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Systems-level dynamic analyses of fate change in
murine embryonic stem cells
Rong Lu1{, Florian Markowetz2*{, Richard D. Unwin3*, Jeffrey T. Leek4{, Edoardo M. Airoldi2{, Ben D. MacArthur4,5,
Alexander Lachmann5, Roye Rozov4{, Avi Ma’ayan5, Laurie A. Boyer6, Olga G. Troyanskaya2, Anthony D. Whetton3

& Ihor R. Lemischka1,4

Molecular regulation of embryonic stem cell (ESC) fate involves a
coordinated interaction between epigenetic1–4, transcriptional5–10

and translational11,12 mechanisms. It is unclear how these different
molecular regulatory mechanisms interact to regulate changes in
stem cell fate. Here we present a dynamic systems-level study of
cell fate change in murine ESCs following a well-defined per-
turbation. Global changes in histone acetylation, chromatin-
bound RNA polymerase II, messenger RNA (mRNA), and nuclear
protein levels were measured over 5 days after downregulation of
Nanog, a key pluripotency regulator13–15. Our data demonstrate
how a single genetic perturbation leads to progressive widespread
changes in several molecular regulatory layers, and provide a
dynamic view of information flow in the epigenome, transcrip-
tome and proteome. We observe that a large proportion of changes
in nuclear protein levels are not accompanied by concordant
changes in the expression of corresponding mRNAs, indicating
important roles for translational and post-translational regulation
of ESC fate. Gene-ontology analysis across different molecular
layers indicates that although chromatin reconfiguration is
important for altering cell fate, it is preceded by transcription-
factor-mediated regulatory events. The temporal order of gene
expression alterations shows the order of the regulatory network
reconfiguration and offers further insight into the gene regulatory
network. Our studies extend the conventional systems biology
approach to include many molecular species, regulatory layers
and temporal series, and underscore the complexity of the multi-
layer regulatory mechanisms responsible for changes in protein
expression that determine stem cell fate.

We applied a single well-defined perturbation to murine ESCs by
downregulating Nanog, a key pluripotency factor13–15. A lentiviral-
based complementation system was introduced into mouse ESCs in
which short hairpin RNA (shRNA) depletes endogenous Nanog
mRNA, and normal levels of Nanog expression are restored in a
doxycycline-dependent manner from an shRNA ‘immune’ version7

(Fig. 1b). Previously, we showed that this engineered ESC clone is
fully pluripotent in vitro and in vivo when maintained in the presence
of doxycycline7. After doxycycline removal, Nanog mRNA and
protein levels rapidly decline (Fig. 1c), and both pluripotency and
self-renewal capacities of ESCs diminish with time. We collected
data from four molecular layers. Specifically, we performed: (1)

chromatin-immunoprecipitation microarray (ChIP-chip) analysis
of histone H3 lysine 9 and 14 acetylation (acH3K9/14) at gene
promoter regions to assess chromatin modification (designated as
HIS); (2) ChIP-chip analysis of RNA polymerase II localization at 39

exons of gene coding regions to reveal active transcription (desig-
nated as POL); (3) gene expression microarrays to quantify mRNA
abundance (designated as RNA); and (4) protein mass spectrometry
to measure nuclear protein abundance (designated as PRO) (Fig. 1a).
Fold changes were calculated for each gene by comparing the
expression levels of a molecular layer on days 1, 3 and 5 (doxycycline
absent, Nanog depleted) to day 0 (doxycycline present, Nanog
expressing), allowing for comparisons across the different experi-
mental platforms (Supplementary Fig. 1). To estimate experimental
noise, a significance threshold in each experiment was determined
based on the experimental replicates of all measured genes at a false
discovery rate (FDR) of 5% (Fig. 1d and Supplementary Fig. 2).

