype. This is achieved by defining clusters according to a Markov
property—given cluster membership at position t, the sequence
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Table 1. Example Haplotype
Counts for Figure 1

Haplotype Count

1111 21
1112 79
1122 95
1221 116
2111 25
2112 112
2122 152

Figure 1. Example of a directed acyclic graph representing the
localized haplotype-cluster model for four markers, with the hap-
lotype counts given in table 1. For each marker, allele 1 is rep-
resented by a solid line, and allele 2 by a dashed line. The bold-
line edges from the root node to the terminal node represent the
haplotype 2112. The node marked by an asterisk (*) is the parent
node for edge .eF

of alleles at markers t, , is irrelevant for predictingt � 1 t � 2, …
the sequence of alleles at markers , , . The clus-t � 1 t � 2 t � 3, …
tering is localized, so that haplotypes in the same cluster at po-
sition t are likely to be in the same cluster at position butt � 1
need not be. This model has a number of important advantages.
By clustering the haplotypes, a parsimonious model is obtained,
which is important for obtaining good estimates of haplotype
frequencies. By allowing the number of clusters and the relation-
ships between clusters at different positions to be determined
largely by the data rather than by a restrictive model, the model
adapts to the data, which is particularly useful when the number
of individuals in the sample is large, as it will be for well-powered
association studies. Finally, the model can be fit using a com-
putationally efficient algorithm1,12,17 that is extremely fast.

Suppose that we have a sample of haplotypes for M markers
and that the haplotypes have no missing alleles. A localized hap-
lotype-cluster model for this sample is a directed acyclic graph
with the following four properties:

1. The graph has one root (initial) node with no incoming
edges and has one terminal node with no outgoing edges.
The root node represents all haplotypes before any markers
are processed, whereas the terminal node represents all hap-
lotypes after all markers are processed.

2. The graph is leveled with levels. Each node A has aM � 1
level, m. All incoming edges to A have the parent (origi-
nating) node at level , and all outgoing edges from Am � 1
have the child (destination) node at level . The rootm � 1
node has level 0, and the terminal node has level M.

3. For each , each edge with the child node atm p 1,2, … ,M
level m is labeled with an allele for the mth marker. Two
edges originating from the same parent node cannot be la-
beled with the same allele.

4. For each haplotype in the sample, there is a path from the
root node to the terminal node, such that the mth allele of
the haplotype is the label of the mth edge of the path. Each
edge of the graph has at least one haplotype in the sample
whose path traverses the edge.

Each edge, e, of the graph represents a cluster of haplotypes
consisting of all haplotypes whose path from the initial node to
the terminal node of the graph traverses e. Haplotypes are defined
over the whole chromosome, but haplotypes within a cluster
corresponding to an edge at level m will tend to have similar
patterns of alleles at markers immediately to the right of marker
m. Thus, each edge defines a localized haplotype cluster that is
determined by local LD patterns.

For each edge, e, of a localized haplotype-cluster model, we
define the edge count, , to be the number of haplotypes inn(e)
the sample whose path traverses the edge, and we define the

parent node count, , to be the number of haplotypes in then (e)p

sample whose path traverses the parent node of the edge.
Table 1 and figure 1 illustrate these concepts. The data in table

1 do not correspond to any real data set but are merely for illus-
tration. The bold-line edges from the root node to the terminal
node in figure 1 represent the haplotype 2112. Edge includeseF

haplotypes 1111, 1112, 2111, and 2112, with total count
(counts taken from table 1).n(e ) p 21 � 79 � 25 � 112 p 237F

The node marked by an asterisk (*) is the parent node for edge
. This node includes the four haplotypes whose paths traverseeF

edge and, additionally, haplotypes 1122 and 2122, whose pathseF

traverse edge , and it has counteG

n (e ) p n(e ) � n(e ) p 237 � (95 � 152) p 484 .p F F G

Localized haplotype-cluster models are especially well suited
for modeling LD structure. Recombination between haplotypes
is modeled as merging edges (i.e., edges with the same child
node).12 Unlike haplotype-block–based models, which permit re-
combination only between haplotype blocks, localized haplo-
type-cluster models can model the complex recombination pat-
terns found in real data. Unlike models with fixed numbers of
clusters at each locus, the localized haplotype-cluster model is
flexible and can vary the number of clusters at each locus to
model the data.

A computationally efficient algorithm for fitting a localized
haplotype model to haplotype data has been described in detail
elsewhere.1,12 The algorithm scales linearly in the number of
markers and slightly more than linearly (less than quadratically)
in the number of individuals,1 so that it can quickly process large-
scale data sets. Since the model-fitting algorithm is a published
algorithm, we do not repeat the details of the model-fitting al-
gorithm in this work but refer the reader to our earlier work,12

which contains a detailed worked example of fitting a localized
haplotype-cluster model to the haplotype data in table 1.

We show below that localized haplotype-cluster models can be
interpreted as a special class of HMMs. By viewing localized hap-
lotype-cluster models as HMMs, we are able to extend the model
to diplotypes and to use efficient HMM sampling algorithms. In
“The Beagle Phasing Algorithm” section, we describe an iterative
process for haplotype phasing that involves fitting a localized
haplotype model to estimated haplotype data and sampling hap-
lotype estimates conditional on the fitted localized haplotype
model and the genotype data.
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The Induced HMM

A localized haplotype-cluster model determines an HMM for
which the states of the HMM are the edges of the localized hap-
lotype-cluster model, and the emitted symbol for each state is
the allele that labels the edge of the localized haplotype-cluster
model. To specify the HMM, we must specify the emission prob-
abilities, the initial-state probabilities, and the transmission prob-
abilities.18 Each state (i.e., edge) emits with probability 1 the allele
that labels the edge. Thus, the state uniquely determines the ob-
served allele, but the observed allele for a marker does not gen-
erally determine the state, because edges with distinct parent
nodes at the same level of the graph can be labeled with the same
allele.

