
Introduction
Computing at Hopkins Biostatistics

Ingo Ruczinski

Thanks to Thomas Lumley and Robert Gentleman of the R-core group (http://www.r-project.org/) for providing
some tex files that appear in part in the following slides.

Some R facts

� R is an environment for data analysis and visualization.

� R is an open source implementation of the S language (S-Plus
is a commercial implementation of the S language).

� The current version of R (September 2004) is 1.9.1.

� The R Core group consists of Doug Bates, John Chambers,
Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus,
Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler,
Guido Masarotto, Paul Murrell, Brian Ripley, Duncan Temple
Lang, and Luke Tierney.

� If you use R extensively, be a good citizen and join the R Foun-
dation for Statistical Computing http://www.r-project.org/ .

The R license

� R is both open source and open development.

� You can look at the source code and you can propose changes.

� R is not in the public domain.

� You are given a license to run the software (currently GPL).

The R software

� R is mainly written in C.

� R is available for many platforms:

– Unix of many flavors, including Linux, Solaris, FreeBSD, AIX.
– Windows 95 and later.
– MacOS X.

� Binaries and source code are available from www.r-project.org .

� R “talks” to data bases, programming languages, and other sta-
tistical packages.

� R should be source code compatible with most of the Splus
code written.

How do I get R?

� The informational web site http://www.r-project.org/ .

� CRAN - the Comprehensive R Archive Network:

– The primary site is http://cran.r-project.org/ .
– Mirror sites are available for many countries. For example:

http://cran.us.r-project.org/ .

� CRAN sites have source code andbinary distributions for Win-
dows 95, 98, ME, NT4, 2000 and XP on Intel and compatible
processor, for the Macintosh (System 8.6 to 9.1 and MacOS X),
and for several Linux distributions.

� New releases occur frequently, at least twice a year. Be pre-
pared to re-install frequently.

Installing R

� Windows:
Download and run the SetupR.exe installer.

� Macintosh:
Download R.dmg, and double-click on the R-1.9.1.pkg icon
on the R.dmg disk image.

� Linux:
RPM files are available for RedHat, SuSE, and Mandrake. Deb
files are available for Debian.

� Unix/Linux:
Download and expand the compressed tar file of the sources.
Run ./configure, and then make, make check, and make
install.

Installing R with a script

Create the directory R-lr in your root directory (for example, mine
is /home/iruczins/). Edit the following script and copy it to
your bin/ directory.
rsync -rC rsync.r-project.org::r-release /home/iruczins/R-lr
cd /home/iruczins/R-lr
./configure --prefix=/home/iruczins/R-lr
make
make install
echo Done!

Make sure you can execute it (chmod 755 [filename] will do).
When you run it, rsync will automatically grab the latest released
R version for you.

Create an alias in your .tcshrc file, or whatever shell you use:
alias R ’/home/iruczins/R-lr/bin/R’

Sources of information about R

� The web site http://www.r-project.org/ and CRAN.

� Kurt Hornik’s page http://www.ci.tuwien.ac.at/ � hornik/R/R-FAQ.html mir-
rored at http://cran.r-project.org/doc/FAQ/R-FAQ.html . Most of the con-
tents of these slides (and many other topics) are covered in this
FAQ site.

� The manuals at http://cran.r-project.org/manuals.html . In particular,
check out R-intro.pdf and R-data.pdf.

