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Summary. High-dimensional data, such as those obtained from a gene expression microarray or second generation sequencing
experiment, consist of a large number of dependent features measured on a small number of samples. One of the key problems
in genomics is the identification and estimation of factors that associate with many features simultaneously. Identifying
the number of factors is also important for unsupervised statistical analyses such as hierarchical clustering. A conditional
factor model is the most common model for many types of genomic data, ranging from gene expression, to single nucleotide
polymorphisms, to methylation. Here we show that under a conditional factor model for genomic data with a fixed sample size,
the right singular vectors are asymptotically consistent for the unobserved latent factors as the number of features diverges.
We also propose a consistent estimator of the dimension of the underlying conditional factor model for a finite fixed sample
size and an infinite number of features based on a scaled eigen-decomposition. We propose a practical approach for selection of
the number of factors in real data sets, and we illustrate the utility of these results for capturing batch and other unmodeled
effects in a microarray experiment using the dependence kernel approach of Leek and Storey (2008, Proceedings of the National
Academy of Sciences of the United States of America 105, 18718–18723).
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1. Introduction
High-dimensional data are now common across disciplines as
diverse as genetics (Carlson et al., 2004; Diabetes Genetics Ini-
tiative et al., 2007), marketing (Shaw et al., 2001), chemical
screening (Inglese et al., 2006), and brain imaging (Worsley
et al., 1996; Geneovese, Lazar, and Nichols, 2002; Schwartz-
man, Dougherty, and Taylor, 2008). In many of these exper-
iments, particularly in the biomedical sciences, the number
of features is orders of magnitude greater than the sample
size. The data from these experiments consist of a sample of
m-dimensional feature vectors xj , for j = 1, . . . , n. The data
are often either implicitly or explicitly assumed to follow a
conditional factor model, where a small set of common fac-
tors are associated with the levels of many features simulta-
neously. For example, this is the usual model for differential
expression analysis. The simplest factor model has the form
xj = Γmgj + uj , where Γm is an m × r matrix of nonrandom
coefficients with r < n, gj is a fixed r-vector representing the
factor values for sample j, and uj ∼ F m is a sample from an
m-dimensional multivariate distribution. Written in matrix
form:

Xm = ΓmG + Um . (1)

Here Xm is an m × n matrix of data, G is an r × n matrix
of factors, and Um is an m × n matrix of mutually indepen-
dent mean zero random variables, where m is the number of
features and n is the number of samples. For this type of data,
the singular value decomposition—or principal components
analysis—is one approach to estimating common patterns due

to unknown factors (Mardia, Kent, and Bibby, 1979). Under
model (1), the right singular vectors of Xm , or equivalently,
the eigenvectors of Zm = 1

m
Xm T Xm , can be thought of as

estimators of the column-space of the matrix G. So each right
singular vector can be thought of as a linear combination of
the common factors associated with the data for each feature.
Because of this, the singular value decomposition has come to
play a central role in the analysis of genome-wide gene expres-
sion (Alter, Brown, and Botstein, 2000) and genetic (Price
et al., 2006) data.

There is a well-known duality between the singular value
decomposition and principal components analysis (Holmes,
2001; Jolliffe, 2002). The asymptotic properties of both the
singular value decomposition and the principal components
of large factor models have been studied extensively. Ander-
son (1963), Anderson and Amemiya (1988), and Connor and
Korajczyk (1993) studied the asymptotic properties for a fixed
number of features as the sample size goes to infinity. Sim-
ilarly, Paul and Peng (2009) considered maximum restricted
maximum likelihood estimates of principal components un-
der the assumption of Gaussianity. But unlike many tradi-
tional experiments, high-dimensional experiments in genomics
have a small sample size and a much larger number of mea-
sured features (n � m). In this case, it is more appropriate
to consider asymptotic results for a fixed sample size and
an infinite number of features. Asymptotic results for mul-
tiple testing follow this approach by considering the behav-
ior of error rate estimates as the number of P-values goes to
infinity (Storey, 2002; Storey, Taylor, and Siegmund, 2004).
More recently, Fan, Fan, and Lv (2008) studied the sampling
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properties of the covariance matrix under the assumption of
fixed sample size, but a large number of features. In this arti-
cle, I show that estimates of G in model (1) based on a scaled
eigen-decomposition of Zm are asymptotically consistent in
the number of features for a fixed sample size. I also propose
new estimators for the dimension, r, of G and show that they
are consistent for the true dimension of G.

