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The Joint Null Criterion for Multiple
Hypothesis Tests

Jeffrey T. Leek and John D. Storey

Abstract

Simultaneously performing many hypothesis tests is a problem commonly encountered in
high-dimensional biology. In this setting, a large set of p-values is calculated from many related
features measured simultaneously. Classical statistics provides a criterion for defining what a
“correct” p-value is when performing a single hypothesis test. We show here that even when each
p-value is marginally correct under this single hypothesis criterion, it may be the case that the joint
behavior of the entire set of p-values is problematic. On the other hand, there are cases where each
p-value is marginally incorrect, yet the joint distribution of the set of p-values is satisfactory. Here,
we propose a criterion defining a well behaved set of simultaneously calculated p-values that
provides precise control of common error rates and we introduce diagnostic procedures for
assessing whether the criterion is satisfied with simulations. Multiple testing p-values that satisfy
our new criterion avoid potentially large study specific errors, but also satisfy the usual
assumptions for strong control of false discovery rates and family-wise error rates. We utilize the
new criterion and proposed diagnostics to investigate two common issues in high-dimensional
multiple testing for genomics: dependent multiple hypothesis tests and pooled versus test-specific
null distributions.

KEYWORDS: false discovery rate, multiple testing dependence, pooled null statistics



1 Introduction
Simultaneously performing thousands or more hypothesis tests is one of the main
data analytic procedures applied in high-dimensional biology (Storey and Tibshi-
rani, 2003). In hypothesis testing, a test statistic is formed based on the observed
data and then it is compared to a null distribution to form a p-value. A fundamental
property of a statistical hypothesis test is that correctly formed p-values follow the
Uniform(0,1) distribution for continuous data when the null hypothesis is true and
simple. (We hereafter abbreviate this distribution by U(0,1).) This property allows
for precise, unbiased evaluation of error rates and statistical evidence in favor of
the alternative. Until now there has been no analogous criterion when performing
thousands to millions of tests simultaneously.

Just as with a single hypothesis test, the behavior under true null hypothe-
ses is the primary consideration in defining well behaved p-values. However, when
performing multiple tests, the situation is more complicated for several reasons: (1)
among the entire set of hypothesis tests, a subset are true null hypotheses and the
remaining subset are true alternative hypotheses, and the behavior of the p-values
may depend on this configuration; (2) the data from each true null hypothesis may
follow a different null distribution; (3) the data across hypothesis tests may be de-
pendent; and (4) the entire set of p-values is typically utilized to make a decision
about significance, some of which will come from true alternative hypotheses. Be-
cause of this, it is not possible to simply extrapolate the definition of a correct
p-value in a single hypothesis test to that of multiple hypothesis tests. We provide
two key examples to illustrate this point in the following section, both of which are
commonly encountered in high-dimensional biology applications.

The first major point of this paper is that the joint distribution of the true
null p-values is a highly informative property to consider, whereas verifying that
each null p-value has a marginal U(0,1) distribution is not as directly informative.
We propose a new criterion for null p-values from multiple hypothesis tests that
guarantees a well behaved joint distribution, called the Joint Null Criterion (JNC).
The criterion is that the ordered null p-values are equivalent in distribution to the
corresponding order statistics of a sample of the same size from independent U(0,1)
distributions. We show that multiple testing p-values that satisfy our new criterion
can be used to more precisely estimate error rates and rank tests for significance. We
illustrate with simple examples how this criterion avoids potentially unacceptable
levels of inter-study variation that is possible even for multiple testing procedures
that guarantee strong control.

The second major point of this paper is that new diagnostics are needed to
objectively compare various approaches to multiple testing, specifically those that
evaluate properties beyond control of expected error rate estimates over repeated
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studies. These new diagnostics should also be concerned with potentially large
study specific effects that manifest over repeated studies in terms of the variance
of realized error rates (e.g., the false discovery proportion) and the variance of er-
ror rate estimates. This has been recognized as a particularly problematic in the
case of dependent hypothesis tests where unacceptable levels of variability in er-
ror rate estimates may be obtained even though the false discovery rate may be
controlled (Owen, 2005). The need for this type of diagnostic is illustrated in an
example presented in the next section, where the analysis of gene expression uti-
lizing three different approaches yields drastically different answers. We propose
Bayesian and frequentist diagnostic procedures that provide an unbiased standard
for null p-values from multiple testing procedures for complex data. When applied
to these methods, the reasons for their differing answers are made clearer.

We apply our diagnostics to the null p-values from multiple simulated stud-
ies, to capture the potential for study specific errors. We use the diagnostics to
evaluate methods in two major areas of current research in multiple testing: testing
multiple dependent hypotheses and pooled versus test-specific null distributions.
Surprisingly, some popular multiple testing procedures do not produce p-values
with a well behaved joint null distribution, leading directly to imprecise estimates
of common error rates such as the false discovery rate.

2 Motivating Examples
Here we motivate the need for the JNC and diagnostic tests by providing two gen-
eral examples and a real data example from a gene expression study. The first
general example describes a situation where every p-value has a U(0,1) distribu-
tion marginally over repeated studies. However, the joint distribution of study-
specific sets of null p-values deviate strongly from that of independent U(0,1) com-
ponents. The second general example illustrates the opposite scenario: here none
of the p-values has a U(0,1) distribution marginally, but the set of study-specific
null p-values appear to have a joint distribution equivalent to independent U(0,1)
components of the same size. Together, these examples suggest the need for a gold
standard for evaluating multiple testing procedures in practice. Finally, we show
that different methods for addressing multiple testing dependence give dramatically
different results for the same microarray analysis. This indicates that an objective
criterion is needed for evaluating such methods in realistic simulations where the
correct answer is known.