Although changes between different gene expression steps are
generally correlated (Supplementary Fig. 3), both concordances
and discordances exist on the individual gene level. The discordances
show regulatory events that alter gene expression. We performed a
supervised gene/protein classification to identify the key regulatory
step that is most responsible for changes in protein levels, which
directly determine cellular phenotype. We anchored our analysis
on observed changes in protein levels and assessed the concordance
of changes in the other three layers by comparing PRO to RNA, then
RNA to POL, and finally POL to HIS (Fig. 2a). Proteins with signifi-
cant changes were assigned to one of four categories at each time-
point: category 1 proteins exhibit discordant PRO and RNA changes
in expression, which is indicative of translational and posttransla-
tional regulation; category 2 proteins exhibit concordant PRO and
RNA changes in expression, but discordant RNA and POL changes in
expression, which is indicative of post-transcriptional regulation;
category 3 proteins exhibit concordant PRO, RNA and POL changes
in expression, but discordant POL and HIS changes in expression,
which is indicative of transcriptional regulation; and category 4
proteins exhibit concordant changes in expression across all four
layers, which is indicative of regulation through chromatin modi-
fication. Proteins tend to stay in the same category over time
(Supplementary Fig. 4). Category 1 constitutes 43–52% of all the
genes with significant changes in protein levels, indicating that
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Figure 1 | Measuring changes in the epigenome, the transcriptome and the
nuclear proteome after Nanog downregulation. a, Experimental design. AP,
alkaline phosphatase; IP, immunoprecipitation; iTRAQ, isobaric tag for
relative and absolute quantification; MS, mass spectrometry. b, The
lentiviral vector construct to conditionally regulate Nanog expression
levels7. dLTR, deleted long-terminal repeat; FLAP, nucleotide segment that
improves transduction efficiency; Tet-on, tetracycline transactivator; WRE,

woodchuck hepatitis virus post-transcriptional regulatory element.
c, Efficacy of Nanog protein downregulation as measured by mass
spectrometry (bar chart) and western blot (image, bottom). Error bars
denote the s.d. of duplicate measurements. d, Summary of the numbers of
genes with significant changes at different molecular layers on each day.
Increased and decreased levels are shown in orange and green, respectively.
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Figure 2 | Comparisons across
different molecular regulatory
layers. a, Proteins with significant
changes on each day are assigned to
one of four categories on the basis of
concordance between expression
steps (Methods). The percentages
on the left are calculated according
to the number of proteins in each
category. The P-value bar on the
right gives the inclusion
significance level. b, Examples of
proteins from each of the four
categories. Black dots represent the
exact values for each experimental
replicate. c, Selected gene-ontology
(GO) categories that are
overrepresented at each gene
expression step. The complete panel
is shown in Supplementary Fig. 5.
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translational and post-translational regulatory mechanisms have
important roles in ESC fate decisions11,12,16,17. However, it is unclear
whether this is specific to stem cells or whether it is characteristic of
other biological systems.

In addition to providing a genome-wide perspective of ESC fate
change, our concordance analysis also provides useful information
on the level of individual genes (Fig. 2b). For example, the ESC
transcriptional regulator Esrrb7 falls into the category 2 concordance
pattern at all time points. This indicates that ultimate levels of Esrrb
protein are primarily regulated post-transcriptionally, at least under
our experimental conditions, and not by direct Nanog regulation at
the transcriptional level. It has been proposed that Esrrb and Nanog
mutually regulate each other by a positive feedback circuit6,18. Our
concordance pattern analysis of Esrrb indicates that at least one
other component is likely to be involved in this circuit, which is
responsible for the post-transcriptional regulation of Esrrb, possibly
a microRNA19,20.

Gene-ontology analyses across the four molecular layers suggest a
complex interaction between different molecular regulatory mechan-
isms in cell fate regulation (Fig. 2c and Supplementary Fig. 5). For
example, differentiation- and development-related genes are over-
represented among the genes that only show changes in acH3K9/14
levels, but not on the other three layers (Fig. 2c). Furthermore, chro-
matin- and nucleosome-assembly-related genes are overrepresented

among the genes upregulated on the RNA polymerase II binding
layer but not on any of the other three layers (Fig. 2c), suggesting
that the chromatin modifiers are primarily regulated at the transcrip-
tion step. Therefore, reconfiguration of chromatin structure,
although an important factor in ESC fate alteration, may have a
secondary role to primary regulation by transcription factors5,6,8,21–23.

