Introduction to Statistical Measurement and Modeling

Lab 3: Linear Regression

1 Matrix representation for regression model
Var(Y) = E[Y - EY)][Y-E(Y)]"

Var(AY) = AXAT

Y = XfG+e¢
e ~ (0,0%)

The least square estimate (5. = (X7 X)"!XTY is unbiased. Var(B.) =

geometric interpretation.

With the assumption that € is normally distributed, we have

Blse ~ Np(ﬂv(XTX)ilo-Q)

2 Leverage

In simple linear regression Y; = o + 6X; + e;, FE(e;) = 0, we have

5 = E(Yi—?)(Xi—X):A oy
S -0 M ax
zé}? § (X; — X)?
= Z(X X szﬁz
_ (xG-X)?
w; = Z(X X2 leverage
a = Y -p4X

=X

(2)
(XTX)~1o2. Tt also has nice



Generally, we have

Y = X3
X(XTx)"1xTy
= HY (4)
H is called the hat matrix. And
E@ = 0
Var(é) = o*(I-H)
ie., Var(¢) = o*(1— hy)
hii = o(XTX) "ty (5)
3 Regression diagnose
¢ R-Squared
SSR
= SST
(6)
e Scatterplots

pair-wise relation among variables

Residual plots(rvfplot)
Examine the independence and normality assumption of the error term. Also check the appro-
priateness of the model.

Adjusted variable plots (Avplots)

Suppose the model is Y = Gy + 61 X1 + f2X2 + €. We want to demonstrate the relation between
dependent variable Y and a single covariate X7, while adjusted for other covariates. It can also
help to find the influential point in the particular variable.

(a). Regress Y on X5 and get residual e(Y'| X2);
(b). Regress X; on Xy and get the residual e(X;|X2)
(c). Plot e(Y|X2) against e(X1]|X2)

It turns out that the slope of e(Y|X2) e(X7]|X2) is the same as the slope for X in the original
MLR model.
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Im{Temperature -~ Latitude +

4 ANCOVA

Longitude + Altitude)

Im{Temperature ~ Latitude + Longitude + Altitude)

How much the association of Y and X, differs across levels of X57

Y = B0+ 1 X1 + foXo + B3 X1 Xo + €
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