2

Statistical Applications in Genetics and Molecular Biology, Vol. 10 [2011], Iss. 1, Art. 28

http://www.bepress.com/sagmb/vol10/iss1/art28
DOI: 10.2202/1544-6115.1673



2.1 Problematic Joint Distribution from Correct Marginal Dis-
tributions

In this example, the goal is to test each feature for a mean difference between two
groups of equal size. The first 300 features are simulated to have a true mean
difference. There is also a second, randomized unmodeled binary variable that
affects the data. Features 200-700 are simulated to have a mean difference between
the groups defined by the unmodeled variable. The exact model and parameters for
this simulation are detailed in Section 5. The result of performing these tests is a
1,000 × 100 matrix of p-values, where the p-values for a single study appear in
columns and the p-values for a single test across repeated studies appear in rows.

Using these p-values we examine both their marginal distributions as well as
the joint distribution of the null p-values. First, we look at a single p-value affected
by the unmodeled variable over the 100 repeated studies. The top two histograms in
Figure 1 show the behavior of two specific p-values over the 100 simulated studies.
Marginally, each is U(0,1) distributed as would be expected. The randomization
of the unmodeled variable results in correct marginal distributions for each null
p-value.

Next we consider the null p-values from tests 301-700 for a single study,
which is a sample from their joint distribution. The bottom two histograms in Fig-
ure 1 show two such examples. In one case the null p-values appear smaller than
expected from an i.i.d. U(0,1) sample, in the other case they appear to be larger
than expected. This is because in the first study, the unmodeled variable is cor-
related with the group difference and the signal from the unmodeled variable is
detected by the test between groups. In the second study, the unmodeled variable is
uncorrelated with the group difference and a consistent source of noise is added to
the data, resulting in null p-values that are too large. The result is that each null p-
value is U(0,1) marginally, but the joint distribution deviates strongly from a sample
of i.i.d. U(0,1) random variables.

Of particular interest is the lower left histogram of Figure 1, which shows
only the null p-values from a single simulated study with dependence. The p-values
appear to follow the usual pattern of differential expression, with some p-values
near zero (ostensibly corresponding to differential expressed genes) and some p-
values that appear to be drawn from a U(0,1) distribution (ostensibly the null genes).
However, in this example all of the genes are true nulls, so ideally their joint dis-
tribution would reflect the U(0,1). Inspection of this histogram would lead to the
mistaken conclusion that the method had performed accurately and true differential
expression had been detected. This strongly motivates the need for new diagnostic
tools that consider the joint behavior of null p-values.
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Figure 1: Uniform marginal p-value distribution, but JNC violating joint distribu-
tion. Each histogram in the top panel shows the p-value distribution of a single
hypothesis test across 100 simulated studies; for each, the marginal distribution is
approximately U(0,1) even though each test was subject to a randomized unmod-
eled variable. Each histogram in the bottom panel shows a sample from the joint
distribution of the set of null p-values from a specific realized study. Here, the p-
values deviate from the distribution of an i.i.d. U(0,1) sample, depending on the
correlation between the randomized unmodeled variable and the group.

2.2 Well Behaved Joint Distribution from Incorrect Marginal
Distributions

The second general example also consists of 1,000 tests for mean differences be-
tween two groups. The first 300 features are again simulated to have a mean dif-
ference between groups. We simulated each feature to have a different variance.
The test statistic is a modified t-statistic with a shrinkage constant added to the
denominator: t = x̄i1−x̄i0

si+a0
where x̄i j is the mean for feature i and group j, si is the

standard error of x̄i1− x̄i0, and a0 is a single fixed shrinkage constant for all tests.
This type of shrinkage statistic is common in the field of multiple testing, where a0
is frequently estimated from the distribution of the si (Tusher, Tibshirani, and Chu,
2001, Cui, Hwang, Qiu, Blades, and Churchill, 2005, Efron, Tibshirani, Storey, and
Tusher, 2001). The null statistics are calculated via the bootstrap and pooled across
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features (Storey and Tibshirani, 2003). The top row of Figure 2 shows the distribu-
tion of two specific p-values across the 100 studies. In this case, since the standard
errors vary across tests, the impact a0 has on the test’s null distribution depends on
the relative size of a0 to the si.