To gain further insight into systems-level regulatory control of
changes in ESC fate, we combined our data with that of previous stem
cell regulatory network studies to form a new synthesis (Fig. 3)6,8,24. A
core protein–protein interaction network was previously identified in
murine ESCs involving 26 proteins centred around Nanog24. We
found that this interactome is enriched in proteins that decreased in
expression after downregulation of Nanog (Supplementary Fig. 6).
On day 5, 8 out of the 26 interactome proteins are at significantly
reduced levels (Supplementary Fig. 7). These are: Sall4, Rnf2, Oct4
(also known as Pou5f1), Ilf2, Nanog, Mybbp1a, Sall1 and Esrrb. Of
these eight proteins only one (Rnf2) does not directly interact with
Nanog (Fig. 3a). This suggests interdependence between the Nanog
interactome and the network of genes under Nanog transcriptional
control.

Nanog protein binds to thousands of genomic locations in undif-
ferentiated ESCs5,6. Our data show that approximately 20% of the
previously identified Nanog-binding genes change their transcrip-
tion levels (POL) during the first 5 days after Nanog downregulation.
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Figure 3 | Dynamic changes in ESC networks. a, The core ESC
protein–protein interaction network24 (connections) overlaid with dynamic
protein changes observed in our data (rectangles are divided into three
segments representing changes on days 1, 3 and 5 compared to day 0). b, Heat
map of multimolecular layer gene expression changes for Nanog-binding

genes6. Shown are the genes whose data were obtained with high confidence
on all four molecular layers. Genes are ranked on the basis of changes in
protein levels. c, The pluripotency transcriptional regulatory network8

(arrows) overlaid with mRNA fold changes (colours) from our data.
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Of those that changed, approximately 50% also exhibit changes in
protein levels (PRO) (Fig. 3b and Supplementary Fig. 7). To deter-
mine how the changes in expression develop after the downregula-
tion of Nanog, we analysed the temporal alterations of mRNAs in the
context of an extended transcriptional regulatory network proposed
previously8 (Fig. 3c). Our data show that most genes in this network are
downregulated after the removal of Nanog. In particular, downregula-
tion of Oct4 and Sox2 (protein levels shown in Supplementary Fig. 7)
occurred later than downregulation of Klf4 or Rex1. This suggests that
decreases in Oct4 and Sox2 expression are not responsible for decreases
in Klf4 and Rex1 expression under our experimental conditions. The
temporal sequence of changes in gene expression is loosely correlated
with the chromatin-binding data6,8. These two sources provide inde-
pendent and complementary information about the ESC gene regula-
tory network. Using the same principle that later molecular events
cannot regulate earlier events, we can extract new sets of useful
information concerning the gene regulatory relations from the

temporal order of the network reconfiguration (Fig. 4 and Supplemen-
tary Fig. 8).

To facilitate comparisons and visualization of the multilayered time
series, we generated interactive movies to display our data (Fig. 4 and
Supplementary Fig. 8; http://amp.pharm.mssm.edu/ronglu). Expres-
sion changes for 400 genes with the most significant changes in protein
levels on day 5 were projected onto two-dimensional hexagonal arrays
(Fig. 4a). Individual hexagons representing specific genes are dynami-
cally coloured according to the fold changes in each of the four
molecular layers. This approach facilitates genome-wide and temporal
comparisons among the different molecular layers, and allows cluster-
ing of genes with similar dynamics on multiple gene expression regu-
latory layers. We have also generated interactive scatter plot movies to
help visualize concurrent changes across the different molecular layers
(Fig. 4b). In these movies, individual genes can be selected to illustrate
the concurrent changes between pairs of molecular layers. For
instance, Fig. 4b demonstrates that changes in Esrrb mRNA and
protein expression are monotonically related, whereas Sall1 and
Oct4 both show increased mRNA levels without any corresponding
increase in protein levels during the early stage of ESC differentiation.
Similar dynamics are also exhibited by several other previously iden-
tified essential ESC factors25 (shown as red dots in Fig. 4b). These genes
are regulated on different regulatory layer(s) compared to Esrrb, and
suggest that the transcription layer undergoes an early cell fate recon-
figuration without significant accompanying changes in protein pro-
duction. Recent studies proposed that fluctuating levels of Nanog may
discriminate between alternative pluripotent states of ESCs, in which
high or low Nanog levels render ESCs resistant or susceptible to dif-
ferentiation inducing stimuli, respectively15,26–29. In our system, the
early time point of Nanog downregulation is comparable to the
‘low’ Nanog state from these studies. Thus, the absence of changes
in protein levels during the mRNA layer reconfigurations could reflect
the nature of these distinct pluripotent states. Collectively, the variety
of the multilayered expression patterns underscores the complexity of
the molecular regulation of ESC fate and suggests an intricate regula-
tory network involving several molecular regulatory layers.