One application of these theoretical results is to use singu-
lar vectors to address multiple testing dependence. Leek and
Storey (2008) recently proposed a general framework for mul-
tiple testing dependence based on estimating a dependence
kernel for high-dimensional data. The dependence kernel is a
low-dimensional set of vectors that quantifies the dependence
in high-dimensional data. They suggest estimating the depen-
dence kernel with surrogate variables, a set of low-dimensional
vectors estimated from the data that approximate the de-
pendence kernel. We show that when the dependence ker-
nel is orthogonal to the model being tested a scaled eigen-
decomposition of the least squares residuals from the high-
dimensional data are consistent estimates of the surrogate
variables. We demonstrate this approach in both simulated
data and in removing batch and lab effects from gene ex-
pression data. The usual approach to removing batch effects
involves using the date the arrays were processed as a surro-
gate for batch (Johnson, Rabinovic, and Li, 2007). However,
in general this surrogate does not capture all of the depen-
dent variation in gene expression due to technical factors such
as polymerase chain reaction (PCR), lab personnel, or differ-
ent reagents. We show that the singular value decomposition
(SVD) captures both the effects quantified by the measured
batch variable and by other unmeasured sources of bias.

2. Asymptotic Singular Value Decomposition
The SVD has been applied across a variety of disciplines to
estimate common factors in high-dimensional data sets. Prin-
cipal components analysis and factor analysis have been used
to estimate eigengenes (Alter et al., 2000), common economet-
ric factors (Connor and Korajczyk, 1993; Bai and Ng, 2002),
latent covariates (Price et al., 2006; Leek and Storey, 2007),
and for clustering (Yeung and Ruzzo, 2001). Anderson and
Amemiya (1988) and Connor and Korajczyk (1993) studied
the asymptotic properties of singular vectors and values in the
limit of large sample sizes. Cui, He, and Ng (2003) consider the
asymptotic behavior of a robust dispersion matrix, again for
large sample sizes. Bai and Ng (2002) described an approach
for consistently estimating the number of factors in the limit
as both the number of features and the sample size grew large
at defined rates. Solo and Heaton (2003) and Hallin and Liska
(2007) also considered the problem of determining the number
of factors as both m and n diverge. Neither of these assump-
tions is practical for a high-dimensional experiment such as
a gene expression study, where the number of features is or-
ders of magnitude larger than the number of samples. Here
we fix the sample size, and consider the asymptotic properties
of the eigenvectors and eigenvalues of a random matrix that
consistently estimate the dimension, r, and latent factors, G,
in model (1) as the number of features grows large.

2.1 Assumptions
We assume the data from a high-dimensional genomic experi-
ment are distributed according to model (1), where uj ∼ F m

with E(uj ) = 0 and the uij mutually independent. We will

consider the case where the number of features m is growing
and hence the distribution of uj will depend on m. We also
assume the following properties hold.

(1) 0 < E(u4
ij ) ≤ B and hence 0 < var(uij ) = σ2

i ≤ B∗ by
Liapounov’s inequality.

(2) limm →∞ ‖ 1
m

GT ΓmT ΓmG − GT ΔG‖F = 0, where Δ is
positive definite and ‖.‖F is the Frobenius norm (Horn
and Johnson, 1985).

(3) GT ΔG has eigenvalues λ1, . . . , λn where λ1 > · · · >
λr > λr+1 = · · · = λn = 0.

Here G is considered to be a fixed matrix of constants and
Γm is a matrix of nonrandom constants that grows with the
number of features m. These assumptions define a flexible
class of distributions that represent most continuous high-
dimensional data, such as gene expression data. The technical
and biological constraints on microarray measurements gener-
ally imply assumption 1 holds for biological high-throughput
data. For example, it is common to assume that log trans-
formed microarray data are normally distributed (Konishi,
2004).

The remaining assumptions relate to the level and struc-
ture of influence of the factors in a high-throughput experi-
ment. In high-dimensional data, the assumptions is that G is
a fixed matrix and that Γm is a matrix of constants which
grows with the number of features. For example, this is the
usual model when performing a differential expression anal-
ysis. Typically, a relatively small subset of influential factors
in a high-dimensional experiment will influence the data for
many tests. Returning to the example of microarray data, key
environmental and genetic factors have been shown to affect
the expression for thousands of genes simultaneously (Alter
et al., 2000; Price et al., 2006; Leek and Storey, 2007). Tech-
nical factors such as batch have also been shown to have a
global impact on gene expression (Johnson et al., 2007). It is
these common factors that we propose to estimate with the
eigen-decomposition of Zm.

2.2 Asymptotic Consistency of Eigenvalues and Eigenvectors
Given model (1) and assumptions 1–3 we now consider the
problem of estimating the common factors G using the eigen-
decomposition of Zm. The eigenvectors of the matrix Zm =
1
m

Xm T Xm are equal to the right singular vectors of Xm, and
the eigenvalues of Zm are equal to the squared singular val-
ues of Xm divided by m. To obtain consistent estimates of
the dimension of G, the matrix Zm must be centered to ac-
count for the gene-specific background variation. Centering by
an estimate of the background variation ensures that the cen-
tered eigenvalues corresponding to background noise will con-
verge to zero. So instead of the singular value decomposition of
X , we consider the eigenvalues, λ1(W m ), . . . , λn (W m ), and
eigenvectors, v1(W m ), . . . , vn (W m ), of the centered random
matrix:

W m =
1
m

Xm T Xm − σ̂2
av eI

σ̂2
av e =

1
m(n − κ)

∥∥Xm − Γ̂
m

κ Vκ (Zm )
∥∥

F

=
1
m

m∑
i=1

1
(n − k)

n∑
j=1

(
xij −

κ∑
k=1

γ̂m
ik vk j (Zm )

)2

,
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where I is the n × n identity matrix, V κ (Zm ) = {v1(Zm ),
. . . , vκ (Zm )} is a matrix of the first κ eigenvectors of Zm , Γ̂

m

k

are the least squares estimates from the regression of Xm on
V κ (Zm ) , ‖.‖F is the Frobenius norm, defined as the sum of
the squared elements of a matrix (Horn and Johnson, 1985),
and κ > r. Under model (1) and assumptions 1–3, the eigen-
vectors and eigenvalues of this matrix converge almost surely
to the true eigenvalues {λj (GT ΔG), j = 1, . . . , n} and eigen-
vectors {vj (GT ΔG), j = 1, . . . , n} of GT ΔG.

Theorem 1: Suppose the data X have a distribution de-
fined by model (1) and subject to assumptions 1–3, then:

λj (W m ) →a .s . λj (GT ΔG) j = 1, . . . , n

vj (W m ) →a .s . vj (GT ΔG) j = 1, . . . , r.

The proof of Theorem 1 and other theoretical results appear
in Web Appendix A. Theorem 1 implies that the eigenvectors
corresponding to unique eigenvalues in model (1) consistently
estimate the eigenvectors of GT ΔG for a fixed sample size,
n, and diverging number of features, m. The matrix Zm is
centered by an estimate of the average background variation.
Centering is necessary for convergence of the eigenvalues, but
not required for almost sure convergence of the eigenvectors
of Zm to the eigenvectors of GT ΔG with unique eigenval-
ues. A corollary of Theorem 1 is that the first r right singu-
lar vectors of X are consistent for the first r eigenvectors of
GT ΔG, which in turn span the same column space as G. As
we will demonstrate in the next section, centering the matrix
is important for identifying m-consistent estimators of the di-
mension of the column space of G based on the eigenvalues
of W m.

2.3 Consistent Estimation of r
Estimating the dimension, r, of G is a key step in any ap-
plication of factor analysis to high-dimensional data. There
are a large number of methods that have been developed for
estimating the dimension of a factor model for data of both
standard dimension, and for high-dimensional data. Graph-
ical methods such as scree plots and heuristic cutoffs based
on the percent of variation explained are popular in a variety
of disciplines (Hastie, Tibshirani, and Friedman, 2001; Jol-
liffe, 2002). Permutation hypothesis tests based on permuting
each row of the data matrix X to break cross-feature struc-
ture have also been proposed for estimating the significant
singular vectors from an SVD (Buja and Eyuboglu, 1992).
Bai and Ng (2002) showed that under the assumptions 1–3
and the following additional assumptions,

5. E[u8
ij ] ≤ B3

6. limn→∞
1
n

∑n

j=1 gT
j gj = ΔG where ΔG is positive defi-

nite,

the number of factors in a principal component analysis can
be consistently estimated as the number of features and the
number of samples goes to infinity. The Bai and Ng (2002)
estimate is:

r̂bn = argmaxk log
(∥∥Xm − Γ̂

m

k V k (Zm )
∥∥

F

)
+ k

(
m + n

mn

)
log

(
mn

m + n

)
,

where V κ (Zm ) = {v1(Zm ), . . . , vκ (Zm )} is a matrix of the
first κ eigenvectors of Zm , Γ̂m

k are the least squares estimates
from the regression of X on V κ (Zm ). The Bai and Ng (2002)
estimates are useful in econometric data, where both the num-
ber of features and the sample size may be assumed to be
large. But we will show in simulated examples that the Bai
and Ng (2002) estimates may not behave well for data typi-
cally encountered in high-dimensional genomics applications
where there are a large number of features and a relatively
small sample size.

It is possible to consistently estimate the number of factors
as only the number of features grows large. The number of
nonzero eigenvalues of GT ΔG is equal to the dimension of
the column space of the matrix G. Since the eigenvalues of
the normalized random matrix, W m, converge almost surely
to the eigenvalues of GT ΔG, one potential estimator for the
dimension r is the number of nonzero eigenvalues of W m .
But for any finite sample size, the eigenvalues of W m will not
exactly equal zero. Instead we estimate the dimension of W m

by the number of eigenvalues that are larger than a threshold
based on the number of features m.

Lemma 1: Suppose the data follow model (1) and assump-
tions 1–3 hold where n is fixed. Then 1{λk (W m ) ≥ cm } →P

1 for k = 1, . . . , r and 1{λk (W m ) ≥ cm } →P 0 for k = r +
1, . . . , n provided cm = O(m−η ), 0 < η < 1

2 .