When the null statistics are pooled, there are individual tests whose p-value
follows an incorrect marginal distribution across repeated studies. The reason is
that the bootstrap null statistics are pooled across 1,000 different null distributions.
The bottom row of Figure 2 shows a sample from the joint distribution of the null
p-values for specific studies. The joint distribution behaves like an i.i.d. U(0,1)
sample because pooling the bootstrap null statistics captures the overall impact of
different variances on the joint distribution of the test statistics coming from true
null hypotheses.
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Figure 2: Non-uniform marginal p-value distribution, but JNC satisfying joint dis-
tribution. Each histogram in the top panel shows the p-value distribution of a sin-
gle hypothesis test using a shrunken t-statistic and pooled null statistics across 100
simulated studies. It can be seen in each that the marginal distribution deviates
from U(0,1). Each histogram in the bottom panel shows a sample from the joint
distribution of the set of null p-values from two specific realizations of the study.
Here, the p-values satisfy the JNC, since pooling the null statistics accounts for the
distribution of variances across tests.
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2.3 Microarray Significance Analysis

Idaghdour, Storey, Jadallah, and Gibson (2008) performed a study of 46 desert
nomadic, mountain agrarian, and coastal urban Moroccan Amazigh individuals to
identify differentially expressed genes across geographic populations. Due to the
heterogeneity of these groups and the observational nature of the study, there is
likely to be latent structure present in the data, leading to multiple testing depen-
dence. This can be easily verified by examining the residual data after regressing
out the variables of interest (Idaghdour et al., 2008). As an example we present two
differential expression analyses in Figure 3: agrarian versus desert nomadic, and
desert nomadic versus village.
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Figure 3: P-value histograms from the differential expression analysis comparing
agrarian versus desert nomadic (top row) and desert nomadic versus village (bot-
tom row). For each comparison, three different analysis strategies are used: a stan-
dard F-statistic significance (first column), a surrogate variable adjusted approach
(second column), and an empirical null adjusted approach (third column). The last
two are methods for adjusting for multiple testing dependence. Both comparisons
show wildly different results depending on the analysis technique used.

We perform each analysis in three ways, (1) a simple F-test for comparing
group means, (2) a surrogate variable adjusted analysis (Leek and Storey, 2007),
and (3) an empirical null (Efron, 2004, 2007) adjusted analysis. These last two ap-
proaches are different methods for adjusting for multiple testing dependence and
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latent structure in microarray data. Figure 3 shows that each analysis strategy re-
sults in a very different distribution for the resulting p-values. Idaghdour et al.
(2008) found coherent and reproducible biology among the various comparisons
only when applying the surrogate variable analysis technique. However, how do
we know in a more general sense which, if any, of these analysis strategies is more
well behaved since they give such different results? This question motivates a need
for a criterion and diagnostic test for evaluating the operating characteristics multi-
ple testing procedures, where the criterion is applied to realistically simulated data
where the correct answers are known.

3 A Criterion for the Joint Null Distribution
The examples from the previous section illustrate that it is possible for p-values
from multiple tests to have proper marginal distributions, but together form a prob-
lematic joint distribution. It is also possible to have a well behaved joint distribu-
tion, but composed of p-values with incorrect marginal distributions. In practice
only a single study is performed and the statistical significance is assessed from the
entire set of p-values from that study. The real data example shows that different
methods may yield notably different p-value distributions in a given study.

Thus, utilizing a procedure that produces a well behaved joint distribution
of null p-values is critical to reduce deviation from uniformity of p-values within
a study, and large variances of statistical significance across studies. A single hy-
pothesis test p-value is correctly specified if its distribution is U(0,1) under the
null (Lehmann, 1997). In other words, p is correctly specified if for α ∈ (0,1),
Pr(p < α) = Pr(U < α) = α , where U ∼U(0,1). We would like to ensure that the
null p-values from a given experiment have a joint distribution that is stochastically
equivalent to an independent sample from the U(0,1) distribution of the same size.
Based on this intuition, we propose the following criterion for the joint null p-value
distribution.

Definition (Joint Null Criterion, JNC). Suppose that m hypothesis tests are per-
formed where tests 1,2, . . . ,m0 are true nulls and m0+1, . . . ,m are true alternatives.
Let pi be the p-value for test i and let p(ni) be the order statistic corresponding to
pi among all p-values, so that ni = #{p j ≤ pi}. The set of null p-values satisfy the
Joint Null Criterion if and only if the joint distribution of p(ni), i = 1, . . . ,m0 is equal
to the joint distribution of p∗(n∗i )

, i = 1, . . . ,m0, where p∗1, . . . , p∗m0
are an i.i.d. sample

from the U(0,1) distribution and p∗i
a.s.
= pi, for i = m0 +1, . . . ,m.
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Remark 1. If all the p-values correspond to true nulls, the JNC is equivalent to
saying that the ordered p-values have the same distribution as the order statistics
from an i.i.d. sample of size m from the U(0,1) distribution. �

Intuitively, when the JNC is satisfied and a large number of hypothesis tests
is performed, the set of null p-values from these tests should appear to be equivalent
to an i.i.d. sample from the U(0,1) distribution when plotted together in a histogram
or quantile-quantile plot. Figure 4 illustrates the conceptual difference between the
JNC and the univariate criterion. The p-values from multiple tests for a single
study appear in columns and the p-values from a single test across studies appear
in rows. The standard univariate criterion is concerned with the behavior of single
p-values across multiple studies, represented as rows in Figure 4. In contrast, the
JNC is concerned with the joint distribution of the set of study-specific p-values,
represented by columns in Figure 4. When only a single test is preformed, each
column has only a single p-value so the JNC is simply the standard single test
criterion.