� Karl’s R page at http://www.biostat.jhsph.edu/ � kbroman/Rintro/

� More detailled notes are on the Statistical Computing class page
at http://www.biostat.jhsph.edu/ � bcaffo/statcomp/

A sample session

> log(64)
[1] 4.158883

> log2(64)
[1] 6

> sqrt(2)
[1] 1.414214

> sqrt(-1)
[1] NaN
Warning message:
NaNs produced in: sqrt(-1)

> sqrt(-1+0i)
[1] 0+1i

A sample session

> x <- 5
> x
[1] 5

> x = 5
> x
[1] 5

> x <- c(1,2,3,4)
> x
[1] 1 2 3 4

> x <- 1:4
> x
[1] 1 2 3 4

> x <- seq(1,4)
> x
[1] 1 2 3 4

A sample session

> x <- c(0.008, 0.018, 0.056, 0.055, 0.135,
+ 0.052, 0.077, 0.026, 0.044, 0.300,
+ 0.025, 0.036, 0.043, 0.100, 0.120,
+ 0.110, 0.100, 0.350, 0.100, 0.300,
+ 0.011, 0.060, 0.070, 0.050, 0.080,
+ 0.110, 0.110, 0.120, 0.133, 0.100,
+ 0.100, 0.155, 0.370, 0.019, 0.100,
+ 0.100, 0.116)

> x
[1] 0.008 0.018 0.056 0.055 0.135 0.052 0.077 0.026 0.044

[10] 0.300 0.025 0.036 0.043 0.100 0.120 0.110 0.100 0.350
[19] 0.100 0.300 0.011 0.060 0.070 0.050 0.080 0.110 0.110
[28] 0.120 0.133 0.100 0.100 0.155 0.370 0.019 0.100 0.100
[37] 0.116

> class(x)
[1] "numeric"

> length(x)
[1] 37

A sample session

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0080 0.0500 0.1000 0.1043 0.1160 0.3700

> quantile(x, c(0.1, 0.95))
10% 95%

0.0226 0.3100

> mean(x);median(x);sd(x);var(x)
[1] 0.1042973
[1] 0.1
[1] 0.08895344
[1] 0.007912715

> round(c(mean(x),median(x),sd(x),var(x)),3)
[1] 0.104 0.100 0.089 0.008

A sample session

> exp(mean(log(x)))
[1] 0.07463571

> 1/mean(1/x)
[1] 0.04841714

> hist(x)
> hist(x,breaks=15,col="lightgrey")

Histogram of x

x

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10

12
14

Histogram of x

x

F
re

qu
en

cy

0.0 0.1 0.2 0.3

0
1

2
3

4
5

6
7

A sample session

> y <- runif(length(x))
> plot(x, y, ylim=c(-2,3), yaxt="n", ylab="")
> abline(h=0.5, lty=2, col="green",lwd=2)

0.0 0.1 0.2 0.3

x

A sample session

> plot(x, y, ylim=c(-2,3), yaxt="n", ylab="", log="x")
> abline(h=0.5, lty=2, col="green",lwd=2)

0.01 0.02 0.05 0.10 0.20

x

A sample session

> boxplot(x)
> boxplot(x, range=0)
> boxplot(x, range=0, horizontal=TRUE)
> boxplot(x, range=0, horizontal=TRUE, log="x")

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.0 0.1 0.2 0.3 0.01 0.02 0.05 0.10 0.20

A sample session

One of the nice additions to R (compared to Splus) is the easy
inclusion of mathematical expressions in plots using the function
expression. Take a look at help(plotmath) to see a big list
of what you can do; also look at the examples in the help file for
the function legend.

x <- rnorm(100)
y <- x+rnorm(100)
plot(x,y,

xlab=expression(hat(mu)[0]),
ylab=expression(alphaˆbeta),
main=expression(paste(
"Plot of ",alphaˆbeta," versus ",hat(mu)[0])))

lines(lowess(x,y),col="green",lwd=2)

A sample session

−1 0 1 2

−
4

−
2

0
2

4

Plot of αβ versus µ̂0

µ̂0

αβ

A sample session

> x <- 1:4
> x
[1] 1 2 3 4

> x*x
[1] 1 4 9 16

> z <- x %*% x
> z

[,1]
[1,] 30

> drop(z)
[1] 30

A sample session

> y <- diag(x)
> y

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
[4,] 0 0 0 4

> solve(y)
[,1] [,2] [,3] [,4]

