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Bioinformatics and computational biology

Wikipedia:

Bioinformatics and computational biology involve the use of
techniques including applied mathematics, informatics, statistics,
computer science, artificial intelligence, chemistry, and biochemistry
to solve biological problems usually on the molecular level.

Major research efforts in the field include sequence alignment, gene
finding, genome assembly, protein structure alignment, protein
structure prediction, prediction of gene expression and protein-protein
interactions, and the modeling of evolution.
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Bioinformatics and computational biology

Wikipedia:

The terms bioinformatics and computational biology are often used
interchangeably. However bioinformatics more properly refers to the
creation and advancement of algorithms, computational and statistical
techniques, and theory to solve formal and practical problems
inspired from the management and analysis of biological data.
Computational biology, on the other hand, refers to hypothesis-driven
investigation of a specific biological problem using computers, carried
out with experimental or simulated data, with the primary goal of
discovery and the advancement of biological knowledge.
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Bioinformatics and computational biology

NIH definition of Bioinformatics and Computational Biology:

Bioinformatics and computational biology are rooted in life sciences
as well as computer and information sciences and technologies. Both
of these interdisciplinary approaches draw from specific disciplines
such as mathematics, physics, computer science and engineering,
biology, and behavioral science.

Bioinformatics applies principles of information sciences and
technologies to make the vast, diverse, and complex life sciences
data more understandable and useful. Computational biology uses
mathematical and computational approaches to address theoretical
and experimental questions in biology. Although bioinformatics and
computational biology are distinct, there is also significant overlap
and activity at their interface.
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Bioinformatics and computational biology

NIH definition of Bioinformatics and Computational Biology:

The NIH Biomedical Information Science and Technology Initiative
Consortium agreed on the following definitions of bioinformatics and
computational biology recognizing that no definition could completely
eliminate overlap with other activities or preclude variations in
interpretation by different individuals and organizations.

Bioinformatics: Research, development, or application of
computational tools and approaches for expanding the use of
biological, medical, behavioral or health data, including those to
acquire, store, organize, archive, analyze, or visualize such data.

Computational Biology: The development and application of
data-analytical and theoretical methods, mathematical modeling and
computational simulation techniques to the study of biological,
behavioral, and social systems.
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2D gel electrophoresis
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2D gel electrophoresis
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2D gel electrophoresis
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2D gel electrophoresis
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Karyotypes
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Karyotypes
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Chromosome 16

http://members.aol.com/chrominfo/
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Deleted
Chromosome 16
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FISH

Courtesy of the Pevsner Laboratory
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DNA changes

Types of mutation

Deletion Duplication Inversion
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Single nucleotide polymorphisms
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SNP chip data
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Amplification
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A versus B plots
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A versus B plots
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Trisomy 21
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Prediction regions for copy number

SNP_A-8496017
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De novo deletion
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De novo deletion
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The statistical environment R

@ R is an environment for data analysis and visualization.
@ R is both open source and open development.

@ You can look at the source code and propose changes.
@ R is not in the public domain.

@ You are given a license to run the software (currently GPL).
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The R software

@ R is mainly written in C.

@ R is available for many platforms:

@ Unix of many flavors, including Linux, Solaris, FreeBSD.
@ Windows 95 and later.
@ MacOS X.

@ Binaries and source code are available from
WwWw.r-project.orgq.

@ R “talks” to data bases, programming languages, and other
statistical packages.

@ R should be source code compatible with most of the
Splus code written.
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CRAN

The Comprehensive R Archive Network

| + | (@ hup: / feran.r-project.org/ ¢ | (ar

CRAN
Mirrors

What's new?
Task Views
Scarch

About R

R Homepage
The R Journal

EAQs
Contributed

Movember Ingo's Pond PubMed Home Google Scholar Biometrics Rpacksy CRANT Runningv Meetingsy News™ Linksy Johns Hopkins Portal Amazon Sueddeutsche LEQ

Frequently used pages

Download and Install R

|Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want
lone of these versions of R:

e Linux
MacOS X
* Windows

Source Code for all Platforms

|Windows and Mac users most likely want the precompiled binaries listed in the upper box, not the source code. The
sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to
do it!

» The latest release (2009-10-26): R-2.10.0.tar.g2 (read what's new in the latest version).

« Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

« Daily snapshots of current patched and development versions are available here. Please read about new features and
bug fixes before filing corresponding feamre requests or bug reports.

» Source code of older versions of R is available here

« Contributed cxtension packages

Questions About R

= If you have questions about R like how to download and install the software, or what the license terms are, please
read our answers to asked questions before you send an email.

What are R and CRAN?