Remark 2. In the case that the null hypotheses are composite, the distributional
equality in the above criterion can be replaced with a stochastic ordering of the two
distributions. �

Remark 3. The JNC is not equivalent to the trivial case where the null p-values
are each marginally U(0,1) and they are jointly independent. Let U(1) ≤ U(2) ≤
·· · ≤U(m0) be the order statistics from an i.i.d. sample of size m0 from the U(0,1)
distribution. Set pi = U(i) for i = 1, . . . ,m0. It then follows that the null p-values
are highly dependent (since pi < p j for all i < j), none are marginally U(0,1), but
their joint distribution is valid. Example 2 from Section 2 provides another scenario
where the JNC is not equivalent to the trivial case. �

Remark 4. The JNC is not a necessary condition for the control of the false dis-
covery rate, as it has been shown that the false discovery rate may be controlled
for certain types of dependence that may violate the JNC (Benjamini and Yekutieli,
2001, Storey, Taylor, and Siegmund, 2004). �

The JNC places a condition on the joint behavior of the set of null p-values.
This joint behavior is critical, since error estimates and significance calculation are
performed on the set of p-values from a single study (e.g., false discovery rates
estimates Storey (2002)). To make this concrete, consider the examples from the
previous section. In Example 1, the joint distribution of the null p-values is much
more variable than a sample from the U(0,1) distribution, resulting in unreliable
error rate estimates and significance calculations (Owen, 2005). The joint p-values
in this example fail to meet the JNC. In Example 2, the joint distribution of the
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Figure 4: An illustration of the Joint Null Criterion. The p-values from multiple
tests for a single study appear in columns and the p-value from a single test across
replicated studies compose each row. The JNC evaluates the joint distribution of
the set of null p-values, whereas the single test criterion is concerned with the dis-
tribution of a single p-value across replicated studies.

p-values satisfies the JNC, resulting in well behaved error rate estimates and sig-
nificance calculations, even though the marginal behavior of each p-value is not
U(0,1).

When the JNC is met, then estimation of experiment-wide error rates and
significance cutoffs behaves similarly to the well behaved situation where the true
null p-values are i.i.d. U(0,1). Lemma 1 makes these ideas concrete (see Supple-
mentary Information for the proof).

Lemma 1 Suppose that p1, p2, . . . , pm are m p-values resulting from m hypothesis
tests; without loss of generality, suppose that p1, . . . , pm0 correspond to true null
hypotheses and pm0+1, . . . , pm to true alternative hypotheses. If (1) the JNC is sat-
isfied for p1, . . . , pm0 and (2) the conditional distribution {p(ni)}

m
i=m0+1|{p(ni)}

m0
i=1
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is equal to the conditional distribution {p∗(ni)
}m

i=m0+1|{p∗(ni)
}m0

i=1, then any multiple
hypothesis testing procedure based on the order statistics p(1), . . . , p(m) has prop-
erties equivalent to those in the case where the true null hypotheses’ p-values are
i.i.d. Uniform(0,1).

Corollary. When conditions (1) and (2) of Lemma 1 are satisfied, the multiple
testing procedures of Shaffer (1995), Benjamini and Hochberg (1995), Storey et al.
(2004) provide strong control of the false discovery rate. Furthermore, the control-
ling and estimation properties of any multiple testing procedure requiring the null
p-values to be i.i.d. Uniform(0,1) continue to hold true when the JNC is satisfied.

The Joint Null Criterion is related to two well-known concepts in multiple
testing, the marginal determine joint (MDJ) condition (Xu and Hsu, 2007, Calian,
Li, and Hsu, 2008) and the joint null domination (jtNDT) condition (Dudoit and
van der Laan, 2008). The MDJ is a condition on the observations, which is sufficient
to guarantee a permutation distribution is the same as the true distribution (Calian
et al., 2008). Meanwhile, the jtNDT condition is concerned with Type I errors
being stochastically greater under the test statistics null distribution than under their
true distribution. From this, Dudoit and van der Laan (2008) show that two main
types of null distributions for test statistics can be constructed that satisfy this null
domination property. The difference between these criteria and the JNC is that the
JNC focuses not just one Type I error control, but also controlling the study-to-study
variability in Type I errors.

4 Statistical Methods for Evaluating the Joint Null
Criterion

Several new multiple testing statistics for the analysis of gene expression data have
recently been proposed and evaluated in the literature (Tusher et al., 2001, Newton,
Noueiry, Sarkar, and Ahlquist, 2004, Storey, 2007). A standard evaluation of the
accuracy of a new procedure is to apply it to simulated data and determine whether
a particular error rate, such as the false discovery rate, is conservatively biased at
specific thresholds, typically 5% and 10%. The JNC suggests a need for methods
to evaluate the joint distribution of null p-values from multiple testing procedures.
We propose a three step approach for evaluating whether the joint distribution of
null p-values satisfies the JNC.

1. Simulate multiple high-dimensional data sets from a common data generat-
ing mechanism that captures the expected cross study variation in signal and
noise, and includes any dependence or latent structure that may be present.
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2. Apply the method(s) in question to each study individually to produce a set
of p-values for each study.

3. Compare the set of null p-values from each specific study to the U(0,1) dis-
tribution, and quantify differences between the two distributions across all
studies.