[1,] 1 0.0 0.0000000 0.00
[2,] 0 0.5 0.0000000 0.00
[3,] 0 0.0 0.3333333 0.00
[4,] 0 0.0 0.0000000 0.25

> det(y)
[1] 24

A sample session

> z <- matrix(sample(1:12), ncol = 3, nrow = 4)
> z

[,1] [,2] [,3]
[1,] 7 12 8
[2,] 4 5 9
[3,] 2 1 6
[4,] 10 11 3

> t(z)
[,1] [,2] [,3] [,4]

[1,] 7 4 2 10
[2,] 12 5 1 11
[3,] 8 9 6 3

A sample session

> y %*% z
[,1] [,2] [,3]

[1,] 7 12 8
[2,] 8 10 18
[3,] 6 3 18
[4,] 40 44 12

> y %*% x
[,1]

[1,] 1
[2,] 4
[3,] 9
[4,] 16

> x %*% z
[,1] [,2] [,3]

[1,] 61 69 56

A sample session

> solve(t(z)%*%z) %*% (t(z)%*%x)

[,1]
[1,] 1.1210197
[2,] -0.6962714
[3,] 0.1637485

> A <- t(z)%*%z
> b <- t(z)%*%x
> solve(A,b)

[,1]
[1,] 1.1210197
[2,] -0.6962714
[3,] 0.1637485

Getting help

� Check the help files and manuals.

– For example, to check out how the function weighted.mean()
works, type ?weighted.mean or help(weighted.mean) at the R
prompt.

– If you do not know the exact name of the function, type for
example help.search(“mean”) or use the html search engine,
which you can start by typing help.start().

� Ask some R wizard.

� Use the mailing list archives and search facilities.

� Post your question to the mailing list.

9 basic R functions you should know

Typing a function name and hitting the �
RET � button simply dis-

plays the function. To invoke the function you must include an
argument list in (), even if the list is empty. That is, use q()

�
RET � and not just q �

RET � .
� q Quit the session
� help Get help on a function or object
� help.start Allow the use of a web browser for reading help
� example Run the example from the help page for an object
� data List the available data sets or import a data set
� library List available packages or attach a package
� objects List the objects in the workspace
� summary Summarize an object
� str Show the low-level structure of an object

The R package system

� Packages are self-contained units of code with documentation.

� The packages are simple to obtain, understand, and update.
Try commands like install.packages(), example(), and
update.packages().

� You can write your own packages!

� All functions must have examples and the examples must run.

� There are automatic testing features built in.

Downloading packages and bundles

> install.packages("rpart")
> library(rpart)
> data(kyphosis)

> kyphosis
Kyphosis Age Number Start

1 absent 71 3 5
2 absent 158 3 14
3 present 128 4 5
4 absent 2 5 1
5 absent 1 4 15
6 absent 1 2 16
7 absent 61 2 17
8 absent 37 3 16
9 absent 113 2 16
10 present 59 6 12
11 present 82 5 14
12 absent 148 3 16
13 absent 18 5 2
...

read.table

The function read.table is the most convenient way to read in
a rectangular grid of data. Some of the issues to consider are:

� Header line
� Separator
� Quoting
� Missing values
� Unfilled lines
� White space in character fields
� Blank lines
� Classes for the variables
� Comments

read.table

>?read.table

read.table package:base R Documentation

Data Input

Description:

Reads a file in table format and creates a data frame from it,

with cases corresponding to lines and variables to fields in the

file.

Usage:

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".",

row.names, col.names, as.is = FALSE, na.strings = "NA",

colClasses = NA, nrows = -1,

skip = 0, check.names = TRUE, fill = !blank.lines.skip,

strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#")

Good to know

Because of the many possibilities, there are several other func-
tions that call read.table but change a group of default argu-
ments:
read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",

fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, ...)

The function count.fields can be useful when you get an error
message!

