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Little space between genes



Chromosome bands
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What is the structure of known and unknown transcripts
Changes in splicing

Gene expression

Transcript expression

Allele specific expression



Take tissue sample from individual
Extract RNA from tissue sample

Convert RNA to DNA
Sequence DNA



Take tissue sample from individual
Extract RNA from tissue sample

Convert RNA to DNA
Sequence DNA

All of the above induces technical variation.
Several steps are independent of technology.

Also: day-to-day, laboratory, experimenter, machine



The current standard protocol for RNA-Seq is

Extraction of RNA, polyA purification

Fragmentation of RNA

Reverse transcription of RNA to cDNA (using random hex.)
Ligation of adapters

Size selection ~ 200bp (perhaps ~300bp)

PCR amplification (15 rounds or so)

Injection into flowcell

This produces reads from polyadenylated RNA without strand
information.



The current standard protocol for RNA-Seq is

Extraction of RNA, polyA purification

Fragmentation of RNA

Reverse transcription of RNA to cDNA (using random hex.)
Ligation of adapters

Size selection ~ 200bp (perhaps ~300bp)

PCR amplification (15 rounds or so)

Injection into flowcell

This produces reads from polyadenylated RNA without strand
information.

Variants

ribominus instead of polyA purification

strand specificity

small RNA sequencing (direct ligation of adaptors to RNA)
[ oligo(dT) priming instead of random hexamer priming ]
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Pepke (2009) Nat. Methods
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Gene by Sample
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Gene model + overlap rule = gene x sample matrix

(like microarrays)

Much work by statisticians re. inferring changes between
conditions (differential expression).

Count data (many zeroes, very large range)

how do we model biological variability



We need to control for
sequencing depth
gene length

Mortazavi (2008) Nat. Methods introduced “RPKM’",

X(g,1)
L(g)N (i)

RPKM(g, i) =
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Mortazavi (2008) Nat. Methods



Marioni (2008) Genome Res. showed that technical replicates
are poisson.

X (g,1) ~ Poisson(A;N (7))

Bullard (2010) BMC Bioinformatics confirmed and extended to
library preparation.

None of these papers looked at biological replicates or RNA
extraction. Only the technical variation introduced by the

sequencing machine.



Several papers have considered more complicated count
models, especially the negative binomial.

We have tricks for borrowing strength across genes.

X(g,i) ~ F(6(9), N(i))

Key papers are
Anders (2010) Genome Biology ["DESeq"]
Hardcastle (2010) BMC Bioinformatics [“baySeq”]
McCarthy (2012) Nucleic Acids Res [‘edgeR"]

Implementations in Bioconductor. Things change fast.



We need values of N(i) (“sequencing depth”) or (“size factor”)

Naive estimates:
Number of reads
Number of mapped reads

Several (scale) normalization methods exist.
Bullard (2010) BMC Bioinformatics (“upper quartile”)

Robinson (2010) Genome Biology (“TMM")
Anders (2010) Genome Biology

This is especially an issue when comparing very different
samples. For example, between tissue types.

Langmead (2010) Genome Biology shows that it may be a good
idea to use a gene-specific normalization factor.
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- Hansen (2012) Biostatistics (“CQON")- - — -
Also Risso (2011) BMC Bioinformatics (“EDAseq”)



Biological variability
Need for normalization
Issues with length, GC content, ?

Models for count data, borrowing strength across genes

... but all of this addresses a question we could have answered
using microarrays



A look at the data
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Base effect - single sample
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Base effect - multiple samples
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Base effect - different study (and prep)
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Reproducible base effect - like probe affinities in microarrays.

Seems to be prep dependent.

)
Creates issues for comparing different
regions in the genome.
Less of an issue for comparing the
same region across samples?
N 9
<=




Nucleotide content bias
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Hansen (2010) Nucleic Acids Res



Unadjusted counts

A sample of papers =
Hansen (2010) Nucleic Acids Res
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Mapping reads to the transcriptome

Transcripto

Well established

lllustration idea from Lior Patcher



Junction read
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De novo assembly of the transcriptome

Highly expressed gene g T 2 aa Read coverage must
be high enough to build
Lowly expressedgene  _  wm EST contigs (solid bar)
AAA
Map onto the genome
— Read mapper must
—— E— ey
e e e e - am  a= support splitting reads
to record splices
C
Map onto the genome and splice junctions
e = —_—— = = - Splice junctions
1 sequences from
T i B either annotations
L - i § or inferred

Pepke (2009) Nat Methods



Map to known junctions (or to known transcripts, but that
involves a lot of bookkeeping).

Map to combination of known exons.

Map completely de-novo using canonical acceptor and donor
sites. (huge!)

Map de-novo, but constrain the search to canonical acceptor
and donor sites between and in transcribed region: transcript

assembly. (TopHat).
Paired-end data will help with this.



Annotated Junctions (n=58,212)

40%

30% —

20%

10%

0%

% of Total Annotated Junctions

1+ Offsets 2+ Offsets 3+ Offsets 4+ Offsets 5+ Offsets
Randomly Generated Junctions (n=5,409,600)

0.070%

0.053%

0.035%

0.018%

% of Total Random Junctions

0% - - —
1+ Offsets 2+ Offsets 3+ Offsets 4+ Offsets 5+ Offsets



Hard to map near splice sites (both de-novo and known)

Similar regions of the genome +

error in reads +
differences between sample and reference
= possibility of mapping errors. Still no real understanding.

Do not underestimate this aspect of the data.



Assembly
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Step 1

Step 2

Steps 3—4

Step 5

Steps 6-18
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Extremely fast, general purpose short read aligner
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TopHat
Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites
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Cufflinks package

Cufflinks
I Assembles transcripts

-
[
j Cuffcompare I
I Compares transcript assemblies to annotation :

[
Cuffmerge [
1 Merges two or more transcript assemblies :

Cuffdiff :
Finds differentially expressed genes and transcripts |
Detects differential splicing and promoter use [

CummeRbund
Plots abundance and differential
expression results from Cuffdiff

Trapnell (2012) Nat. Protocols