The first two steps of our approach involve simulating data and applying
the method in question to generate p-values, which we carry out in the next section
in the context of multiple testing dependence and pooling null distributions across
tests. When the joint null distribution can be characterized directly (Huang, Xu,
Calian, and Hsu, 2006), analytic evaluation of the JNC may be possible. A key
component of evaluating the JNC is the ability to simulate from a realistic joint
distribution for the observed data. Application of these diagnostic criteria requires
careful examination of the potential properties, artifacts, and sources of dependence
that exist in high-dimensional data. In the remainder of the current section, we pro-
pose methods for the third step: summarizing and evaluating null p-values relative
to the U(0,1) distribution.

We propose one non-parametric approach based on the Kolmogorov-Smirnov
(KS) test and a second approach based on a Bayesian posterior probability for the
joint distribution. When applying these diagnostics to evaluate multiple testing pro-
cedures that produce a small number of observed p-values (m< 100) the asymptotic
properties of the KS test may not hold. For these scenarios, the Bayesian diagnostic
may be more appropriate. In the more general case, when a large number of tests
are performed, the diagnostics are both appropriate.

4.1 Double Kolmogorov-Smirnov Test

In this step we start with m p-values from B simulated studies, p1 j, . . . , pm j, j =
1, . . .B. Assume that the first m0 p-values correspond to the null tests and the last
m−m0 correspond to the alternative tests. To directly compare the behavior of the
p-values from any study to the U(0,1) distribution, we consider the study-specific
empirical distribution function, defined for study j as F j

m0(x) =
1

m0
∑

m0
i=1 1(pi j < x).

The empirical distribution is an estimate of the unknown true distribution of the
null p-values F j(x). If the null p-values are U(0,1) distributed then F j

m0(x) will
be close to the U(0,1) distribution function, F(x) = x. In practice, none of the
empirical distribution functions will exactly match the U(0,1) distribution due to
random variation.

One approach to determine if the p-values are “close enough” to the U(0,1)
distribution is to perform a KS test (Shorack and Wellner, 1986) using the statistic,
D j

m0 = supx |F
j

m0(x)−x| (see also Supplementary Figure S1). Based on this statistic
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we can calculate a KS test p-value for each simulated study. Under the null hypoth-
esis the KS tests’ p-values will also be U(0,1) distributed. We can then calculate a
second KS test statistic based on the empirical distribution of the first stage KS test
p-values. If the original test-specific null p-values are U(0,1) distributed, then this
double KS test p-value will be large and if not then it will be small. Repeating the
KS test across a range of simulated data sets permits us to quantify variation around
the U(0,1) distribution. Replication also reduces the potential for getting lucky and
picking a single simulated study where the method in question excels.

Note that it is possible to consider metrics less stringent than the supremum
norm on which the KS test is based. There are variety of ways in which a metric
based on |F j

m0(x)− x| over the range 0≤ x≤ 1 can be calculated.

4.2 Bayesian Posterior Probability

A second approach we propose for evaluating the joint distribution of the null p-
values is to estimate the posterior probability that the JNC holds given the sets of
m p-values across the B simulated studies. To calculate this posterior probability,
we assume that the observed null p-values are drawn from a flexible class of distri-
butions. For example, we assume the null p-values are a sample from a Beta(α,β )
distribution, where (α,β ) ∈ [0,A]× [0,B]. Supplementary Figure S2 shows exam-
ples of the density functions for a range of values of (α,β ). The Beta family is
used because Beta distributions closely mimic the behavior of non-null p-values
observed in practice (Pounds and Morris, 2003). For example, if α = 1 and β > 1
then the corresponding Beta density function is strictly decreasing between 0 and 1,
which is typical of the distribution of p-values from differentially expressed genes
in a microarray experiment.

Our approach assigns prior probability 1/2 that the p-values are jointly U(0,1)
(i.e., the JNC holds), equivalent to a Beta distribution with α = β = 1, and prior
probability 1/2 that the p-values follow a Beta distribution where either α 6= 1 or
β 6= 1. We write {pi j} as shorthand for the entire set of simulated null p-values,
{pi j; i = 1, . . . ,m0, j = 1, . . . ,B}. From Bayes Theorem we can calculate the poste-
rior probability the JNC holds as follows:

Pr(JNC holds |{pi j})

=
1
2Pr({pi j}|JNC holds)

1
2Pr({pi j}|JNC holds)+ 1

2Pr({pi j}|JNC does not hold)
.
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The first component is calculated as:

Pr({pi j}|JNC holds) = Pr({pi j}|(α,β ) = 1) =
m0

∏
i=1

B

∏
j=1

1(0≤ p ji ≤ 1) = 1.

The second component can be calculated by integrating over the other values of
(α,β ):

Pr({pi j}|JNC does not hold)

=
∫ A

0

∫ B

0

m0

∏
i=1

B

∏
j=1

Γ(α +β )

Γ(α)Γ(β )
pα−1

i j (1− pi j)
β−1

π0(α,β )dαdβ

where π0(α,β ) is the prior distribution for specific values of (α,β ). In the exam-
ples that follow, we utilize independent U(0,1) priors on both α and β , but more
informative prior choices could be used to emphasize specific potential alternatives.
For example, weighting the prior toward values with α < 1 and β > 1 would em-
phasize distributions that are stochastically smaller than the U(0,1) distribution and
typically occur under the alternative.

5 Applications of the Joint Null Criterion
We apply the proposed JNC and diagnostic tests to assess the behavior of methods
or two important challenges in multiple hypothesis testing: (1) addressing multi-
ple testing dependence and (2) determining the validity pooled null distributions.
Methods have been developed for both of these issues in multiple testing, but there
has not been a standard approach for evaluating whether the resulting significance
measures have desirable variability properties.