Fixed-width-format files

Sometimes data files have no field delimiters but have fields in
pre-specified columns. The function read.fwf provides a simple
way to read such files, specifying a vector of field widths.

> ff <- tempfile()
> cat(file=ff, "123456", "987654", sep="\n")
> read.fwf(ff, width=c(1,2,3))
V1 V2 V3

1 1 23 456
2 9 87 654
> unlink(ff)

> cat(file=ff, "123", "987654", sep="\n")
> read.fwf(ff, width=c(1,0,2,3))
V1 V2 V3 V4

1 1 NA 23 NA
2 9 NA 87 654
> unlink(ff)

scan

Both read.table and read.fwf use scan to read the file, and
then process the results of scan. They are very convenient, but
sometimes it is better to use scan directly.

scan has many arguments in common with read.table. One
additional argument is what, which specifies a list of modes of
variables to be read from the file. If the list is named, the names
are used for the components of the returned list. Modes can be
numeric, character or complex, and are usually specified by an
example, e.g. 0, "" or 0i.

scan

>?scan

scan package:base R Documentation

Read Data Values

Description:

Read data into a vector or list from the console or file.

Usage:

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",

quote = if (sep=="\n") "" else "’\"", dec = ".",

skip = 0, nlines = 0, na.strings = "NA",

flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE,

blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "")

scan

> x <- scan()
1: 4
2: 7 3
4:
Read 3 items
> x
[1] 4 7 3

> cat("2 3 5 7", "11 13 17 19", file="ex.dat", sep="\n")
> scan(file="ex.dat")
Read 8 items
[1] 2 3 5 7 11 13 17 19
> scan(file="ex.dat", what=list(x=0, y="", z=0), flush=TRUE)
Read 2 records
$x
[1] 2 11
$y
[1] "3" "13"
$z
[1] 5 17

source

You can use source to read in R code:

source("somecode.R")

The commands in somecode.R will be executed, and the objects
specified will be created in your current .RData file. For example,
this is quite convenient when you want to create a fairly fancy plot,
and still need to tinker with the layout. You can also use source
to read in functions you wrote:

myfunction <- source("myfunction.R")

The file you read in can contain more than one function statement.
For example, if your main function calls some subfunctions, they
can all be included in myfunction.R, and read in at the same
time.

Customizing your R environment

Creating a .Renviron file in your root directory is a good idea.
For example, when you use the postscript command to create
a figure, the default for the paper format is ’A4’. You can change it
to format ’letter’ by typing

postscript("test.ps",paper="letter")

but you had to do this every time you want to create a postscript
file. However, if you put the line

R_PAPERSIZE=letter

into your .Renviron file, R will use the ’letter’ format as default.
And it works in all subdirectories!

Customizing your R environment

Creating a .Rprofile file in your root directory is an equally good
idea. For example, the commands

load("/home/iruczins/code/R/functions/.RData")
options(width=200,defaultPackages=c(getOption("defaultPackages"),
"nlme","rpart","survival"))

ensure that my own R functions are available when I start an R
session, that the width of the screen output is 200 characters wide,
and that the default libraries plus the libraries nlme, rpart, and
survival are loaded. Works in all subdirectories!

Type ?Startup to see what exactly R is doing.

Types of data in R

� The basic data object is a vector of elements of type:

numeric : numbers, either floating point or integer.
character : each element is a character string.
logical : each element is TRUE or FALSE.
list : elements can be any type of object, including other lists.

� Components of the S language, such as functions, are also vec-
tors.

� Any vector can include the missing data marker NA as an ele-
ment.

� All vectors have a length and a mode. The functions length
and mode return this information as does the str function.

� A structure consists of a data object plus additional information.
Arrays and time series are examples of structures.