In this study we have provided a dynamic multimolecular layer
view of a murine ESC fate change in response to the downregulation
of Nanog. In our experimental system the transcription of Nanog is
regulated by exogenous manipulation and not by the endogenous
regulatory circuit. This disrupts the balance of mutually regulated
ESC molecular circuits15,26–29, and allows for rapid and synchronous
cell fate changes within the population. However, our results none-
theless represent the average of a large cell population, as we have
shown previously that removing Nanog results in a complex mixture
of cell lineages7. In this work, our primary goal was to analyse the
molecular dynamics that are associated with the transition away from
the pluripotent state as it occurs in most of the cells. In vivo, cell fate
alteration is probably triggered by several perturbations and inputs
dynamically. The single gene perturbation that we have used does not
reflect the natural signals that pluripotent cells are subjected to in
vivo. However, it is a powerful tool to dissect the complex regulatory
networks that underpin ESC fate changes and offers an initial
window into the dynamic complexity of ESC fate regulation across
multiple molecular levels.

METHODS SUMMARY

AcH3K9/14 levels were assayed using ChIP-chip. Acetylated regions in a 1-kilobase

window around the transcription initiation position were identified to generate

acetylation profiles (Supplementary Figs 9 and 10). ChIP-chip was also used to

measure RNA polymerase II localization on 39 exons todirectly assess transcriptional

activity (elongation). Changes in mRNA levels were monitored using Agilent two-

colour microarrays. Nuclear protein levels were measured using peptide isobaric

tagging followed by two-dimensional liquid chromatography mass spectrometry

(LC-MS/MS)16. We chose to measure nuclear protein levels because cell fate deter-

mination is largely controlled in the nucleus. For technical reasons, attempts to

measure the entire proteome would have significantly decreased the sensitivity of

the nuclear protein measurements, as these only constitute approximately 20% of all
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Figure 4 | Interactive visualization of the multilayer dynamic data.
a, Snapshots from heat map movies showing 400 genes with the most
significant changes in protein levels on day 5. The position (pixel) of each
gene locus is the same in all 12 heat maps. b, Snapshots from dynamic scatter
plots illustrating concurrent changes in mRNAs and proteins. Red dots
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proteins in ESCs. All experiments were conducted in triplicate except for the

acH3K9/14 measurements, which were performed in duplicate. Reliability of all

data sets was verified using independent experimental assays, including conven-

tional chromatin immunoprecipitation (ChIP), quantitative PCR (qPCR), and

western blot assays for key pluripotency regulator genes (Supplementary Figs 11

and 12). Experimental reproducibility was also verified using a linear analysis of

variance (ANOVA) model30. After data pre-processing and normalization, we were

able to validate 1,627 nuclear proteins and 12,488 genes (HIS/POL/RNA) with high

confidence. For 1,212 nuclear proteins, we were able to jointly obtain high-quality

data across all four layers (HIS/POL/RNA/PRO). Supplementary Fig. 1 provides an

overview of the entire data processing pipeline and the results of the quality-control

procedures (ANOVA analysis). The significance of change is determined at a FDR of

5% using an empirical Bayes’ model with Benjamini–Hochberg correction on the

basis of experimental replicates.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Cell culture. A murine ESC line with controllable Nanog expression was con-

structed and characterized previously7, and was cultured as described. ESCs were

cultured without feeder cells (primary mouse embryonic fibroblasts) for all

experiments. To induce differentiation, we withdrew doxycycline (1 mg ml21)

from the media, but still maintained all of the routine ESC nutrients (DMEM

with 15% FBS (Hyclone), 100 mM MEM non-essential amino acids, 0.1 mM

2-mercaptoethanol, 1 mM L-glutamine (Invitrogen) and 103 U ml21 LIF

(Chemicon)).