5.1 Multiple Testing Dependence

Multiple testing dependence is a common problem in the analysis of high-dimensional
data such as those obtained from genomics (Leek and Storey, 2007) or imaging
experiments (Schwartzman, Dougherty, and Taylor, 2008). Multiple testing depen-
dence has frequently been defined as a type of stochastic dependence among p-
values or one-dimensional test-statistics when performing multiple tests (Yekutieli
and Benjamini, 1999, Benjamini and Yekutieli, 2001, Efron, 2004, 2007). More re-
cently, the root source of this type of dependence has been identified and addressed
as dependence among the data for the tests (Leek and Storey, 2008). It has also
been shown that regardless of the dependence structure, dependence in the feature
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level data can always be parameterized by a low dimensional set of variables (or
factors) called a dependence kernel (Leek and Storey, 2008).

Three different approaches for addressing multiple testing dependence are:
surrogate variable analysis (Leek and Storey, 2007, 2008), residual factor analysis
for multiple testing dependence (Friguet, Kloareg, and Causer, 2009), and the em-
pirical null (Efron, 2004) as applied to multiple testing dependence (Efron, 2007).
Surrogate variable analysis is an approach that performs a supervised factor anal-
ysis of the data during the modeling process, before one dimensional summaries
such as p-values have been calculated. Residual factor analysis for multiple test-
ing dependence is a reformulation of this approach where the estimated factors are
required to be orthogonal to the class variable. The empirical null distribution is
calculated based on the observed values of the test statistics. The basic idea is to es-
timate a null distribution based on the “null part” of the observed distribution where
the null statistics are assumed to lie. We note that the empirical null method as a
general approach (Efron, 2004, 2007) has not been subjected to simulations where
the correct answer is known, so its accuracy and general operating characteristics
are heretofore unexplored.

It is often the case that the data for multiple tests from high-throughput
experiments are dependent. One example of this type of dependence which is com-
mon in both microarray and imaging experiments is dependence due to latent or
unmodeled factors (Leek and Storey, 2007, 2008). To mimic this type of depen-
dence in our simulated data, we generate the observations for test i from the model
xi = b0i + b1iy+ b2iz+ ε i, where z is a second latent variable that affects the data
for multiple tests, and z j is Bernoulli with probability 0.5. Under this model we
let b1i 6= 0 for i = 1, . . .500 and b1i = 0 for i = 501, . . . ,1000 as before, but b2i 6= 0
for i = 300, . . .800 and b1i = 0 for i = 1, . . . ,200;801, . . . ,1000. We first test the
null hypothesis that b1i = 0 including the variable z, even though in general it will
not be known to the researcher. In Figure 5a the quantile-quantile plots for the
null p-values indicate that the p-values approximately follow the U(0,1) distribu-
tion. Correspondingly, the double KS p-value is 0.446 and the median posterior
probability of the JNC holding (25th-75th percentile) is 0.967 (0.928,0.978).

Next we apply each of the methods for addressing dependence based on the
default R code provided by the authors. The surrogate variable analysis (Leek and
Storey, 2007, 2008) and residual factor analysis for multiple testing dependence
(Friguet et al., 2009) methods result in additional covariates that are included in
the model when testing b1i = 0. The empirical null approach adjusts the p-values
directly based on the observed test statistics. Figure 5 shows the quantile-quantile
plots for the adjusted null p-values using each of these methods and Table 1 gives
the resulting double KS p-values and posterior probabilities of the JNC holding.
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Figure 5: Quantile-quantile plots of the joint distribution of null p-values from 100
simulated studies when the hypothesis tests are dependent. Results when utilizing:
a. the true latent variable adjustment, b. surrogate variable analysis, c. empirical
null adjustment, and d. residual factor analysis.

part like the correctly adjusted p-values in Figure 5a, with the exception of a small
number of cases, where the unmodeled variable is nearly perfectly correlated with
the group difference. The resulting posterior probability estimates are consistently
near 1; however, the double KS p-value is sensitive to the small number of outlying
observations.

The empirical null adjustment shows a strong conservative bias, which re-
sults in a loss of power (Figure 5c). The reason appears to be that the estimated
empirical null is often too wide due to the extreme statistics from the dependence
structure. Since the one-dimensional summary statistics conflate signal and noise, it
is generally impossible to estimate the null distribution well in the case of dependent
data. It has been recommended that the empirical null be employed only when the
proportion of truly null hypotheses is greater than 0.90, potentially because of this
behavior. Under this assumption, the null p-values are somewhat closer to U(0,1),
but still show strong deviations in many cases (Table 1). This indicates the empiri-
cal null may be appropriate in limited scenarios when only a small number of tests
are truly alternative, such as in genome-wide association studies as originally sug-

The surrogate variable adjusted p-values (Figure 5b) behave for the most
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or brain imaging studies.
The residual factor analysis adjusted null p-values, where the factors are

required to be orthogonal to the group difference, show strong anti-conservative bias
(Figure 5d). The reason is that the orthogonally estimated factors do not account
for potential confounding between the tested variable and the unmodeled variable.
However, when the unmodeled variable is nearly orthogonal to the group variable
by chance, this approach behaves reasonably well and so the 75th percentile of the
posterior probability estimates is 0.810.