Variables

> x <- 5
> mode(x)
[1] "numeric"

> x <- "I like chocolate ice cream"
> sub("chocolate","strawberry",x)
[1] "I like strawberry ice cream"
> mode(x)
[1] "character"

> x <- LETTERS[1:5]
> x
[1] "A" "B" "C" "D" "E"
> mode(x)
[1] "character"

> x <- (1+2==4)
> x
[1] FALSE
> mode(x)
[1] "logical"

Generating simple vectors

� The assignment operator in R is the two-character sequence
’<-’. An alternative is available, but its use is discouraged.

� Any type of vector can be created explicitly with the c (concate-
nation) function.

� Numeric vectors can be generated with the seq function or the
sequence operator ’:’.

� The function rep generates a new vector by repeating a vector
of any mode (including a list) a specified number of times.

� Pseudo-random samples from various distributions can be cre-
ated. The function names have the pattern r<distname>,
such as runif for a uniform distribution or rnorm for a nor-
mal distribution.

Numeric vectors

> rn <- rnorm(100)
> str(rn)
num [1:100] -0.696 -0.158 -2.449 -0.383 0.665 ...

> stem(rn)

The decimal point is at the |

-2 | 4
-1 | 98754322111
-0 | 88877766443333332222211111100
0 | 00001111222233333333444555566677777788
1 | 000001111223567899
2 | 046

> rn <- rpois(100,lambda=3)
> table(rn)
rn
0 1 2 3 4 5 6 7 8
3 16 22 20 20 11 4 3 1

Characters

> rep(c("A","B"),4)
[1] "A" "B" "A" "B" "A" "B" "A" "B"

> rep(c("A","B"),rep(4,2))
[1] "A" "A" "A" "A" "B" "B" "B" "B"

> LETTERS
[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> LETTERS[c(1,20,7,3)]
[1] "A" "T" "G" "C"

> x <- c("A","T","G","C")
> x
[1] "A" "T" "G" "C"

Characters

> expand.grid(x,x,x)
Var1 Var2 Var3

1 A A A
2 T A A
3 G A A
4 C A A
5 A T A
6 T T A
7 G T A
8 C T A
9 A G A
10 T G A
...
57 A G C
58 T G C
59 G G C
60 C G C
61 A C C
62 T C C
63 G C C
64 C C C

Character and logical vectors

> fabfive <- c("Karl","Rafa","Roger","Ingo","Brian")
> str(fabfive)
chr [1:5] "Karl" "Rafa" "Roger" "Ingo" "Brian"

> fabfive < "K"
[1] FALSE FALSE FALSE TRUE TRUE

> grep("a",fabfive)
[1] 1 2 5

> grep("a",fabfive,value=T)
[1] "Karl" "Rafa" "Brian"

> grep("[a-e]",fabfive,value=T)
[1] "Karl" "Rafa" "Roger" "Brian"

> gsub("[a-e]","X",fabfive)
[1] "KXrl" "RXfX" "RogXr" "Ingo" "XriXn"

Character and logical vectors

A list is an ordered collection of data of arbitrary types.

> krrib=list(name=c("Karl","Rafa","Roger","Ingo","Brian"),
+ age=c(17,20,18,19,5),dad=c(F,T,F,F,F))

> krrib
$name
[1] "Karl" "Rafa" "Roger" "Ingo" "Brian"

$age
[1] 17 20 18 19 5

$dad
[1] FALSE TRUE FALSE FALSE FALSE

> krrib$name
[1] "Karl" "Rafa" "Roger" "Ingo" "Brian"

Disclaimer: ages are rough estimates only �����

Factors

Qualitative data that can assume only a discrete set of values are
represented by a factor.

> trt <- factor(rep(c("Control","Treated"),c(3,4)))
> str(trt)
Factor w/ 2 levels "Control","Treated": 1 1 1 2 2 2 2

> summary(trt)
Control Treated

3 4

If the levels of a factor are numeric (e.g. the treatments are la-
belled “1”, “2”, and “3”) it is important to ensure that the data are
actually stored as a factor and not as numeric data. Always check
this by using summary.