Days 1, 3 and 5 were selected because: (1) our previous studies7, which inves-

tigated the differentiation process using microarrays and quantitative PCR ana-

lysis over the course of 12 days, suggested that days 1, 3 and 5 are sufficiently early

such that no major differentiation events have yet occurred in the population,

but are also sufficiently late and temporally spaced to study transitions from

pluripotency and temporal differences. (2) Our preliminary proteomic experi-

ment had shown that a reasonable number of proteins had changed during this

time frame. In other words, on days 1, 3 and 5 the numbers of proteins that had

changed were large enough to analyse using mass spectrometry, and were also

small and distinct enough from each other to study the initial dynamic changes

(Fig. 1d).

ChIP-chip. ChIPs were performed as described5. Fifty-million to five-hundred-

million cells were fixed in a formaldehyde solution and sonicated into chromatin

fragments containing 500–1,000 base pairs of DNA. ChIP was performed using

100ml of a protein G magnetic bead suspension from Dynal coated by 10 mg of

antibody (anti-acH3K9/14 (06-599) from Upstate; RNA polymerase II antibody

(MMS-126R) from Covance). After reversal of the cross-links, the isolated DNA

and non-ChIP-enriched control DNA were tailed with polyA by terminal trans-

ferase (TdT)31. T7 (dT)24 primer was used to incorporate the T7 promoter

during the second-strand synthesis reaction. The DNA fragments were then

linearly amplified and labelled with Cy3 and Cy5 during the in vitro transcrip-

tion, following the protocol provided by Agilent for dye incorporation and array

hybridization (Agilent low RNA input fluorescent linear amplification kit;

Agilent 60-mer oligo microarray processing protocol version 2.1). The histone

acetylation ChIP-chip was performed by L. Boyer. The amplification step is

slightly different5.

Microarrays. The histone acetylation ChIP-chip used the mouse promoter array

from Agilent, custom-designed by the R. Young laboratory. An Agilent whole

mouse genome oligonucleotide microarray that covered 41,000 well-characterized

mouse genes and transcripts was used for the mRNA assays and RNA polymerase II

ChIP-chip experiments.

Nuclear proteome. Nuclear protein samples were prepared with the Nuclear/

Cytosol fractionation kit (BioVision). Proteomic measurements were performed

according to published protocols16. Samples from four different time points (day

0, and days 1, 3 and 5 after doxycycline removal) were labelled using four-

channel isobaric tagging reagents (iTRAQ, Applied Biosystems) and analysed

by strong cation-exchange fractionation followed by reverse-phase liquid chro-

matography on line to a QStar XL quadropole time-of-flight mass spectrometer.

We used ProQUANT (Applied Biosystems) and ProGROUP (Applied

Biosystems) to identify and quantify proteins. We checked our proteomic data

with the proteomic data from a previous study32. Only 3.1% of the proteins that

we considered to be well-reproduced nuclear proteins were not identified as

nuclear proteins in their study.

Data confirmation (qPCR and western blot). ChIP-chip results for RNA

polymerase II localization and histone acetylation were verified using a commercial

ChIP kit (Upstate), followed by qPCR. RNA microarray data were verified by

qPCR. The qPCR kit was obtained from Stratagene (Brilliant SYBR Green

QPCR Master Mix). Proteomic data were confirmed using western blot. The

verification experimental results are shown in Supplementary Figs 11 and 12.

Antibodies used to perform western blot were: Oct4 antibody from BD; Nanog

antibody from Cosmo Bio; Dnmt3b antibody from Abgent; p53 antibody from

J. Flint;b-actin antibody from Santa Cruz; HSP 90 antibody from Upstate; Histone

H1.0 antibody from Abcam; Utf1 antibody from A. Okuda.

Processing microarray data. Background correction was performed using a

Normal1Exponential convolution model33 that adjusts the foreground to the

background and yields strictly positive intensities. Furthermore, we used an

offset to dampen the variation of the log-ratios for very low intensities near 0.