The initial-state probabilities and the transition probabilities
are computed from the edge counts. The initial-state probabilities
are if the parent node of edge e is the root nodeP(e) p n(e)/n (e)p

and are otherwise. The transition probabilities areP(e) p 0
if the parent node of edge is the childP(e Fe ) p n(e )/n (e ) e1 2 1 p 1 1

node of edge and are otherwise. Note that, if edgese P(e Fe ) p 02 1 2

and both have the same child node, thene e P(e Fe ) p2 3 1 3

. For example, by considering the haplotype counts inP(e Fe )1 2

table 1 and the corresponding graph in figure 1, P(e Fe ) pF C

, whereas be-P(e Fe ) p n(e )/n (e ) p 237/484 p 0.49 P(e Fe ) p 0F E F p F C E

cause the parent node of is not the child node of .e eC E

We have described a haploid HMM; however, a diploid HMM
is needed because we observe diploid data (i.e., genotypes) rather
than haploid data. We create a diploid HMM from ordered pairs
of edges in each level of the graph. Since the graph is leveled,
the states of the haploid HMM (the edges of the graph) can be
partitioned into classes , where is the level ofL m p 1,2, … ,Mm

the edge’s child node in the graph. For example, in figure 1,
, , , and .L p {e ,e } L p {e ,e ,e } L p {e ,e ,e } L p {e ,e ,e ,e }1 A B 2 C D E 3 F G H 4 I J K L

For the diploid HMM, the state space is the union over m of
( ), and the emitted symbol for each state is the unorderedL # Lm m

pair of alleles that label the state’s ordered pair of edges. If
is a state of the diploid HMM, then the unordered genotype(e ,e )1 2

determined by the two alleles that label edges and is emittede e1 2

with probability 1. We assume Hardy-Weinberg equilibrium, so
that the diploid initial and transition probabilities are the product
of the corresponding haploid probabilities: P(e ,e ) p P(e )P(e )1 2 1 2

and . Note that the edge pairs areP[(e ,e )F(e ,e )] p P(e Fe )P(e Fe )1 2 3 4 1 3 2 4

ordered, so that factors of 2 are not needed when the ordered
edge pairs represent heterozygote genotypes.

Sampling from an HMM

Our phasing algorithm samples from the diploid HMM condi-
tional on the observed data by use of a forwards-backwards al-
gorithm (see the work of Rabiner18 for a review of the forwards-
backwards and Viterbi algorithms for HMMs, and see section 7.1
in the work of Thompson19 for an example of conditional HMM
sampling). For a given individual, let be the observed unor-gm

dered genotype at marker m, and let the state be ans p (e ,e )m 1 2

ordered pair of edges in . For any in the diploid HMML # L sm m m

and with the individual’s genotype , define the for-{g ,g , … ,g }1 2 M

ward variables as . The fora (s ) p P(g ,g , … ,g ,s ) a (s ) m pm m 1 2 m m m m

can be computed inductively by the forward algorithm1,2, … ,M
as follows.

1. Initiation: .a (s ) p P(g ,s ) p P(s )P(g Fs )1 1 1 1 1 1 1

2. Induction:

a (s ) p P(g ,g ,…,g ,s )m�1 m�1 1 2 m�1 m�1

p P(g ,g ,…,g ,g ,s ,s )� 1 2 m m�1 m m�1
sm

p P(g ,g ,…,g ,s )P(g Fs )P(s Fs )� 1 2 m m m�1 m�1 m�1 m
sm

p P(g Fs ) a (s )P(s Fs ) .�m�1 m�1 m m m�1 m
sm

For our purposes, the need be known only up to a constantam

of proportionality for each m. Appendix A gives a worked example
of forward calculation.

The probabilities are always either zero or one, de-P(g Fs )m�1 m�1

pending on whether the genotype is consistent with the labels
on the ordered pair of edges. Our model could be extended to
incorporate genotype error by allowing these probabilities to take
intermediate values; however, for low error rates, we expect that
genotype-error modeling will not add significant value. Our re-
sults (see the “Results” section) show that our method outper-
forms existing methods for real data, despite the undoubted pres-
ence of some genotype errors.

In our application, one or both alleles in a genotype may be
missing. If both alleles of are missing, then in theg P(g Fs ) p 1m m m

forward algorithm and the sampling algorithm. If one allele of
is missing, then if the nonmissing allele labelsg P(g Fs ) p 1m m m

one of the ordered edges of , and otherwise.s P(g Fs ) p 0m m m

Sampling of hidden states conditional on the individual’s ge-
notype proceeds backward by induction as follows.

1. Initiation: randomly choose the state with probabilitysM

proportional to .a (s )M M

2. Induction: given states , , choose state withs s , … ,s sm�1 m�2 M m

probability

P(s Fs ,s ,… s ,g ,g ,…g )m m�1 m�2 M 1 2 M

p P(s Fs ,g ,g ,…g )m m�1 1 2 m�1

p P(s ,s ,g ,g ,…g )/a (s )m m�1 1 2 m�1 m�1 m�1

p P(g Fs )P(s Fs )a (s )/a (s ) .m�1 m�1 m�1 m m m m�1 m�1

The sampled path of hidden states corresponds to an ordered
pair of haplotypes that are consistent with the individual’s ge-
notype. A worked example of sampling the hidden state (and
thus the haplotype pair) conditional on genotype data is given
in appendix A.

We have given a sampling algorithm for the diploid HMM. It
is also possible to determine the most likely ordered pair of hap-
lotypes conditional on the genotype data and the diploid model
by use of the Viterbi algorithm.18

The Beagle Phasing Algorithm

The Beagle phasing algorithm is conceptually simple: at each it-
eration of the algorithm, phased input data are used to build a
localized haplotype-cluster model as described elsewhere.1,12 After
the localized haplotype-cluster model is built, phased haplotypes
for each individual are sampled from the induced diploid HMM
conditional on the individual’s genotypes. The sampled haplo-



1088 The American Journal of Human Genetics Volume 81 November 2007 www.ajhg.org

types are the input for the next iteration. In the final iteration,
instead of sampling haplotypes, we use the Viterbi algorithm to
select the most-likely haplotypes for each individual, conditional
on the diploid HMM and the individual’s genotype data, and
these most-likely haplotypes are the output of the phasing al-
gorithm. We have found that, when starting from randomly
phased data, 10 iterations gives good accuracy and that using 110
iterations yields very little improvement in accuracy.

We have made two enhancements to this algorithm that in-
crease accuracy. First, at each iteration of the phasing algorithm,
we reverse the marker order, processing the chromosome from
left to right in the odd-numbered iterations and from right to
left in the even-numbered iterations. Second, we sample multiple
haplotype pairs per individual for use in building the model at
the next iteration, taking into account the correlation between
haplotype pairs from the same individual; this yields significant
improvements in accuracy when small numbers of individuals
are phased.