Lemma 1 illustrates the importance of centering the matrix
Zm by an estimate of the average feature-specific variances.
Without centering, the eigenvalues of Zm corresponding to
the zero eigenvalues of GT ΔG converge to the unknown av-
erage of the feature-specific variances. The indicator functions
of Lemma 1 would then require an eigenvalue threshold that
is dependent on the unknown row-wise variances. Lemma 1
also suggests a simple and asymptotically consistent estimate
of r:

r̂ =
n∑

k=1

1 {λk (W m ) ≥ cm }.

In the next section, we will show this estimate of r may be a
practically useful tool for estimating the number of significant
factors in high-dimensional data using simulated examples
with dimensionality typical of high-throughput experiments
in genomics.

3. Simulation Results
In this section, we demonstrate both the behavior of the right
singular vectors from Theorem 1 and the estimate, r̂, defined
in Lemma 1. We also compare the behavior of r̂ to the be-
havior of the Bai and Ng (2002) estimate, r̂bn , and the per-
mutation estimate defined in Buja and Eyuboglu (1992), r̂be .
Briefly, Buja and Eyuboglu (1992) calculate the singular val-
ues of the matrix X , then permute each row of the matrix
individually, breaking the structure across rows. For each per-
mutation, they recalculate the singular values of the permuted
matrix and compare the ordered observed singular values to
the ordered permuted singular values to obtain a P-value for
each right singular vector. The estimate, r̂be , of the number
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of factors is the number of P-values less than the Bonferroni
corrected 0.05 significance level.

We simulated data varying the dimension of the data,
(m, n) and the number of factors in the model, r. In each case,
the elements of U were a random sample from the N (0, 1) dis-
tribution. We let the dimension m = 1, 000, 5, 000, and 10,000
and the dimension n = 10, 20, and 100, which are typical val-
ues for the number of genes and arrays, respectively, in a
microarray experiment. We set r = 3, 5, 10, and 18 and we
sampled the elements of G from the Bernoulli(0.5) distribu-
tion. We choose the Bernoulli distribution since it is common
to think of factors as dichotomous. However, all of the theo-
retical results presented here are conditional on a fixed value
of G as the number of features grows large, which suggests
that the distribution of G should not affect the accuracy of
the estimates. Indeed, the qualitative behavior of the simu-
lated examples is nearly identical when G is simulated from
a normal distribution.

For each combination of parameters, we simulated 100 data
sets from model (1). We report the mean and standard de-
viation of the r estimates from Lemma 1 (cm = nm−1/3, e.g.,
η = 1

3 and κ = n) (Buja and Eyuboglu, 1992; Bai and Ng,
2002). η was chosen near the center of the interval (0, 1/2) to
avoid small sample biases. κ was set to be the sample size,
since κ must be larger than the column dimension of G to
hold and in practice the dimension of G is unknown. We also
report the average and standard deviation of the root mean
square Frobenius error (RMSFE) for the singular vector esti-
mates. The RMSFE is defined as follows:

RMSFE{G, V r̂ (W m )}

=
√{∥∥G − B̂Vr̂ (W m )

∥∥
F

+
∥∥V r̂ (W m ) − ÂG

∥∥
F

}
/(nr),

where r̂ is the estimate of r from Lemma 1, V r̂ (W m ) =
{v1(Zm ), . . . , v r̂ (Zm )} is a matrix of the first r̂ eigenvectors
of W m , B̂ are the least squares regression estimates from the
regression of G on V r̂ (W m ), Â are the least squares regres-
sion estimates from the regression of V r̂ (W m ) on G, and ‖.‖F

is the Frobenius norm, defined as the sum of the squared ele-
ments of the matrix. If G spans the exact same linear space as
V r̂ (W m ), RMFSE{G, V r̂ (W m )} = 0. The first component
of the RMSFE quantifies how much of the linear space of
G is explained by V r̂ (W m ) and the second quantifies the
amount of the linear space of V r̂ (W m ) spanned by G. In-
cluding both terms ensures that the RMSFE will be nonzero
whenever r̂ �= r.

The results in Table 1 show that the estimator defined by
Lemma 1 performs as well or better than either the asymp-
totic estimates of Bai and Ng (2002) or the permutation ap-
proach of Buja and Eyuboglu (1992). It is not surprising that
the Bai and Ng (2002) estimator behaves poorly when the
sample size is much smaller than the number of features; the
estimate was designed to consistently estimate the number
of factors, r, as both (m, n) → ∞. The comparison is there-
fore meant only to illustrate that estimates focused on the
situation where n � m scenario are needed. The Bai and Ng
(2002) estimator performs best when n = 100 and for smaller
number of factors. The Buja and Eyuboglu (1992) estimator
is relatively accurate across the range of dimensions presented

here, although it underestimates r compared to the proposed
approach.