This stabilized our estimated fold changes. Arrays were normalized using a global

loess, which is a well-tested general-purpose normalization method using local

regressions to straighten the ‘banana-shape’ seen in raw measurements34. To

confirm data quality, microarrays with remaining spatial (and other) artefacts

were discarded and the experiments repeated.

Processing proteomic data. We used ProQUANT and ProGROUP software

(Applied Biosystems) to analyse the mass spectrometric data, giving confidence

values for the relative quantification analysis. Our proteomic analysis was based

only on proteins that were identified with more than 95% confidence. We

further filtered proteins based on two filters: (1) filter criteria based on raw data:

the error factor of the measurement must be smaller than 2 and the protein must

have been detected in at least two of the three runs. (2) Assessing reproducibility

of protein measurements: we fitted a linear model (two-way ANOVA) to obtain

temporal and replicate effects. If a significant replicate effect existed, we deemed

the protein to be ‘non-reproducible’ and discarded it from further analysis.

Identification of histone acetylation regions. We compared the measurement

for each probe on the promoter array against the distribution of measurements

for all the negative control probes (null distribution), and calculated a P value for

every probe (Supplementary Fig. 9). We use a FDR cut-off of 0.1 on the P value

distribution to define which probes were acetylated and which were not.

Supplementary Fig. 10 shows example acetylation profiles that indicate the

acetylated regions and illustrate the main changes that occurred there.

Assessing experimental reproducibility and merging data. (1) Assessing repro-

ducibility of probes: for every microarray probe, we fitted a linear model30,35

(two-way ANOVA) to extract temporal and replicate effects. If a probe had a

significant replicate effect, we deemed it to be non-reproducible and discarded it

from further analysis. (2) Averaging probes that represent the same gene: for

RNA polymerase II and mRNA expression data, we performed a three-way

ANOVA with temporal, replicate and probe effects. Only genes with non-

significant probe effects were used for further analysis (that is, those for which

all probes behave coherently). For the histone acetylation data set, we averaged

acetylated probes in a 1-kilobase window around the transcription start position

(red lines in Supplementary Fig. 10 mark this region). (3) Combining gene

isoforms: data from different molecular layers were merged based on our ID

matching strategy (details later). For genes with more than one isoform, we

applied a three-way ANOVA to determine temporal, replicate and gene effects.

If the gene effect was significant (showing non-coherent behaviour), we discarded

the data. The data for each gene in each data set at each time point were averaged if

coherent behaviour was observed on both probe and gene levels.

ID matching. We matched protein IDs, microarray IDs, and MGI symbols (for

GoMiner) using Ensembl BioMart (http://www.ensembl.org/Multi/martview),

supplemented with protein information from the following databases: http://

www.ebi.uniprot.org/uniprot-srv/uniProtEntryListSearch.do; http://www.ncbi.

nlm.nih.gov/entrez/batchentrez.cgi?db5Nucleotide; and http://www.pir.uniprot.

org/search/idmapping.shtml. Histone acetylation ChIP-chip data were matched to

the RNA microarray data using the UCSC database and the Ensembl database. The

ID match file is included in the Supplementary Information.

Determining significance thresholds. For each of the four data sets, we com-

puted the standard deviations of each gene using values from the replicate

experiments. We then used the median value of the entire set of standard devia-

tions in each data set as an estimate of the experimental error. For each of the four

data sets, P values were independently computed using a Gaussian model for the

measurements of each gene, under the null hypothesis given by setting the mean

at zero, and the standard deviation at the experimental error estimate. Corrected

P value was then obtained using the FDR correction36. Up- and downregulated

genes were considered to be significant at a confidence level of a5 0.05. An

overview of the results is given in Supplementary Fig. 2, which shows the number

of up- and downregulated genes in all data sets and for genes with protein data.

Methods for Fig. 2a. The method we used to generate Fig. 2a is not a clustering

per se. Conventional clustering method is only applied at the very last step for

visualization, but does not determine the categories. Our method is basically an

iterative gene selection procedure, starting on the PRO level and working from

there ‘backwards’ to RNA, POL and finally to HIS. The step-by-step description

is as follows: (1) for each day, select all genes with significant protein changes.