Let be the number of samples per individual. In the ini-R � 1
tialization step, we copy the genotype data for each individual R
times, so that, if there are N distinct individuals, we have NR
individuals after copying. For each copy of each individual, miss-
ing alleles are randomly imputed according to allele frequencies,
and the data for each individual are phased by randomly ordering
the genotypes. The randomly phased data are the input for the
first iteration of the phasing algorithm.

The model-building algorithm uses scale and shift parameters
that control the complexity of the model.1 When building the
localized haplotype-cluster model, we use a scale parameter of
1.0 if there are samples per individual. If there are moreR p 1
than one sample per individual ( ), the haplotypes are notR 1 1
independent, and, to account for the decreased effective sample
size, we increase the scale parameter. If the haplotypes were de-
termined without error, each haplotype pair from the same in-
dividual would be identical, and a scale factor of would be�R
appropriate. However, since the haplotype pairs are not perfectly
correlated, we gain accuracy by using a scale factor of ,�c # R
where c is a positive constant !1. We use because, inc p 0.75
real and simulated data sets, we found that this value works well
for a variety of sample sizes and marker densities (authors’
unpublished data), although the optimal choice of c will differ
slightly from one data set to another. The shift parameter is always
set to 0.0 and does not depend on the number of sampled hap-
lotypes, R, for each individual.

After the localized haplotype-cluster model is built, R phased
haplotype pairs are sampled for each individual, conditional on
the genotypes for the individual and the diploid HMM model.
The NR sampled haplotype pairs are used as input in the next
iteration. The output phased haplotype pair for each individual
is the most likely haplotype pair conditional on the individual’s
genotype and the diploid HMM in the last iteration of the phasing
algorithm.

Our haplotype-phasing software, Beagle, will sample R p 4
haplotype pairs per individual with the default settings. Increas-
ing the number of sampled haplotype pairs per individual im-
proves the accuracy but also increases the computing time. The
results of our experiments below show that, for data sets with
small numbers of individuals when the computing time is not
an issue, it is worthwhile to increase the number of samples (e.g.,
to , as we do in this study), whereas, for very large dataR p 25
sets with thousands of individuals, the use of one sample per

individual ( ) results in significant savings in computationalR p 1
time with an insignificant loss of accuracy.

The computational time required by our algorithm scales lin-
early with the number of markers for a given marker density. We
must estimate the scaling of our algorithm with respect to sample
size empirically because the running time depends on the rate at
which the number of nodes and edges at each level grows as the
sample size increases.

The algorithm that we have described is similar to a stochastic
EM algorithm20,21; however, our model does not include a like-
lihood. In place of maximizing a likelihood, we fit a localized
haplotype-cluster model. An advantage of using a stochastic EM–
type algorithm is that such algorithms are less likely to get stuck
in local maxima than are regular EM algorithms. Sampling mul-
tiple haplotype pairs per individual, as described above, also helps
to stop the algorithm from getting stuck in local maxima, par-
ticularly for data sets with small numbers of individuals. The
localized haplotype-cluster model also helps because “merging
edges” in the model cause the model to assign nonzero proba-
bility to many haplotypes not seen in the input data.

Simulated Data

We compared the accuracy of our new method with that of other
phasing algorithms, using realistic simulated data generated by
Cosi,22 with parameters calibrated to empirical human data. Three
sample sizes were simulated: small (200 haplotypes), medium
(2,000 haplotypes), and large (10,000 haplotypes). For each sam-
ple size, multiple data sets with 1 Mb of marker data were sim-
ulated using the “best-fit” parameters obtained from fitting a
coalescent model to real data.22 Samples were taken from a
“European” population, and each simulated data set has a re-
combination rate sampled from a distribution matching the
deCODE map,22,23 with recombination clustered into hotspots.

For each simulated data set, we selected a set of tagging markers,
using a greedy pairwise selection algorithm.24 The parameters for
the marker-selection algorithm were set to produce either a low-
density set with ∼100 SNPs (1 SNP per 10 kb) or a high-density
set with ∼333 SNPs (1 SNP per 3 kb). First, a screening set of
markers was randomly selected from among those markers with
minor-allele frequency 10.05. For the low density, the screening
set contained 1 SNP per 4 kb (∼250 markers), and, for the high
density, the screening set contained 1 SNP per 0.7 kb (∼1,428
markers). The tag SNP–selection algorithm was applied to 120
randomly selected haplotypes, to identify a set of genotyped
markers such that every marker in the screening set with sample
minor-allele frequency 10.05 (on the basis of the 120 haplotypes)
either was a genotyped marker or had pairwise squared correla-
tion coefficient (low density) or (high density)2 2r 1 0.7 r 1 0.9
with at least one genotyped marker. The median number of mark-
ers selected for the low-density tagging set was 108, with a range
of 42–179 markers, and the median number of markers selected
for the high-density tagging set was 344, with a range of 51–688
markers.

For the small and medium sample sizes, 100 low-density and
100 high-density data sets were generated. For the large sam-
ple sizes, 40 low-density and 10 high-density data sets were
generated.

Real Data

We applied our method to data from the Wellcome Trust Case
Control Consortium (WTCCC) control group,25 which consists
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of 1,502 individuals from the 1958 British Birth Cohort and 1,500
individuals from the U.K. Blood Service Control Group (WTCCC
Web site). These individuals were genotyped on the Affymetrix
GeneChip Human Mapping 500K Array Set.26 We applied our
method to the complete set of autosomes (490,032 SNPs) and
also analyzed subsets of the data with our method and with the
other haplotyping methods considered in the simulation study.
The genotypes were called using the Bayesian robust linear model
with Mahalanobis distance classifier (BRLMM) algorithm (an ex-
tension of RLMM).27 Genotypes with a BRLMM score !0.50 were
set to missing, which resulted in 0.8% missing genotypes for the
autosomal chromsosomes.

Three sample sizes of real autosomal data were considered:
small (100 individuals), medium (1,000 individuals), and large
(3,002 individuals). For each sample size and for each chromo-
some, sets of 200 markers were selected by generating a random
positive integer, , and by taking sets of 200 consecutiven � 4,300
markers on that chromosome, beginning at marker (n �

for . This resulted in ∼100 sets of 2004,500 # m) m p 0,1,2, …
markers for each sample size. The marker sets for each of the
sample sizes were generated independently.