The values of r in Table 1 are for the most part much
smaller than the sample size n, which is the expectation in
practice for most biological experiments. Typically, only a
small number of technical or biological factors will have a
global influence on the measurements for a large number of
features. None of the approaches presented here are designed
for the case where r > n, since there are only at most n right
singular vectors. However, the case of r = 18 and n = 20 gives
some indication of how the estimates perform when the num-
ber of unmodeled factors nearly matches the sample size. In
this case, it appears the proposed estimator performs slightly
better than either the Buja and Eyuboglu (1992) or Bai and
Ng (2002) estimates but all of the approaches consistently
underestimate the true number of factors.

The results of Table 1 also indicate that the combination of
dimension selection and singular value estimates are accurate
even for the smallest number of features (1000), with small
values of the RMSFE. The accuracy steadily increases as the
number of features grows. In Web Appendix C, a table of the
values of RMFSE is shown for the three estimators. The table
shows that accurately estimating r can have a large impact
on the RMFSE, hence for small samples the proposed estima-
tor produces much smaller values of RMFSE. Taken together,
these results suggest that for the sample sizes and number of
features typically encountered in a high-dimensional biology
experiment, the right singular vectors are accurate estimates
of the space spanned by the true underlying factors particu-
larly when the dimension r is accurately estimated. Correctly
estimating the appropriate linear space is important in mul-
tiple hypothesis testing, as will be illustrated in Section 5.

4. Practical Estimation of the Number of Factors
The consistency result in Lemma 1 can easily be shown to
hold with the threshold cm replaced with a × cm where a is
any fixed positive constant. In the limit, the constant a does
not have any effect, but in real examples the choice of a can
be critical. Both the results of Bai and Ng (2002) and those
proposed in this article suffer from this limitation. A criterion
for the practical selection of the number of factors based on
consistency results like those proposed here was developed by
Hallin and Liska (2007). The idea is to calculate the estimated
number of factors using the threshold a × m−η for a range of
values of a and for an increasing set of features S1 ⊂ S2 ⊂
S3, · · · ⊂ {1, . . . , m}.

Hallin and Liska (2007) proceed by plotting the estimated
number of factors for the whole data set across a range of
values of a. For each value of a, we also calculate the em-
pirical variance of r̂, σ̂2(a) = 1

�

∑�

i=1(r̂(a, Si ) − r̄(a, ·))2, where
r̂(a, Si ) is the estimated number of factors at value a, set
size Si , and r̄(a, ·) = 1

�

∑�

i=1 r̂(a, Si ). The estimated number
of factors and the empirical variance are both plotted versus
the threshold a. Hallin and Liska (2007) suggested that a use-
ful practical criterion is to estimate the number of factors by
the value of r̂ at the second “stability interval,” or the second
interval where the variance is small.

Figure 1 shows an example of this approach applied to a
simulated data set with 1000 genes, 20 arrays, r = 3, and
η = 1

3 . In general, any value 0 < η < 1
2 can be used with the
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Table 1
Results from a simulation experiment. For each combination of m, n, and r, 100 independent microarray data sets were
simulated according to model (1), the average (SD) of the r estimates from Lemma 1, Bai and Ng (2002), and Buja and

Eyuboglu (1992) are reported. The average (SD) RMSFE, a measure of how well the eigenvectors of W m span the linear space
spanned by G, is also reported.