Genes without significant protein changes are discarded. (2) Select all genes that

show a direction of change on the PRO level that is opposite to that on the RNA

level. These genes form category 1. (3) Select all genes that show the same

direction of change on PRO and RNA, but the opposite direction on POL.

These genes form category 2. (4) Select all genes that show the same direction

of change in PRO, RNA and POL, but the opposite direction in HIS. These genes

form category 3. (5) All remaining genes show the same direction of change in all

layers—PRO, RNA, POL and HIS. These genes form category 4. (6) Within each

category, we cluster the genes with standard hierarchical clustering (‘hclust’

function in R) using complete linkages and a Euclidean distance. This clustering

does not influence the definition of the four categories. It only improves the

‘readability’ of the resulting heatmap. Data are normalized within each column

(molecular layer).

Methods for Fig. 4 and online movies. We selected the 400 genes with the most

significant changes in protein expression on day 5. Because there are four time

points (days 0, 1, 3 and 5), the data from each molecular layer is a 400 3 4 matrix.

To consider correlations across layers, we first concatenated the time series from
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all four layers into a 400 3 16 data matrix D. To visualize systems-level regulatory
dynamics we then projected this data matrix onto a regular hexagonal array H by

assigning each row of the data matrix to a unique hexagon h in H. A hexagonal

array was chosen because it presents the data in a form that is easy to visualize. To

provide a continuous geometric object with no boundaries we associated the left-

and right-hand sides of the array with each other, and the top and the bottom of

the array with each other (to make the surface of a torus). These conditions

ensure that there are no special places on the array and all molecular species are

treated equally.

Not all arrangements of the data on the array will capture the system-level

regulatory dynamics equally well: most arrangements will not capture the col-

lective dynamics because molecular species with similar expression patterns will

not be close to each other on the array. To construct an arrangement that best

captures collective dynamics we assigned to each arrangement a fitness

Fit~
1

2,400

X400

i~1

X

j[Nj

Cij ;

in which Cij is the Pearson’s correlation coefficient between the time series i and j,

and Nj are the six neighbours of the hexagon hj. Fit measures how well a given

arrangement captures the collective dynamics of the system in general: arrange-

ments with low fitness do not capture system-level dynamics, whereas arrange-

ments with high fitness capture system-level dynamics well. To find the

arrangement of the time series on the array with the maximal fitness we used a

simulated annealing algorithm, and ran the annealing algorithm overnight

(12 h) to ensure as close to an optimal arrangement as possible.

Movies of systems-level dynamics were then generated by dynamically assign-

ing colours to each of the hexagons in the array based upon the expression fold

changes of the gene to which it is assigned. To create a movie that interpolates

smoothly between time-points, each time series was normalized such that all
expression series range from 0 to 1 and a piecewise cubic Hermite interpolation

was implemented before visualization. Similar movies can be created using

GATE (http://amp.pharm.mssm.edu/

maayan-lab/gate.htm), a system we developed for this purpose.

We note here that the clustering technique we have used is similar to a self-

organizing map (SOM), and the movies we create are similar to those created by

the Gene Expression Dynamics Inspector (GEDI)37 using SOMs. Given a set of

time-series data describing expression changes in a large number of genes, the

GEDI uses SOMs to project the expression time series onto a two-dimensional

rectangular array, and colours rectangles according to the genes to which they are

associated. However, because the GEDI uses a SOM, individual rectangles are

associated with a cluster of genes that share similar expression patterns. In our

study, we are concerned with the gene expression at different molecular layers.

Thus it was important to track the molecular regulation of individual (rather than

clusters of) genes. For this reason, we used the above custom-written algorithm

that assigns molecular species to hexagons in a strictly one-to-one manner.

Code and software. Data pre-processing, data normalization and large parts of

the analysis were performed in the computing languages Python and R (http://

www.r-project.org/) using packages available from the Bioconductor website

(http://www.bioconductor.org/). In particular, we relied on the limma package

(http://bioinf.wehi.edu.au/limma/) including the Norm-Exp model for back-

ground correction as described previously33. To create Fig. 4, we used GATE

(http://amp.pharm.mssm.edu/maayan-lab/gate.htm) and AS3/Flash. Our pre-

processing and analysis pipeline is available from the authors on request.
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