We used the male X-chromosome data (10,536 SNPs) to create
artificial pairs of X chromosomes for which the phasing is known.
Male genotypes appear homozygous, except where genotype er-
rors have occurred. Rather than use the reported sex, we used the
proportion of heterozygous X-chromosome markers to determine
which individuals are male. The individuals clearly clustered into
two groups on this basis: 1,535 females had at least 2,115 of
10,536 markers that were heterozygous, whereas 1,465 males had
up to 95 markers (0.9%) that were heterozygous. Two individuals
had 537 and 1,141 markers that were heterozygous; these are
presumably males with high genotype error rates and were re-
moved from all subsequent analyses. To have an even number
of male chromosomes to create pairs, the chromosome with 95
heterozygous markers (i.e., the chromosome with the highest ap-
parent error rate for the remaining male X chromosomes) was
removed. Thus, 732 pairs of X chromosomes were created. Before
the male chromosomes were paired, heterozygous genotypes were
turned into missing data, and 193 markers with 110% missing
data (including the previously heterozygous markers) in males
were removed from all subsequent analyses, leaving 10,343 SNPs.
After pairing, when one allele of an artificial genotype was miss-
ing at a marker, the second allele was also set to missing, to mimic
typical diploid data in which it is always whole genotypes, rather
than single alleles, that are missing. The final paired data had
0.4% missing data. For comparison of phasing algorithms, we
created 50 sets of 200 nonoverlapping consecutive markers. These
were obtained by taking markers 201–400, 401–600,…, and
10,001–10,200.

Measurement of Phasing Accuracy

We consider two measures of accuracy for haplotype inference.
Because the regions considered are large, it is unlikely that any
algorithm will be able to infer the haplotypes perfectly; however,
the inferred haplotypes should be as correct as possible. For most
applications, it is most important that the haplotypes are locally
correct and is less important for the haplotypes to be entirely
correct.

The switch error rate28,29 measures the proportion of successive
pairs of heterozygote markers in an individual that are phased
incorrectly with respect to each other. For example, suppose the

actual haplotypes over seven markers for one individual are ACA-
TGCA and TCACCCT, and the inferred haplotypes are ACATCCT
and TCACGCA. The first, fourth, fifth, and seventh markers are
heterozygous for this individual. The first and fourth markers are
correctly phased with respect to each other in the inferred hap-
lotypes. The fourth and fifth markers are incorrectly phased (a
switch error), and the fifth and seventh markers are correctly
phased. Thus, for this individual for these markers, the switch
error rate is 1/3. To determine the switch error rate, the true
haplotypes must be known, which is possible for simulated data
but not for real autosomal genotype data from individuals with
no genotyped relatives. As the marker density increases, the num-
ber of heterozygote markers will increase, and the switch error
rate will tend to drop, even if the haplotype phasing does not
improve. For that reason, the average number of observed
switches per individual is more useful than is the switch error
rate as an absolute measure of phasing accuracy. However, for the
purposes of comparing methods, the switch error rate is adequate.

The allelic-imputation error rate is the proportion of missing
alleles incorrectly imputed and measures the ability to infer miss-
ing-genotype data as part of the haplotype-inference procedure.
We can determine this error rate from real (or simulated) data by
randomly selecting and masking a small percentage of the ge-
notypes and determining the proportion of alleles that are cor-
rectly inferred. For the results presented here, we masked 1% of
the genotypes. The allelic-imputation error rate is available only
for methods that infer missing data, which includes all the meth-
ods studied except HaploRec. We note that, although imputation
error rate is of interest in its own right, it is also a measure of
phasing accuracy, since good haplotype-phase estimates will lead
to high rates of imputation accuracy.

Comparison of Running Times

All timing results (unless otherwise noted) were obtained from a
Linux server with eight Dual-Core AMD Opteron 8220 SE pro-
cessors (running at 2.8 GHz, with 1 MB cache, and using a 64-
bit architecture) and a total of 32 GB RAM. Times were obtained
by adding the user and system times from the Linux “time” com-
mand. These times are sums over all processes; thus, multi-
threaded programs would not receive a reported time advantage
from the multiple dual cores on this system (i.e., times are those
that would be seen on an equivalent single processor with a single
core).

One data set was selected from each class of data (defined by
marker density and sample size) for the timing study. In each
case, the masked version of the data (with 1% of genotypes set
to missing) was used. This makes the timing results more appli-
cable to real data, which generally include some missing data.
For the simulated data, a data set was chosen that had approxi-
mately the median number of markers for that class of data set
(to reflect an “average” data set). For the WTCCC autosomal data
sets, the 50th data set (in chromosomal order) was chosen,
whereas, for the WTCCC X-chromosome–paired male haplotype
data, the 25th data set was used. Thus, timing results are only
indicative, but consistent patterns over the various classes of data
size allow us to draw conclusions about the relative time perfor-
mance of the methods.

Results

Tables 2 and 3 give allelic-imputation and switch error
rates for each haplotype-inference method, and figure 2
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Table 2. Allelic-Imputation Error Rates

Method

Error Rate
(%)

Low-Density Simulateda High-Density Simulateda Affymetrix 500K WTCCCb

Small Medium Large Small Medium Large Small Medium Large

Beaglec:
R p 25 3.45 1.91 1.57 1.17 .53 .13 1.21 .87 .77
R p 4 3.65 2.01 1.57 1.36 .59 .13 1.32 .88 .78
R p 1 4.10 2.21 1.80 1.82 .70 .16 1.44 .94 .84

fastPHASEd:
K p 20 3.37 2.54 2.80 1.19 .90 .57 1.12 .95 .93
K p 10 3.91 3.19 3.43 1.72 1.38 1.04 1.21 1.05 1.04

HAP 5.26 3.66 3.89 3.20 2.55 2.31 1.68 1.38 1.33
2SNP 8.52 5.76 5.14 3.61 2.33 1.26 2.50 1.84 1.71

a Parameters for selection of tag SNPs for 1 Mb of simulated data were chosen to obtain ap-
proximate densities of 1 SNP per 10 kb (low density) or 1 SNP per 3 kb (high density). For each
density, three sample sizes were considered: 100 (small), 1,000 (medium), and 5,000 (large)
individuals.

b For the WTCCC data, sets of 200 consecutive markers were used. Three sample sizes were
considered: 100 (small), 1,000 (medium), and 3,002 (large) individuals.

c Beagle results are given for , , and samples per individual.R p 1 R p 4 R p 25
d fastPHASE results are given for and clusters per individual.K p 10 K p 20

gives the error rates with error bars (mean �2 SEs) for the
best-performing methods. The error bars are larger for the
estimated average absolute error than for the estimated
average difference in error (i.e., relative error) between two
methods. This is because the methods are all applied to
the same data sets, so the variability due to differences in
data sets partially cancels out when the differences in error
rates are viewed. Thus, the relative-error plots are useful
for determining whether apparent differences in accuracy
between methods are statistically significant. Although we
are able to identify statistically significant differences be-
tween the best methods, the actual differences are quite
small (typically !1%) and may have a negligible effect in
a subsequent analysis that uses the inferred haplotypes.
We show below that these methods have significant dif-
ferences in computational speed. Thus, for differentiating
between the most accurate methods, differences in com-
putation burden will be important.