(m, n) r r̂ r̂bn r̂be RMSFE{G, V r̂ (W m )} × 105

(1000,10) 3 2.87 (0.34) 2.40 (0.57) 2.74 (0.44) 403.84 (773.88)
(5000,10) 3 2.95 (0.22) 2.21 (0.43) 2.68 (0.47) 78.44 (271.25)
(10000,10) 3 2.94 (0.24) 2.24 (0.51) 2.69 (0.46) 50.18 (215.60)
(1000,20) 3 3.00 (0.00) 2.87 (0.33) 2.99 (0.10) 109.77 (23.18)
(5000,20) 3 3.00 (0.00) 2.90 (0.30) 3.00 (0.00) 22.49 (4.67)
(10000,20) 3 3.00 (0.00) 2.96 (0.20) 3.00 (0.00) 10.42 (2.22)
(1000,100) 3 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 101.24 (7.29)
(5000,100) 3 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 20.26 (1.57)
(10000,100) 3 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 10.11 (0.82)
(1000,10) 5 4.20 (0.56) 3.21 (0.57) 3.18 (0.52) 822.46 (624.17)
(5000,10) 5 4.62 (0.49) 3.21 (0.62) 3.25 (0.56) 224.48 (309.48)
(10000,10) 5 4.77 (0.42) 3.38 (0.53) 3.37 (0.51) 129.70 (245.14)
(1000,20) 5 4.79 (0.41) 4.33 (0.51) 4.75 (0.44) 395.34 (591.32)
(5000,20) 5 4.97 (0.17) 4.36 (0.50) 4.86 (0.35) 46.95 (151.17)
(10000,20) 5 4.99 (0.10) 4.47 (0.50) 4.86 (0.35) 18.00 (78.65)
(1000,100) 5 5.00 (0.00) 5.00 (0.00) 5.00 (0.00) 99.65 (7.22)
(5000,100) 5 5.00 (0.00) 5.00 (0.00) 5.00 (0.00) 20.11 (1.31)
(10000,100) 5 5.00 (0.00) 5.00 (0.00) 5.00 (0.00) 10.10 (0.63)
(1000,20) 10 7.97 (0.58) 7.32 (0.65) 6.35 (0.74) 1108.28 (435.75)
(5000,20) 10 9.18 (0.66) 7.38 (0.60) 6.62 (0.56) 297.95 (245.09)
(10000,20) 10 9.35 (0.52) 7.41 (0.55) 6.65 (0.58) 198.12 (164.99)
(1000,100) 10 10.00 (0.00) 10.00 (0.00) 10.00 (0.00) 96.40 (5.31)
(5000,100) 10 10.00 (0.00) 10.00 (0.00) 10.00 (0.00) 19.30 (1.06)
(10000,100) 10 10.00 (0.00) 10.00 (0.00) 10.00 (0.00) 9.60 (0.44)
(1000,20) 18 11.71 (0.62) 10.98 (0.64) 7.12 (0.71) 1148.48 (273.08)
(5000,20) 18 13.22 (0.60) 11.00 (0.67) 7.39 (0.60) 497.17 (144.31)
(10000,20) 18 13.86 (0.62) 11.00 (0.64) 7.46 (0.61) 336.51 (104.66)
(1000,100) 18 17.57 (0.56) 18.00 (0.00) 17.98 (0.14) 314.30 (293.42)
(5000,100) 18 18.00 (0.00) 18.00 (0.00) 18.00 (0.00) 17.88 (0.74)
(10000,100) 18 18.00 (0.00) 18.00 (0.00) 18.00 (0.00) 8.88 (0.34)

Hallin and Liska (2007) estimator, although values near the
middle of the range avoid potential biases due to a small
number of features. The plot shows the estimated number
of factors using the whole data set for a range of values of
a (blue) and the variance for each value of a (red). The sec-
ond stability point (green bracket) is the second place, mov-
ing from left to right, where the variance of the estimate
reaches a trough. Hallin and Liska (2007) suggest using the es-
timate corresponding to this second stability point as a prac-
tical choice for the number of factors in the factor model.
The estimate at the second stability point is r̂ = 3. In Web
Appendix B, Figures 1–8, the Hallin and Liska (2007) ap-
proach is applied to eight simulated data sets for varying r.
For r = 3, 5, 10 the approach produces a clear and correct es-
timate of r̂.

5. Example: Application to Genomics
In high-throughput experiments, the goal typically is to as-
sess the effect of one or more factors on the gene expression
levels across a very large set of genes. This process generally
involves application of multiple testing procedures. In this
type of analysis, it is necessary to account for possible depen-
dence across the genes, which may arise from batch effects or

other important biological or technical source of variability.
Recently, Leek and Storey (2008) showed that the dependence
can be satisfactorily characterized in terms of a “dependence
kernel” matrix of low column dimension. The results of The-
orem 1 and Lemma 1 in the present article can be used to
estimate this matrix.

We illustrate this process on a data set from Johnson et al.
(2007). The goal of this study was to assess the effect of
exposure to nitric oxide (NO) on gene expression. The in-
vestigators collected NO-exposed and control samples at the
time of transcription inhibition and 7.5 hours later. A to-
tal of 21,171 genes were assessed. The measurement of gene
expression levels was carried out in two batches (Table 1).
Batch is a surrogate for a number of unmeasured variables,
such as which reagents were used, which people processed the
microarrays, and what the lab conditions were when those
arrays were processed. All of these variables can lead to de-
pendence across genes, which may bias significance analyses.
The usual approach to adjusting these effects is to simply fit a
model including the measured batch variable (Johnson et al.,
2007). As we will show, this approach may miss important
sources of dependence across genes. The surrogate variable
approach captures both the variation quantified by the batch
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Figure 1. A plot of the estimated number of factors r̂ (blue
and left axis) and the empirical variance of the estimate for
varying set sizes (red and right axis) across a range of coeffi-
cients a. The second stability point (green bracket) is the sec-
ond point, moving from left to right, where the variance finds
a trough. Hallin and Liska (2007) suggest using the estimate
corresponding to this second stability point as a practical es-
timator of the number of factors. This figure appears in color
in the electronic version of this article.

variable and additional important sources of dependence
across genes.

The approach to the problem, in a general setting, is as
follows. Suppose that high-throughput data are distributed
according to the model:

Xm = Bm S + Em , (2)

where Bm is an m × d matrix of coefficients, S is a d × n
design matrix, and ej ∼ F m

e where F m
e is an m-dimensional

multivariate distribution allowing for dependence across fea-
tures. Leek and Storey (2008) showed that there exists a de-
composition:

Xm = Bm S + Γm G + Um , (3)

where the elements of uj ∼ F m
u are independent across rows.