Ris"GNU §', a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical
techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for
further information.

ST
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The R package system

@ Packages are self-contained units of code with
documentation.

@ The packages are simple to obtain and to understand, and
can easily be updated.

@ You can write your own packages!
@ All functions must have examples to run.

@ There are automatic testing features built in.

33
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CRAN packages

The Comprehensive R Archive Network

| + | (@ hup: / feran.r-project.org/ ¢ | (Q- Google

Movember Ingo's Pond PubMed Home Google Scholar Biometrics Rpacksy CRANT Runningv Meetingsy News™ Linksy Johns Hopkins Portal Amazon Sueddeutsche LEQ

Installation of Packages

Please type help("INSTALL") OF help("install.packages") in R for information on how to install packages from this directory. The manual R

and Admi: (also in the R base sources) explains the process in detail.

cune CRAN Task Views allow you to browse packages by topic and provide tools to automatically install all packages for special arcas of interest. Currently,
Mirrors 25 views are available.
What's new?
Task Views Daily Package Check Results
Scarch

All packages are tested regularly on running Debian GNU/Linux. Packages are also checked under Fedora, MacOS X and Windows, but only
About R atthe day the package appears on CRAN.,
R Homepage
The R Journal The results are summarized in the check summary (some timings are also available). Additional details for Windows checking and building can be found in

the Windows check summary.
Software

R Sources Writing Your Own Packages

R Binaries

Packages The manual Writing R Extensions (also contained in the R base sources) explains how to write new packages and how to contribute them to CRAN
Other

Documentation Available Packages

Manuals

FAQs Currently, the CRAN package repository features 2093 available packages.

Contributed

ADGofTest Anderson-Darling GoF test

ADaCGH Analysis of data from aCGH experiments

AER Applied Econometrics with R

AGSDest Estimation in adaptive group sequential trials

AICcmodavg Model selection and multimode] inference based on (Q)AIC(c)

AIGIS Areal Interpolation for GIS data

AIS Tools to look at the data (" Ad Inidicia Spectata")

ALS multivariate curve resolution alternating least squares (MCR-ALS)

AMORE A MORE flexible neural network package

AcceptanceSampling Creation and evaluation of Acceptance Sampling Plans s

AdMir Adantive Mixmrme of Stdent.t dictribntions 1Y
7
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Pros and cons

Advantages

@ Free

@ Available for all major platforms

@ Comprehensive

@ Powerful graphics

@ Well-designed programming language

@ Unlimited extensibility

@ Widely used by statisticians

@ Increasingly used for genomic analyses (Bioconductor)

Disadvantages

@ No dedicated support

@ Complex syntax

@ Not point-and-click

@ Some simple tasks are rather hard
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Welcome to BioConductor — bioconductor.org
<[> |+ 3 hup://www.bioconductor.org/ ¢ | (Q- Google
ber nd

e Google Scholar Biometrics Rpacksy CRANT Runningv Meetings™ News® Linksv lohns Hopkins Portal Amazon Sueddeutsche

C Uﬂw DryCTOR Bioconductor is ssource and open development software project

n sour are for the anal prehension of genomic data.

project news

» 2009-10-26
BioC 2.5, consisting of 352 packages and designed to work
with R 2,10 2, was released today.

» 2009-01-07
R. the open source platform used by Bioconductor, featured
in @ series of articles in the New York Times.

More.

QUICK LINKS
» Getting Started
» Installation Manchester, UK, 7-8 January 2010. &
» Downloads
¥ Eomuss Cambridge, UK, 31 January - 5 February 2010. &
» Workshops
Following the usual 6-month cycle, the Bloconducior community has released Bioconducior 2.5 on October 28th, 2009. This new release is

comprised of 352 software packages and more than 400 Updated annotation packages. It has been expressly designed o work with the
recently released R 2.10.0. &

» FAQ

» Mailing Lists

b Developer
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Bioconductor

ctor 2.5 Software Packages

<] + | 3 hup:/ fwww.bioconductor.org/ packages  release/bioc/ ¢|(ar

Movember Ingo's Pond PubMed Home Google Scholar Biometrics Rpacksy CRANT Runningv Meetingsy Newsw Linksv Johns Hopkins Portal Amazon Sueddeutsche LEQ

Bioconductor 2.5 Software Packages

Package Maintainer Title

ABamav Yongming Andrew Sun J‘(\j{\lgrfgur:?)yggi ii:fscn:;i:ci gala analysis for Applied Biosystems Genome Survey Micorarray

aCGH Peter Dimitrov Classes and functions for Amray Comparative Genomic Hybridization data.