We examined two measures of accuracy: switch error
and allelic-imputation error. Depending on one’s purpose,
one might want to minimize a specific error measure. For
example, if the data have a high proportion of missing
genotypes, one might be particularly interested in obtain-
ing a low allelic-imputation error rate, whereas, if the data
have very little missing data, the switch error rate might
be of greater interest.

We compared haplotype-phasing methods by using
both allelic-imputation error rates and switch error rates
for simulated data with six combinations of marker den-
sity (1 SNP per 10 kb or 1 SNP per 3 kb) and sample size
(100, 1,000, or 5,000 individuals). For the simulated data,
we found that the relative rankings by switch error rates
were largely consistent with the rankings by allelic-
imputation error rates.

We also compared haplotype-phasing methods by using
real data. We assessed allelic-imputation error rates for

three different sample sizes (100, 1,000, or 3,002 individ-
uals) of phase-unknown, real autosomal data from the
WTCCC control panel, and we assessed switch error rates
for 732 phase-known pairings of X-chromosome data
from the WTCCC control panel. Below we give the four
best-performing method and parameter combinations for
each class of data set, first ranked by allelic-imputation
error rate and then ranked by switch error rate.

Allelic-Imputation Error

For the low-density data sets with 100 individuals, the
best-performing methods with regard to allelic-imputa-
tion error rate (in order, best first) were fastPHASE with

, Beagle with , Beagle with , andK p 20 R p 25 R p 4
fastPHASE with . (Note that HaploRec does not in-K p 10
fer missing data and thus was not included in the com-
parisons of allelic-imputation error rates.) For the high-
density data sets with 100 individuals, the best-performing
methods (in order, best first) were Beagle with ,R p 25
fastPHASE with , Beagle with , and fastPHASEK p 20 R p 4
with . For the Affymetrix 500K data with 100 in-K p 10
dividuals, the best-performing methods (in order, best
first) were fastPHASE with , Beagle with ,K p 20 R p 25
fastPHASE with , and Beagle with .K p 10 R p 4

For the low- and high-density simulated data with 1,000
and 5,000 individuals and for the Affymetrix 500K auto-
somal data with 1,000 and 3,002 individuals, the best-
performing methods with regard to allelic-imputation er-
ror rate (in order, best first) were Beagle with ,R p 25
Beagle with , Beagle with , and fastPHASE withR p 4 R p 1

, in each case.K p 20

Switch Error Rates

For the low-density simulated data with 100 individuals,
the best-performing methods with regard to switch error
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Table 3. Switch Error Rates

Method

Error Rate
(%)

Low-Density
Simulateda

High-Density
Simulateda

WTCCC
XbSmall Medium Large Small Medium Large

Beaglec:
R p 25 5.72 2.97 2.39 1.69 .84 .05 5.75
R p 4 5.95 3.08 2.45 1.96 .93 .07 5.79
R p 1 7.49 3.72 3.03 2.94 1.21 .10 6.41

fastPHASEd:
K p 20 5.29 4.11 4.59 1.66 1.55 .49 6.34
K p 10 5.83 4.98 5.49 1.96 1.95 .75 6.83

HaploRec-S 4.79 2.79 2.26 1.57 1.11 .34 6.05
HaploRec-VMM 6.07 3.37 2.46 6.07 3.37 .37 6.52
HAP 8.51 5.22 5.40 3.77 2.80 1.75 7.44
2SNP 9.28 8.57 8.96 3.81 3.75 2.40 7.44

a Parameters for selection of tag SNPs for 1 Mb of simulated data were
chosen to obtain approximate densities of 1 SNP per 10 kb (low density)
or 1 SNP per 3 kb (high density). For each density, three sample sizes
were considered: 100 (small), 1,000 (medium), and 5,000 (large)
individuals.

b “WTCCC X” represents 50 nonoverlapping sets of 200 markers on 732
X-chromosome pairs. The chromosome pairs were created from WTCCC con-
trol male X chromosomes genotyped on the Affymetrix 500K platform.

c Beagle results are given for , , and samples perR p 1 R p 4 R p 25
individual.

d fastPHASE results are given for and clusters perK p 10 K p 20
individual.

rate (in order, best first) were Haplorec-S, fastPHASE with
, Beagle with , and fastPHASE with .K p 20 R p 25 K p 10

For the low-density simulated data with 1,000 and 5,000
individuals, the best-performing methods (in order, best
first) were Haplorec-S, Beagle with , Beagle withR p 25

, and Haplorec-VMM, in each case.R p 4
For the high-density simulated data with 100 individ-

uals, the best-performing methods with regard to switch
error rate (in order, best first) were HaploRec-S, fastPHASE
with , Beagle with , and Beagle with .K p 20 R p 25 R p 4
For 1,000 individuals, the best-performing methods were
Beagle with , Beagle with , HaploRec-S, andR p 25 R p 4
Beagle with , and, for 5,000 individuals, the best-R p 1
performing methods were Beagle with , Beagle withR p 25

, Beagle with , and HaploRec-S.R p 4 R p 1
For the 732 X-chromosome pairs from the WTCCC con-

trol data, the best-performing methods with regard to
switch error rate (in order, best first) were Beagle with

, Beagle with , HaploRec-S, and fastPHASER p 25 R p 4
with .K p 20

Summary of Allelic-Imputation and Switch Error Results

Beagle gave consistently the best or close to the best ac-
curacy. It does particularly well with high-density geno-
type data and large sample sizes. Increasing R, the number
of samples per individual per iteration, within the range
considered ( , 4, or 25) always increased the accuracyR p 1
for the data sizes we considered, with the largest improve-

ments seen when increasing from to samplesR p 1 R p 4
per individual.