Factors

If you have numeric data that should be a factor, use factor or
as.factor to convert it to a factor.

> x <- c(0,1,1,02,1,0,2,1,2)
> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 1.000 1.111 2.000 2.000

> x <- as.factor(x)
> summary(x)
0 1 2
2 4 3

Ordered Factors

An ordered factor is, not surprisingly, a special type of factor in
which the levels have an ordering.

> pain <- ordered(c("Moderate","None","Severe","Severe","None"),
+ levels = c("None", "Moderate", "Severe"))
> str(pain)
Ord.factor w/ 3 levels "None"<"Moderate"<..: 2 1 3 3 1

> pain
[1] Moderate None Severe Severe None
Levels: None < Moderate < Severe

> summary(pain)
None Moderate Severe

2 1 2

Ordered Factors

> class(pain)
[1] "ordered" "factor"

> mode(pain)
[1] "numeric"

> typeof(pain)
[1] "integer"

You do not want the following:

> pain <- ordered(c("Moderate", "None", "Severe", "Severe", "None"))
> pain
[1] Moderate None Severe Severe None
Levels: Moderate < None < Severe

Data frames

A data.frame is the basic S structure for a data set that can be
represented as a set of observations (rows) on several variables
(columns). Most of the data sets you see listed in the output of
data() are data frames.
> data(Formaldehyde)
> str(Formaldehyde)
‘data.frame’: 6 obs. of 2 variables:
$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9
$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782

> summary(Formaldehyde)
carb optden

Min. :0.1000 Min. :0.0860
1st Qu.:0.3500 1st Qu.:0.3132
Median :0.5500 Median :0.4920
Mean :0.5167 Mean :0.4578
3rd Qu.:0.6750 3rd Qu.:0.6040
Max. :0.9000 Max. :0.7820

Data frames

Columns in data frames are usually numeric variables or factors.
(Other possibilities exist but are rare.) Always check a data frame
using summary to ensure that variables that should be factors are
factors. Factors are summarized by frequency tables.
> data(iris); summary(iris)
Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Max. :7.900 Max. :4.400 Max. :6.900
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500

The general subset operator

The ’[’ operator is the general extraction operator. It creates an
object of the same mode as the object to which it is applied. In the
expression x[i] several forms of indices i can be used:

positive integers:
indicate the positions of the elements to extract. The first posi-
tion is numbered 1.

negative integers:
indicate all elements except those at indices numbered -i. That
is, x[-1] means “drop the first element of x”.

logical vectors:
if i is a logical vector of the same length as x then the elements
of x corresponding to TRUE in i are returned.

character variables:
are matched against the names of elements of x.

Examples of the general subset

> rn <- rnorm(100)
> rn[1:3]
[1] -1.52057659 -0.29059035 -0.08113082
> rn[3:1]
[1] -0.08113082 -0.29059035 -1.52057659

> rn[98:100]
[1] 0.2454289 0.1317154 1.1490626
> rn[-(1:97)]
[1] 0.2454289 0.1317154 1.1490626

> str(rn[rn>0])
num [1:53] 0.254 0.776 1.323 0.239 0.510 ...

> con <- c(e=exp(1),pi=pi,twopi=2*pi)
> con[c("e","pi")]

e pi
2.718282 3.141593

Extracting single elements

The ’[’ operator returns an object of the same mode as the object
to which it is applied. The ’[[’ and ’$’ operators extract single
elements in their native mode. The distinction is like that between
“an element of a set” (what ’[[’ produces) and “a subset of size 1
from a set”, (what ’[’ produces).
> li <- list(pi=pi,e=exp(1))
> mode(li[1])
[1] "list"
> mode(li[[1]])
[1] "numeric"
> li[1]
$pi
[1] 3.141593

> sqrt(li[1])
Error in sqrt(li[1]) : Non-numeric argument to mathematical function
> sqrt(li[[1]])
[1] 1.772454