Table 1: The posterior probability distribution and the double KS test p-value as-
sessing whether the JNC holds for each method adjusting for multiple testing de-
pendence. Correctly Adjusted = adjusted for the true underlying latent variable,
SV = surrogate variable analysis, EN = empirical null, and RF = residual factor
analysis.

Method Post. Prob. (IQR) dKS P-value
Correctly Adjusted 0.967 (0.928,0.978) 0.446
SV Adjusted 0.961 (0.918,0.975) 0.132
EN Adjusted 0.000 (0.000,0.000) < 2e-16
EN Adjusted (95% Null) 0.685 (0.081,0.961) 1.443e-14
RF Adjusted 0.000 (0.000,0.810) < 2e-16

Supplementary Figures S3 and S4 show the estimates of the FDR and the
proportion of true nulls calculated for the same simulated studies. Again, the es-
timates using the correct model and surrogate variable analysis perform similarly,
while the empirical null estimates are conservatively biased and the residual factor
analysis p-values are anti-conservatively biased. For comparison purposes, Supple-
mentary Figure S5 shows the behavior of the unadjusted p-values and their corre-
sponding false discovery rate estimates. It can be seen that since surrogate variables
analysis satisfies the JNC, it produces false discovery rate estimates with a variance
and a conservative bias close to the correct adjustment. However, the empirical null
adjustment and residual factor analysis produce substantially biased estimates. The
unadjusted analysis produces estimates with a similar expected value to the correct
adjustment, although the variances are very large.

Another way to view this analysis is to consider the sensitivity and speci-
ficity of each approach. The ROC curves for each of the four proposed methods
are shown in Supplementary Figure S6. The approaches that pass the JNC criteria
- the correctly adjusted analysis and the surrogate variable adjusted analysis - have

gested by Devlin and Roeder (1999) – but not for typical microarray, sequencing,
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similarly high AUC values, while the approaches that do not pass the JNC (residual
factor analysis and empirical null) have much lower AUC values. This suggests
that another property of the JNC is increased sensitivity and specificity of multiple
testing procedures.

5.2 Pooled Null Distributions

A second challenge encountered in large-scale multiple testing in genomics is in
determining whether it is valid to form an averaged (called “pooled”) null distribu-
tion across multiple tests. Bootstrap and permutation null distributions are common
for high-dimensional data, where parametric assumptions may be difficult to ver-
ify. It is often computationally expensive to generate enough null statistics to make
test-specific empirical p-values at a fine enough resolution. (This requires at least
as many resampling iterations as there are tests.) One proposed solution is to pool
the resampling based null statistics across tests when forming p-values or estimat-
ing other error rates (Tusher et al., 2001, Storey and Tibshirani, 2003). By pooling
the null statistics, fewer bootstrap or permutation samples are required to achieve a
fixed level of precision in estimating the null distribution. The underlying assump-
tion here is that averaging across all tests’ null distributions yields a valid overall
null distribution. This approach has been criticized based on the fact that each p-
value’s marginal null distribution may not be U(0,1) (Dudoit, Shaffer, and Boldrick,
2003). However, the JNC allows for this criticism to be reconsidered by considering
the joint distribution of pooled p-values.

Consider the simulated data from the previous subsection, where xi = b0i +
b1iy+ ε i. Suppose that b1i 6= 0 for i = 1, . . .500, b1i = 0 for i = 501, . . . ,1000,
and Var(εi j) ∼ InverseGamma(10,9). Suppose y j = 1 for j = 1,2, . . . ,n/2 and
y j = 0 for j = n/2+1, . . . ,n. We can apply the t-statistic to quantify the difference
between the two groups for each test. We compute p-values in one of two ways.
First we permute the labels of the samples and recalculate null statistics based on
the permuted labels. The p-value is the proportion of permutation statistics that is
larger in absolute value than the observed statistic.

A second approach to calculating the null statistics is with the bootstrap.
To calculate bootstrap null statistics, we fit the model xi = b0i + b1iy+ ε i by least
squares and calculate residuals ri = xi− b̂0i− b̂1iy. We calculate a null model fit
using the model xi = b0

0i + ε i, sample with replacement from the residuals r to
obtain bootstrapped residuals r∗i , rescale the bootstrapped residuals to have the same
variance as the original residuals, and add the bootstrapped residuals to the null
model fit to obtain null data x∗i = b̂0

0i+r∗i . The p-value is the proportion of bootstrap
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Method Post. Prob. (IQR) dKS P-value
T-Statistic/Perm./Test-Specific 0.436 (0.006,0.904) 0.171
T-statistic/Perm./Pooled 0.966 (0.946,0.979) 0.850
T-statistic/Boot./Test-Specific 0.508 (0.002,0.946) 0.181
T-statistic/Boot./Pooled 0.967 (0.942,0.977) 0.759
ODP/Perm./Test-Specific 0.748 (0.024,0.955) 0.068
ODP/Perm./Pooled 0.000 (0.000,0.000) 0.000
ODP/Boot./Test-Specific 0.000 (0.000,0.178) 0.127
ODP/Boot./Pooled 0.971 (0.946,0.980) 0.121

Table 2: The posterior probability distribution and the double KS test p-value as-
sessing whether the JNC holds for each type of permutation or bootstrap analysis.

statistics that is larger in absolute value than the observed statistic. This is the
bootstrap approach employed in Storey, Dai, and Leek (2007).