HaploRec-S also gave the best or close to the best switch
accuracy for the simulated data sets and X-chromosome
data. HaploRec-VMM had inconsistent performance, do-
ing poorly with some high-density data sets. HaploRec
could not be compared with the other methods for the
real autosomal data or in terms of imputation error, be-
cause it does not impute missing data.

For the data sets considered here, fastPHASE with K p
clusters always gave more-accurate results than fast-20

PHASE with . We have found, in general, that, forK p 10
data sets with fairly large numbers of individuals, increas-
ing the number of clusters, K, is helpful, at least up to
values of , so increasing the number of clusters be-K p 30
yond 20 could improve the accuracy of fastPHASE. On the
other hand, computing time is quadratic in the number
of clusters, so, with clusters already taking a veryK p 20
long time to compute, it may not be feasible to increase
K further for large data sets. For the small data sets,
fastPHASE with gave slightly higher accuracy thanK p 20
did Beagle, but, for the medium and large data sets, it gave
slightly lower accuracy than that of Beagle.

HAP and 2SNP had consistently poor accuracy com-
pared with that of the other phasing methods. Their error
rates were always at least 40% higher than those of the
best methods and often were much higher than that. The
gap between these two methods and the others did narrow
somewhat for the real data, but a significant difference
remained.

Timing Results

On the basis of the computation times given in table 4,
we see the following patterns: 2SNP is by far the fastest
program. Beagle (with , 4, or 25 samples per indi-R p 1
vidual) is the next fastest, followed in order by HaploRec-
VMM, HaploRec-S, fastPHASE with , and fastPHASEK p 10
with . HAP is much slower than fastPHASE withK p 20

for the large data sets but is slightly faster for theK p 20
small and medium-sized data sets. It is possible that, with
a different compiling option or with a little re-engineer-
ing, HAP could be faster than fastPHASE with , al-K p 20
though it would probably still be slower than fastPHASE
with . The differences in times are large enough toK p 10
have practical significance. Between Beagle with R p 1
and fastPHASE with , there is typically a 100–300-K p 20
fold difference in timing results. Depending on the data
set, HaploRec-S was 5–172 times slower than Beagle with

, with the largest relative differences in running timeR p 1
resulting from the real data sets genotyped with the Af-
fymetrix 500K SNP array.

Regression analysis of timing results for the medium and
large sample sizes for the low-density, high-density, and
WTCCC autosomal data indicates that the running time
for the Beagle phasing algorithm scales slightly less than
quadratically in the number of samples ( ). We did not1.9n
place constraints on our model, but improved scaling with
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Figure 2. Error rates for selected haplotype-phasing methods. Three classes of data were considered: low-density data with ∼1 SNP
per 10 kb (left column), high-density data with ∼1 SNP per 3 kb (middle column), and Affymetrix 500K data for the WTCCC controls
(right column). Within each plot, three sample sizes (n) are shown. Each row of graphs gives a different measure of accuracy (Y-axis).
The relative error graphs show differences in error rate between each method and a reference method, which is Beagle with R p 25
samples per individual. All estimates are averaged across the data sets, with error bars showing �2 SEs.

sample size would be possible by constraining the size of
the model as the sample size increases. For example, if we
limited the maximum number of nodes per level, the scal-
ing would be much closer to linear in the number of sam-
ples, at the cost of some loss in accuracy.

Although we used a computer with 32 GB of memory

when we compared phasing algorithms, the implemen-
tation of our method in the Beagle software package has
an extremely low memory footprint. We phased the
WTCCC chromosome 1 control data (3,002 individuals
and 40,220 markers) by using a 1.8-GHz laptop computer
with 1 GB RAM running Windows XP. The running time
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Table 4. Timing Results

Method

Time
(s per Marker)

Low-Density Simulateda High-Density Simulateda Affymetrix 500K WTCCCb

Small Medium Large Small Medium Large Small Medium Large Xc

Beagled:
R p 25 .07 .58 12.95 .07 1.05 16.42 .07 .88 6.50 .34
R p 4 .04 .14 4.13 .03 .31 9.62 .03 .19 1.14 .11
R p 1 .02 .10 1.80 .01 .13 4.55 .02 .09 .34 .07

fastPHASEe:
K p 20 3.03 32.33 150.69 3.49 30.25 150.60 3.02 29.74 89.12 22.00
K p 10 .89 9.63 44.67 1.14 11.74 44.59 .89 8.92 26.67 6.43

HaploRec-S .60 6.26 27.93 1.23 8.02 22.63 .48 13.78 57.76 5.02
HaploRec-VMM .28 3.50 33.98 .25 6.07 17.72 .28 7.63 34.04 1.15
HAP 1.75 23.31 733.02 .45 41.49 613.13 .38 15.79 95.36 4.83
2SNP .01 .07 1.02 .00 .09 1.49 .01 .17 1.20 .04

a Parameters for selection of tag SNPs for 1 Mb of simulated data were chosen to obtain approximate densities
of 1 SNP per 10 kb (low density) or 1 SNP per 3 kb (high density). For each density, three sample sizes were
considered: 100 (small), 1,000 (medium), and 5,000 (large) individuals.

b For the WTCCC data, sets of 200 consecutive markers were used. Three sample sizes were considered: 100
(small), 1,000 (medium), and 3,002 (large) individuals.

c “X” represents 732 X-chromosome pairs constructed from male X-chromosome data.
d Beagle results are given for , , and samples per individual.R p 1 R p 4 R p 25
e fastPHASE results are given for and clusters per individual.K p 10 K p 20

for the laptop to phase chromosome 1 data with R p 1
samples per individual was 11 h and 37 min (compared
with 4 h and 40 min for the Linux server), and the max-
imum memory usage was 420 Mb. Phasing the WTCCC
autosomal control data (3,002 individuals and 490,032
markers) with samples per individual took 3.1 d ofR p 1
computing time on the Linux server.