Subsets applied to data frames

Data frames are most naturally regarded as a rectangular struc-
ture. We can use ’[’ to extract subsets of rows or subsets of
columns or both. For this, two indexing expressions are used.
Omitting an indexing expression for the rows (or columns) means
to use all the rows (or columns).
> dim(iris)
[1] 150 5
> summary(iris[,c(1,2,5)])
Sepal.Length Sepal.Width Species
Min. :4.300 Min. :2.000 setosa :50
1st Qu.:5.100 1st Qu.:2.800 versicolor:50
Median :5.800 Median :3.000 virginica :50
Mean :5.843 Mean :3.057
3rd Qu.:6.400 3rd Qu.:3.300
Max. :7.900 Max. :4.400

> dim(iris[iris$Species=="setosa",])
[1] 50 5

Subsets that are larger than the original

The extraction operator ’[’ is more general than a subset operator.
By repeating indices we can produce “subsets” that are larger than
the original.
> c("Yes","No")
[1] "Yes" "No"

> rep(c("Yes","No"),3)
[1] "Yes" "No" "Yes" "No" "Yes" "No"

> rep(1:2,3)
[1] 1 2 1 2 1 2

> c("Yes","No")[rep(1:2,3)]
[1] "Yes" "No" "Yes" "No" "Yes" "No"

> LETTERS[c(11,18,18,9,2)]
[1] "K" "R" "R" "I" "B"

NA - the missing data marker

The codes NA (not available) and NaN (not a number) indicates
a missing data value in a vector or other data structure. Both are
called NA’s. An NA can be part of the original data, or it can be the
result of operations on other data where the result is undefined, or
it can be assigned.
> rrn <- rnorm(100)
> lrn <- log(rrn)
Warning message:
NaNs produced in: log(x)
> str(rrn)
num [1:100] 0.198 0.261 1.647 1.679 -2.463 ...

> str(lrn)
num [1:100] -1.617 -1.344 0.499 0.518 NaN ...

> NA & TRUE
[1] NA
> NA | TRUE
[1] TRUE

Use is.na to check for missing data

Note that we check for missing data with is.na. This is the only
way to detect missing data. A common mistake is trying to check
for missing data with expressions like x == NA. This doesn’t work
as expected. Missing values propagate in operations, including
comparison operations. Comparing another value to NA always
produces an NA.
> str(1 + lrn)
num [1:100] -0.617 -0.344 1.499 1.518 NaN ...

> lrn.msng <- lrn == NA
> str(lrn.msng)
logi [1:100] NA NA NA NA NA NA NA NA NA NA NA NA ...

> lrn.msng <- is.na(lrn)
> str(lrn.msng)
logi [1:100] FALSE FALSE FALSE FALSE TRUE TRUE ...

Summaries of data that have NA’s

Applying a summary function, such as mean, median, or var to
data with any NA’s (or NaN’s) will return NA (or NaN).

If you want the value of the summary function after excluding the
NA’s, you must exclude the NA’s then do the summary. Sev-
eral summary functions allow an argument na.rm = TRUE that
causes this to be done automatically.

> mean(lrn)
[1] NaN

> mean(lrn[!is.na(lrn)])
[1] -0.5095632

> mean(lrn,na.rm=TRUE)
[1] -0.5095632

Other special numeric values

NA’s are allowed in all types of data. Numeric data also allows
NaN, as shown previously, Inf (�) and -Inf (�

�).
> log(0:2)
[1] -Inf 0.0000000 0.6931472
> exp(log(0:2))
[1] 0 1 2

There are ways of detecting NaN and infinite values.
> x=rnorm(5)
> x
[1] 1.0847354 -0.2244801 -0.3103911 -0.6022185 0.5310318

> y=log(x)
Warning message:
NaNs produced in: log(x)

> is.nan(y)
[1] FALSE TRUE TRUE TRUE FALSE