ACME Sean Davis Algorithms for Calculating Microarray Enrichment (ACME)

adSplit Claudio Lottaz Annotation-Driven Clustering

affxparser Kasper Danicl Hansen Affymetrix File Parsing SDK

affy Rafael A. Irizarry Methods for Affymetrix Oligonucleotide Arrays

affycom; Rafael A. Irizarry ‘Graphics Toolbox for Assessment of Affymetrix Expression Measures

AffvCompatible Martin Morgan Affymetrix GeneChip software compatibility

affyContam V. Carey structured corruption of affymetrix cel file data

affycoretools James W. MacDonald Functions useful for those doing repetitive analyses with Affymetrix GeneChips.

AffvExpress Xuejun Arthur Li Affymertrix Quality Assessment and Analysis Tool

affyio Benjamin Milo Bolstad  Tools for parsing Affymetrix data files

affylmGUI Keith Saterley ‘GUI for affy analysis using limma package

affyPara Markus Schmidberger Parallelized preprocessing methods for Affymetrix Oligonucleotide Arrays

affypdnn Laurent Gautier Probe Dependent Nearest Neighbours (PDNN) for the affy package

affyPLM Ben Bolstad Methods for fitting probe-level models

affyOCReport Craig Parman QC Report Generation for affyBatch objects

AffyTiling Charles G. Danko Easy extraction of individual probes in Affymetrix tiling arrays

Agidx44PreProcess Pedro Lopez-Romero PreProcessing of Agilent 4x44 amray data

AgiMicroRna Pedro Lopez-Romero Processing and Differential Expression Analysis of Agilent microRNA chips

altedfenvs Laurent Gautier alternative CDF environments (aka probeset mappings)

annaffy Colin A. Smith Annotation tools for Affymetrix biological metadata

annotate E;;CE:(: Teatn ¢l BloC Annotation for microarrays

AnnotationDbi Biocc_yrc edn e Bice Annotation Database Interface
‘user list
Alexandre Kuhn Annotate microarrays and perform cross-specics gene expression analyses using flat file databascs.
Denise Scholtens Estimate protein complex membership using AP-MS protein data

P P Light-weight methods for lization and visualization of mi v data using only basic R data
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JHSPH Biostatistics classes

3 140.615 Biostatistics for Laboratory Scientists |
MWEF 10:30 — 11.20 (Ingo Ruczinski)

140.644 Practical Machine Learning
MW 1:30 — 2.50 (Rafael Irizarry)
4 140.616 Biostatistics for Laboratory Scientists |l
MWF 10:30 — 11.20 (Ingo Ruczinski)

140.688 Statistics for Genomics
MW 10:30 — 11.50 (Jeff Leek)
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Statistics and probability

@ What is statistics?
o Data exploration and analysis.
@ Quantification of evidence and uncertainty.

@ Inductive inference with probability.

@ What is probability?

@ A branch of mathematics concerning the study of random

processes.
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Diagnostics
DISEASE
+ —
+ TP FP
TEST
_— FN TN
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DISEASE

TEST

Sensitivity Pr ( positive test | disease )
Specificity

Positive Predictive Value

(
Pr ( negative test | no disease )
Pr ( disease | positive test )
Negative Predictive Value (
Accuracy (

Pr ( no disease | negative test)
Pr ( correct outcome )

A
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Assume that some disease has a 0.1% prevalence in the
population. Assume we have a test kit for that disease that
works with 99% sensitivity and 99% specificity. What is the
probability of a person having the disease, given the test result
is positive, if we randomly select a subject from the general
population?
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DISEASE
+ —
+ 99 999
TEST
_— 1 98901
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DISEASE

+ —
+ 99 999
Sensitivity —  99/(99+1) =99%
Specificity — 98901 /(999+98901) = 99%
Positive Predictive Value —  99/(99+999) ~ 9%
Negative Predictive Value  — 98901 / (1+98901) > 99.9%
Accuracy — (994+98901) / 100000 = 99%
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Calibration

Goal: Determine, by fluoresence, the concentration of quinine
in a sample of tonic water.

@ Obtain a stock solution with known concentration of quinine.
@ Create several dilutions of the stock.

© Measure fluoresence intensity of each such standard.

@ Measure fluoresence intensity of the unknown.

© Fit aline to the results for the standards.

@ Use line to estimate quinine concentration in the unknown.
Question: How precise is the resulting estimate?
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Calibration
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Summarizing data
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Summarizing data
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http: //biostat.jhsph.edu/~iruczins/
ingo@jhu.edu

Ingo Ruczinski Biostatistics and Computational Biology 50