They also show that knowing and including the matrix G
when fitting model (3) results in independent parameter esti-
mates and inference across features. Leek and Storey (2008)
call G a dependence kernel for the data X . When G is orthog-
onal to S, then a corollary of Theorem 1 gives a consistent
estimator of the G matrix.

Corollary 1: Suppose high-throughput data are dis-
tributed according to model (3), where Γ, G, and Um follow
assumptions 1–3 and G is orthogonal to S. Let Rm = Xm −
B̂

m
S be the residuals obtained from the least squares fit using

model (2) and let W m
R = Rm T Rm − σ̂2

av eP S where P S = I −
ST (SST )−1S, σ̂2

av e = 1
m (n−κ−d )‖X

m − Γ̂m
κ V (κ+d )(Zm )‖F ,

and κ > r. Then:

λj (W m
R ) →a .s . λj (GT ΔG) j = 1, . . . , n

V j (W m
R ) →a .s . vj (GT ΔG) j = 1, . . . , r.

In other words, the first r right singular vectors of the resid-
ual matrix formed by regressing out the model, S, consistently
estimate the dependence kernel, G, as the number of features
goes to infinity. The requirement that G and S be orthog-
onal is strong; however, there are a number of special cases
where this assumption may hold exactly or approximately.
For example, in the current application, the batch and the
biological group vectors are balanced and orthogonal. Many
high-dimensional biology studies are designed such that tech-
nical factors are orthogonal to the group variable. In a ran-
domized study, the orthogonality of biological and technical
factors with the groups of interest may approximately hold.
Similarly, in experiments combining genetic data with gene
expression data randomized inheritance of alleles may lead to
genetic variation that is approximately orthogonal to popula-
tion or group differences.

Of course, it is also important to estimate the unknown
dimension, r, of the dependence kernel. A corollary of
Lemma 1 motivates a consistent estimate of the dimension
of the row-space of G.

Corollary 2: Suppose the data follow model (3) and
assumptions 1–3 hold where n is fixed. Then 1{λk (W m

R ) ≥
cm } →P 1 for k = 1, . . . , r and 1{λk (W m

R ) ≥ cm } →P 0 for
k = r + 1, . . . , n provided cm = O(m−η ), 0 < η < 1

2 .

As before, we can use Corollary (2) to define a consistent
estimate of r as m → ∞:

r̂ =
n∑

k=1

1 {λk (W m
R ) ≥ cm } .

We now present the application of the foregoing procedure
to the Johnson et al. (2007) microarray data set. We first
show what happens under a naive analysis where inter-gene
dependence is ignored. We fit the simple linear model for the
expression, xij , of the ith gene on the jth array

xij = bi0 + bi11(Treat j = NO) + bi21(Timej = 7.5)

+ bi31(Treat j = NO).1(Timej = 7.5). (4)

Then we test the null hypothesis that the interaction be-
tween treatment and time is zero (bi3 = 0) for each gene. Per-
forming this analysis for each gene, and calculating a P-value
for each gene based on the Wald statistic results in the distri-
bution of P-values in Figure 2a. The P-values have unusual be-
havior; they are stochastically greater than the uniform. Leek
and Storey (2007) demonstrated that this behavior may be
due to unmodeled factors influencing the expression of thou-
sands of genes. In this case, equation (4) ignores the effect
of batch on gene expression. We can also see this effect in
the correlation among genes. For each gene, we can calculate
the residuals from model 4, then we can look at a randomly
sampled set of 1000 genes from the data set. The distribution
of pairwise correlations has mean (SD) 0.08 (0.45), which is
significantly greater than zero, suggesting there is at least one
factor inducing correlation between genes.
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(a) (b) (c)

Figure 2. Histograms of the P-values from testing for a time–treatment interaction in the Johnson et al. (2007) data set.
(a) The P-values from an analysis without adjusting for the batch variable. (b) The P-values from an analysis adjusting for
a factor model for batch. (c) The P-values from an analysis adjusting for the eigenvectors v1(W m

R ) and v2(W m
R ).

Table 2
Sample description for data set 1 from Johnson et al. (2007)

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Treatment (C = Control) C C NO NO C C NO NO C C NO NO
Time (hours) 0 7.5 0 7.5 0 7.5 0 7.5 0 7.5 0 7.5
Batch 1 1 1 1 2 2 2 2 3 3 3 3

Next, we show what happens when the measured batch
variable is entered into the model explicitly. We fit a model
including the batch effect,

xij = b∗i0 + b∗i11(Treat j = NO) + b∗i21(Timej = 7.5)

+ b∗i31(Batchj = 1) + b∗i41(Batchj = 2)

+ b∗i51(Treat j = NO).1(Timej = 7.5) (5)

and test the null hypothesis that the interaction between
treatment and time is zero (b∗i5 = 0) for each gene using the
Wald test, we get the distribution of P-values in Figure 2b.
The P-values in this case take the familiar form from a multi-
ple testing experiment with a large number of small P-values
corresponding to the alternative distribution, mixed with a
uniform distribution corresponding to the null. However, if
we fit model (5) to each gene and calculate residuals, the dis-
tribution of pairwise correlations between genes still has a
nonzero mean (SD) of 0.08 (0.51), very similar to the corre-
lations when batch is ignored.