Discussion

Because of the incomplete information contained in a
given data set, there is an upper limit to the accuracy of
phasing that can be achieved. The upper bound on ac-
curacy increases with the number of individuals and the
marker density. It is likely that the most-accurate methods
considered in this article—HaploRec-S, fastPHASE with

, and Beagle—approach these limits. As these limitsK p 20
are approached, computational speed and feasibility for
large data sets become paramount. To the best of our
knowledge, Beagle is the first highly accurate phasing al-
gorithm capable of phasing whole-genome data in as little
as a few days of computing time. Timing results presented
here suggest that the best competing methods would re-
quire months or years of computing time to complete this
task.

We have shown that the autosomal chromosomes from
a whole-genome scan genotyped with the Affymetrix
500K SNP set can be phased using Beagle with sam-R p 1
ples per individual in 3.1 d for 3,002 individuals. On the
basis of the results for the masked subsets from the
WTCCC data (table 2), we would expect allelic-imputation
error rates for imputation of missing genotypes to be
∼0.8%. For 1,000 individuals with use of samplesR p 4

per individual, we expect the phasing of Affymetrix 500K
SNP data to take ∼2 d (extrapolating from table 4), with
∼1% allelic-imputation error.

Extrapolating from the results for the simulated low-
density data (high-density data), we expect that phasing
of the autosomal chromosomes from a whole-genome
scan with 300,000 (1 million) tag SNPs for 5,000 individ-
uals would take ∼6 d (48 d) by use of Beagle with .R p 1
Thus, by parallelizing by chromosome and with use of
multiple processors, the phasing of 1 million SNPs ge-
notyped for 5,000 individuals could be achieved within 1
wk. For 1,000 individuals, phasing would take 13 h (4 d)
for 300,000 (1 million) tag SNPs phased using Beagle with

.R p 4
In comparing the haplotyping methods, we found lower

differences in the accuracy of the different phasing algo-
rithms for the WTCCC control data than for the simulated
data. Although the simulated data were tuned to real data,
it is expected that some differences will exist. Also, the
differences in relative performance may be explained par-
tially by differences in marker ascertainment between the
simulated data and the real data. The simulated data used
tag SNPs, which intentionally eliminate redundant highly
correlated SNPs, whereas the SNPs on the Affymetrix 500K
array were selected according to other criteria (e.g., tech-
nical quality). Consequently, there is substantial redun-
dancy in the Affymetrix 500K array30 that is not present
in the simulated marker sets. Also, ∼12% of the Affymetrix
500K SNPs are monomorphic in the British population.31

Like Beagle, fastPHASE uses an HMM approach but with
several important differences that have implications for
speed and accuracy. The model underlying fastPHASE has
parameters that are fit as part of the EM cycle, whereas
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Beagle’s localized haplotype-cluster model is empirical
and is fit using a one-step algorithm based on current
haplotype estimates. This means that the fastPHASE
model structure has to be kept simple (e.g., with a fixed
number of clusters) to enable estimation of parameters at
each cycle in a reasonable time, and it also means that
more EM iterations are needed (35 iterations per random
start and 15 random starts, with the default settings). Be-
cause Beagle just updates haplotype estimates at each it-
eration, a very small number of iterations is needed (we
found that 10 iterations suffice). The fixed number of clus-
ters in the model used by fastPHASE means that it cannot
adapt locally to the structure of the data to the extent that
Beagle can. The performance of fastPHASE is quadratic in
the number of clusters, so that, although its accuracy
might be increased by increasing the number of clusters
above the values considered here, this may not be practical
for large data sets.

HaploRec uses haplotype-fragment frequencies to ob-
tain empirically based probabilities for longer haplotypes.
The current implementation of HaploRec-S has high mem-
ory requirements—for example, 13 GB were needed to
analyze 200 SNPs for the 3,002 individuals in the WTCCC
control data. (By comparison, Beagle used !0.45 GB of
memory to phase all 40,220 SNPs on chromosome 1 for
the 3,002 individuals in the WTCCC control data.) To
apply HaploRec to larger numbers of markers, it is nec-
essary to analyze overlapping windows of markers,8 which
further increases the computing time, whereas Beagle can
analyze seamlessly an entire chromosome. We were not
able to compare HaploRec for data with missing genotypes
for the accuracy metrics that we considered, and we note
that previous work indicates that the accuracy of Haplo-
Rec-S decreases more than that of other methods as the
rate of missing data increases.8

2SNP is fast, but its accuracy is significantly worse than
that of fastPHASE, HaploRec-S, and Beagle. Although we
did observe a reduction in the difference in performance
between 2SNP and the other methods for the real data
compared with for the simulated data, the difference re-
mained consequential.

Similarly, HAP’s relative performance was better for the
real data than for the simulated data; however, the com-
putational requirements of the version that we used were
very high, so that it would not be possible to apply it to
a full whole-genome association data set with thousands
of genotyped individuals. The version of HAP that we used
seemed to have been compiled with a 1-GB memory al-
location. We suspect that the computational time for the
larger data sets would be significantly reduced if this lim-
itation were removed. On the basis of the timing results
for the smaller simulated data sets, we would expect its
computing times to be of the same order of magnitude as
those of fastPHASE or HaploRec-S. However, HAP was con-

sistently less accurate than were fastPHASE, HaploRec-S,
and Beagle for simulated and real data sets.

Thus, Beagle is the best of the algorithms we considered
for phasing large-scale data sets. Its efficient heuristic
model fitting and its use of HMM methods for sampling
mean that Beagle is significantly faster than the other
methods, with comparable accuracy. Since the model used
by Beagle is not constrained in size, the algorithm is able
to exploit the increased information contained in large
high-density marker sets to achieve significantly better ac-
curacy than that of fastPHASE or HaploRec-S at the default
parameter settings. These other algorithms presumably
could be improved for large high-density data sets by ad-
justment of default parameters to allow growth of the un-
derlying models; however, such improvements would
come at the cost of even longer computing times.

