Lab 4: More on Regression

1 \(t \) and F distribution

\(\chi^2_d \) can be generated by the sum square of \(d \) independent variables with standard normal distribution. i.e.

\[
X = Z_1^2 + Z_2^2 + \cdots + Z_d^2 \sim \chi^2_d
\]
\[
Z_i \sim N(0, 1), \text{ i.i.d}
\]
\[
E(X) = d
\]

Student’s t distribution \(t_d \) with degree of freedom \(d \) is defined as the probability distribution of

\[
W := \frac{Z}{\sqrt{V/d}}, \text{ where}
\]
\[
Z \sim N(0, 1)
\]
\[
V \sim \chi^2_d
\]
\[
Z \perp V
\]

![Figure 1: From Wikipedia](image)

The curve of \(t \) distribution is symmetric around the origin. When \(d \to \infty \), \(W \to N(0, 1) \) in distribution by law of large numbers.
F distribution $F(d_1, d_2)$ with degrees of freedom d_1, d_2 is defined as the distribution of $\frac{V_1/d_1}{V_2/d_2}$, where
\begin{align*}
V_1 & \sim \chi^2_{d_1} \\
V_2 & \sim \chi^2_{d_2} \\
V_1 & \perp V_2
\end{align*}

(3)

F distribution is nonnegative and $F(1, d) = t^2_d$.

\[2\] Generalized Least Squares (GLS)

Suppose $\text{cov}(Y) = \Sigma$, where Σ could be independent, exchangeable, autoregressive or unstructured. Decompose the covariance matrix to be $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$. If we transform the model to be

\begin{align*}
Y^* &= \Sigma^{-1/2}Y \\
&= \Sigma^{-1/2}X\beta + \Sigma^{-1/2}\epsilon \\
&= X^*\beta + \epsilon^*
\end{align*}

(5)

Then $\text{cov}(\epsilon^*) = I$ and the model goes back to the ordinary least square(OLS) problem. The GLS gives

$$\beta^* = (X^T\Sigma^{-1}X)^{-1}(X^T\Sigma^{-1}Y)$$

(6)

β^* is the BLUE.
3 Generalized Linear Model

\[Y \sim EF(\theta, \phi) \]
\[f(y, \theta, \phi) = \exp\left\{ \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right\} \]
\[\mu = E(y) \]
\[\eta = g(\mu) \]
\[\eta = \beta_0 + \sum_j \beta_j x_{ij} \quad (7) \]

\(g(\cdot) \) is called the link function. Normal, Exponential, Bernoulli, \cdots \text{ etc.} \text{ belong to the exponential family.}

- If \(y \)'s are \(0-1 \) data following Bernoulli(\(p \)). \(a(\phi) = 1, \theta = \text{logit} p \). If we let \(g(\mu) = \text{logit} \mu \), we have the logistic regression model. \(g \) is the canonical link.

- If \(y \)'s are counts distributed as Poisson(\(\lambda \)), e.g. number of events per unit time. \(\theta = \text{log} \lambda \). If we let \(g(\mu) = \text{log} \lambda \), we have the log-linear model. The coefficient \(\beta_1 \) can be interpreted as the relative risk of disease caused with one unit increase of \(X_1 \) with other covariates fixed.