Finally, we show what happens when the methods of this
article are used to parse the inter-gene dependence. The first
step is to estimate the dependence kernel matrix, G. We let
S be the design matrix from model 4 including the treat-
ment, time, and time–treatment interaction terms. If the de-
pendence kernel, G, only consisted of the design matrix corre-
sponding to a factor model for batch, then G and S would be
orthogonal (Table 2). Application of Corollary (2) in combina-
tion with the Hallin and Liska (2007) approach from Section
4 results in an estimate of r̂ = 3. Then using the result of
Corollary (1) we calculate an estimate of the linear space of
G as the first two eigenvectors of W m

R . Figure 3 shows the
two components of the true batch variable, and the fitted val-

ues from the regression of the true batch on the eigenvectors
of W m

R . The adjusted multiple R2 values for the two compo-
nents are 0.92 and 0.97, respectively. These results indicate
that the singular vectors capture most of the variation due to
the measured batch variable.

We now repeat the analysis of the NO effect with the eigen-
vectors entered into the model to reduce the dependence due
to batch. We performed the significance analysis for the time–
treatment interaction using the following model:

xij = be
i0 + be

i11(Treat j = NO) + be
i21(Timej = 7.5)

+ be
i3v1j (W m

R ) + be
i4v2j (W m

R ) + be
i5v3j (W m

R )

+ be
i61(Treat j = NO).1(Timej = 7.5). (6)

Again we tested the null hypothesis that the treatment–
time interaction is zero (be

i6 = 0) using the Wald test.
Figure 2c is a histogram of the P-values obtained from model
(6). Since the eigenvectors capture most of the variation due
to the batch variable, it is expected that the behavior of
the P-values from the analysis adjusted for the eigenvectors
would show similar characteristics to the analysis adjusted for
batch. The eigenvector-adjusted P-values, like the P-values
including the true batch adjustment, have the expected form
for P-values from a multiple hypothesis testing experiment,
with a number of small P-values mixed with a uniform dis-
tribution. However, after fitting model (6) and calculating
residuals, the mean (SD) pairwise correlation among genes
6.24 × 10−3(0.46) is much smaller than for either the naive
analysis or the analysis including the measured batch variable.
This suggests that the SVD better captures the dependence
across genes than even the measured batch variable.
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Figure 3. A plot of the true indicators 1(Batchj = 2) and 1(Batchj = 3) and the fitted values from the regression of the
indicator functions on the estimated eigenvectors v1(W m

R ) and v2(W m
R ), the correlation between the true value and the fitted

value is 0.72 for the left panel and 0.79 for the right panel.

Quantitatively, adjustment for the eigenvectors and adjust-
ment for the true batch variable give similar results. The cor-
relation between the P-values adjusted for batch and the P-
values adjusted for the eigenvectors is 0.90. Meanwhile, the
estimated proportion of true nulls tests is 0.68 for the batch
adjusted analysis and 0.52 for the eigenvector analysis, but
0.95 for the unadjusted analysis. Taken together, these re-
sults indicate that the eigenvectors account for the dependent
variation due to the batch variable, but also other unmodeled
sources of dependence that may not be captured by the mea-
sured batch variable, which improves significance. This is not
surprising, since batch is only a surrogate for the truly impor-
tant unmeasured confounders in a molecular biology experi-
ment.

6. Discussion
We showed that right singular vectors of a high-dimensional
data matrix are asymptotically consistent for latent factors in
a factor model for high-dimensional data (1) with a fixed sam-
ple size and diverging number of features. These results pro-
vide a justification of the singular value decomposition both
as a tool for discovering structure in high-dimensional data
and as estimates of surrogate variables for multiple testing
dependence. We also proposed a new estimator for the num-
ber of significant factors in a high-dimensional data set based
on the scaled eigenvalues of the high-dimensional data. This
new estimator behaves well for the sample sizes and number of
features commonly encountered in high-throughput genomic
studies. Application of these new estimators resulted in accu-
rate estimates of an unmodeled batch variable and correction
of dependence between genes in a study of the relationship
between nitric oxide and gene expression. Using the SVD in
place of the measured batch variable is more effective, since
batch is usually a surrogate for a large number of unmeasured
confounders. The results presented in this article assume a
flexible class of continuous distributions that describe most
quantitative high-throughput data. An interesting avenue for
future research is to investigate the asymptotic behavior of
singular vectors and values for binary data, which are often
encountered in high-throughput genetic experiments.

7. Supplementary Materials
Web Appendices referenced in Sections 2.2, 3, and 4 are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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