Beagle will output the most-likely haplotype pairs by
default but also includes an option for sampling haplotype
pairs conditional on an individual’s genotypes at the end
of the phasing algorithm. Sampled or most-likely inferred
haplotype pairs may be used in association testing for case-
control status or other traits of interest. Although it is not
optimal to first infer phase and then perform multilocus
association testing,32 this is a practical approach that can
be applied to multilocus analysis of large-scale data sets
from whole-genome association studies. For large data
sets, the accuracy of inferred haplotypes is very high, and,
provided that all individuals are phased together (regard-
less of trait status) and that trait status is independent of
genotype quality (i.e., genotype error rates and missing-
data rates), the type I error rate of the downstream asso-
ciation test will not be affected. For large numbers of
markers, it is not necessary to have haplotypes that are
completely correct, because the association tests will be
based on localized haplotypes, rather than on whole hap-
lotypes, so the inferred haplotypes need to be only locally
correct. For multilocus association testing based on local-
ized haplotype clustering, switch error rates of 5% resulted
in reduced power of a multilocus test, but the multilocus
test remained more powerful than single-marker tests for
low-frequency susceptibility variants.1
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Appendix A
We give a worked example of calculation of forward probabilities and backward sampling, using the model of table

1 and figure 1. A worked example of model building with use of the data in table 1 is given in our previously published
work.12 For this example, consider an individual with genotypes , , , and , where ?/?g p ?/? g p 1/1 g p 1/2 g p 1/21 2 3 4

denotes a missing genotype. Using the haplotype counts in table 1, we have , , ,n(e ) p 311 n(e ) p 289 n(e ) p 195A B C

, , , , , , , , and . Then(e ) p 116 n(e ) p 289 n(e ) p 237 n(e ) p 247 n(e ) p 116 n(e ) p 46 n(e ) p 191 n(e ) p 247 n(e ) p 116D E F G H I J K L

calculations that follow use the equations in the section “Sampling from an HMM.”
The initiation step of the forward probability calculation gives

a (e ,e ) p P[s p (e ,e )]P[g p ?/?F(e ,e )]1 A A 1 A A 1 A A

p P(e )P(e )P[g p ?/?Fs p (e ,e )]A A 1 1 A A

2p (311/600) (1) .

Similarly, , whereas anda (e ,e ) p P(e )P(e )(1) p (311/600)(289/600) a (e ,e ) p (289/600)(311/600) a (e ,e ) p1 A B A B 1 B A 1 B B

.2 2P(e ) p (289/600)B

In the induction step to calculate the values for , we use the values for above and note, for example, thata a2 1

, whereas . Then, forP[s p (e ,e )Fs p (e ,e )] p P(e Fe )P(e Fe ) p (195/311)(289/289) P[s p (e ,e )Fs ( (e ,e )] p 02 C E 1 A B C A E B 2 C E 1 A B

example,

a (e ,e ) p P[g p 1/1Fs p (e ,e )]{a (e ,e )P[s p (e ,e )Fs p (e ,e )] � a (e ,e )P[s p (e ,e )Fs p (e ,e )]2 C E 2 2 C E 1 A A 2 C E 1 A A 1 A B 2 C E 1 A B

�a (e ,e )P[s p (e ,e )Fs p (e ,e )] � a (e ,e )P[s p (e ,e )Fs p (e ,e )]}1 B A 2 C E 1 B A 1 B B 2 C E 1 B B

p (1)[0 � (311/600)(289/600)(195/311)(289/289)� 0 � 0]

p (195/600)(289/600) .

Continuing, we find that , , and , whereas2 2a (e ,e ) p (195/600)(289/600) a (e ,e ) p (195/600) a (e ,e ) p (289/600)2 E C 2 C C 2 E E

the remaining values are zero. Continuing to and omitting zero terms, we havea a2 3

a (e ,e ) p P[g p 1/2Fs p (e ,e )]{a (e ,e )P[s p (e ,e )F s p (e ,e )] � a (e ,e )P[s p (e ,e )Fs p (e ,e )]3 F G 3 2 F G 2 C C 3 F G 2 C C 2 C E 3 F G 2 C E

�a (e ,e )P[s p (e ,e )Fs p (e ,e )] � a (e ,e )P[s p (e ,e )Fs p (e ,e )]}2 E C 3 F G 2 E C 2 E E 3 F G 2 E E

2p (1)[(195/600) (237/484)(247/484)� (195/600)(289/600)(237/484)(247/484)

2� (289/600)(195/600)(237/484)(247/484)� (289/600) (237/484)(247/484)]

p (237/600)(247/600) .

The only other nonzero is , which takes the same value as . The nonzero values area a (e ,e ) a (e ,e ) a a (e ,e ) p3 3 G F 3 F G 4 4 I K

.a (e ,e ) p (46/600)(247/600)4 K I

The probability of sampling the path , , , and (with ordered haplotype pairs p (e ,e ) s p (e ,e ) s p (e ,e ) s p (e ,e )1 A B 2 C E 3 F G 4 I K

1111 and 2122) is obtained as follows.

1. For the initiation step, sample with probabilitys p (e ,e )4 I K

a (e ,e )/[a (e ,e ) � a (e ,e )] p 1/2 .4 I K 4 I K 4 K I

2. Inductively sample with probabilitys p (e ,e )3 F G

P[g 1/2Fs p (e ,e )]P[s p (e ,e )Fs p (e ,e )]a (e ,e )/a (e ,e )4 4 I K 4 I K 3 F G 3 F G 4 I K

p (1)(46/237)(1)a (e ,e )/a (e ,e ) p 1 .3 F G 4 I K

(It makes sense that the probability of sampling conditional on sampling is 1, becauses p (e ,e ) s p (e ,e )3 F G 4 I K

is the only ordered pair of edges leading into the ordered pair .)(e ,e ) (e ,e )F G I K
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3. For the next step, sample with probabilitys p (e ,e )2 C E

P[g p 1/2Fs p (e ,e )]P[s p (e ,e )Fs p (e ,e )]a (e ,e )/a (e ,e )3 3 F G 3 F G 2 C E 2 C E 3 F G

p (195/484)(289/484) p 0.2406 .

4. For the final step, sample with probabilitys p (e ,e )1 A B

P[g p 1/1Fs p (e ,e )]P[s p (e ,e )Fs p (e ,e )]a (e ,e )/a (e ,e ) p 1 .2 2 C E 2 C E 1 A B 1 A B 2 C E

Thus, this path is sampled with overall probability . The alternate ordering ,(0.5)(1)(0.2406)(1) p 0.1203 s p (e ,e )1 B A

, , and , which gives the same pair of haplotypes but in the other order, has the sames p (e ,e ) s p (e ,e ) s p (e ,e )2 E C 3 G F 4 K I

probability, and, together, this pair of paths has sampling probability 0.2406.

Web Resources

The URLs for data presented herein are as follows:

Beagle genetic analysis software package, http://www.stat.auckland
.ac.nz/˜browning/beagle/beagle.html

WTCCC, http://www.wtccc.org.uk/
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