We considered two approaches to forming resampling based p-values: (1)
a pooled null distribution, where the resmapling based null statistics from all tests
are used in calculating the p-value for test i and (2) a test-specific null distribution,
where only the resampling based null statistics from test i are used in calculating the
p-value for test i. Table 2 shows the results of these analyses for all four scenarios
with the number of resampling iterations set to B = 200. The pooled null outper-
forms the marginal null because the marginal null is granular, due to the relatively
small number of resampling iterations. The pooling strategy is effective because
the t-statistic is a pivotal quantity, so its distribution does not depend on unknown
parameters. In this case, the test-specific null distribution can reasonably be ap-
proximated by the joint null distribution that comes from pooling all of the null
statistics.

Many statistics developed for high-dimensional testing that borrow infor-
mation across tests are not pivotal. Examples of non-pivotal statistics include those
from SAM (Tusher et al., 2001), the optimal discovery procedure (Storey et al.,
2007), variance shrinkage (Cui et al., 2005), empirical Bayes methods (Efron et al.,
2001), limma (Smyth, 2004), and Bayes methods (Gottardo, Pannuci, Kuske, and
Brettin, 2003). As an example, to illustrate the behavior of non-pivotal statis-
tics under the four types of null distributions we focus on the optimal discov-
ery procedure (ODP) statistics. The ODP is an extension of the Neyman-Pearson
paradigm to tests of multiple hypotheses (Storey, 2007). If m tests are being per-
formed, of which m0 are null, the ODP statistic for the data xi for test i is given

by: Sod p(xi) =
∑

m
m0+1 f1i(xi)

∑
m0
i=1 f0i(xi)

, where f1i is the density under the alternative and f0i is
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the density under the null for test i. When testing for differences between group A
and group B, an estimate for the ODP test statistic can be formed using the Normal
probability density function, φ(·; µ,σ2):

Ŝod p(x j) =
∑

m
i=1 φ(xA j; µ̂Ai, σ̂

2
Ai)φ(xB j; µ̂Bi, σ̂

2
Bi)

∑
m
i=1 φ(x j; µ̂0i, σ̂

2
0i)

The ODP statistic is based on the estimates of the mean and variance for each test
under the null hypothesis model restrictions (µ̂0i, σ̂

2
0i) and unrestricted (µ̂Ai, σ̂

2, µ̂Bi, σ̂
2
Bi).

The data for each test x j is substituted into the density estimated from each of the
other tests. Like variance shrinkage, empirical Bayes, and Bayesian statistics, the
ODP statistic is not pivotal since the distribution of the statistic depends on the
parameters for all of the tests being performed.

We used the ODP statistics instead of the t-statistics under the four types of
null distributions; the results appear in Table 2. With a non-pivotal statistic, pooling
the permutation statistics results in non-unfiorm null p-values. The variance of the
permuted data for the truly alternative tests is much larger than the variance for
the null tests, resulting in bias. The test-specific null works reasonably well under
permutation, since the null statistics for the alternative tests are not compared to
the observed statistics for the null tests. The bootstrap corrects the bias, since the
residuals are resampled under the alternative and adjusted to have the same residual
variance as the original data. The bootstrap test-specific null distribution yields
granular p-values causing the Bayesian diagnostic to be unfavorable, but yielding
a favorable result from the double KS test. The pooled bootstrap null distribution
meets the JNC in terms of both diagnostic criteria. These results suggest that non-
pivotal high-dimensional statistics that employ permutations for calculating null
statistics may result in non-uniform p-values when the null statistics are pooled, but
those that employ variance adjusted bootstrap pooled distributions meet the JNC.
It should be noted that Storey et al. (2007) prescribe using the pooled bootstrap
null distribution as implemented here and the permutation null distribution is not
advocated.

Our results suggest that the double KS test may be somewhat sensitive to
outliers, suggesting that it may be most useful when strict adherence to the JNC is
required from a multiple testing procedure. Meanwhile, the Bayesian approach is
sensitive to granular p-value distributions commonly encountered with permutation
tests using a small sample, suggesting it may be more appropriate for evaluating
parametric tests or high-dimensional procedures that pool null statistics.
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6 Discussion
Biological data sets are rapidly growing in size and the field of multiple testing is
experiencing a coordinated burst of activity. Existing criteria for evaluating these
procedures were developed in the context of single hypothesis testing. Here we
have proposed a new criterion based on evaluating the joint distribution of the null
statistics or p-values. Our criterion is more stringent than requiring strong control
of specific error rates, but flexible enough to deal with the type of multiple testing
procedures encountered in practice. When the Joint Null Criterion is met, we have
shown that standard error rates can be precisely and accurately controlled. We have
proposed frequentist and Bayesian diagnostics for evaluating whether the Joint Null
Criterion has been satisfied in simulated examples. Although these diagnostics can
not be applied in real examples, they can be a useful tool to diagnose multiple
testing procedures when they are proposed and evaluated in simulated data. Here
we focused on two common problems in multiple testing that arise in genomics,
however our criterion and diagnostic tests can be used to evaluate any multiple
testing procedure to ensure p-values satisfy the JNC and result in recise error rate
estimates.
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