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ABSTRACT 

 

One of the advantages of event-related fMRI is that it permits estimation of the shape of 

the hemodynamic response (HRF) elicited by cognitive events.  Although studies to date 

have focused almost exclusively on the magnitude of evoked HRFs across different tasks, 

there is growing interest in testing other statistics, such as the time-to-peak and duration 

of activation as well.  Although there are many ways to estimate such parameters, we 

suggest three criteria for optimal estimation: 1) the relationship between parameter 

estimates and neural activity must be as transparent as possible, 2) parameter estimates 

should be independent of one another, so that true differences in one parameter (e.g. 

delay) are not confused for apparent differences in other parameters (e.g. magnitude), and 

3) statistical power should be maximized.  In this work, we introduce a new modeling 

technique, based on the superposition of three inverse logit functions (IL), designed to 

achieve these criteria.  In simulations based on real fMRI data, we compare the IL model 

with several other popular methods, including smooth finite impulse response (FIR) 

models, the canonical HRF with derivatives, nonlinear fits using a canonical HRF, and a 

standard canonical model.  The IL model achieves the best overall balance between 

parameter interpretability and power.  The FIR model was the next best choice, with 

gains in power at some cost to parameter independence.  We provide software 

implementing the IL model. 
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INTRODUCTION 

 

Linear and nonlinear statistical models of fMRI data simultaneously incorporate 

information about the shape, timing, and magnitude of task-evoked hemodynamic 

responses.  Most brain research to date has focused on the magnitude of evoked 

activation, although magnitude cannot be measured without assuming or measuring 

timing and shape information as well.  Currently, however, there is increasing interest in 

measuring onset, peak latency and duration of evoked fMRI responses (Bellgowan, Saad, 

& Bandettini, 2003; Henson, Price, Rugg, Turner, & Friston, 2002; Hernandez, Badre, 

Noll, & Jonides, 2002; Menon, Luknowsky, & Gati, 1998; Miezin, Maccotta, Ollinger, 

Petersen, & Buckner, 2000; Rajapakse, Kruggel, Maisog, & von Cramon, 1998; Saad, 

DeYoe, & Ropella, 2003).  Measuring timing and duration of brain activity has obvious 

parallels to the measurement of reaction time widely used in psychological and 

neuroscientific research, and thus may be a powerful tool for studying brain correlates of 

human performance.  Recent studies, for instance, have found that although event-related 

BOLD responses evolve slowly in time, meaningful latency differences between 

averaged responses on the order of 100-200 ms can be detected  (Aguirre, Singh, & 

D'Esposito, 1999; Bellgowan, Saad, & Bandettini, 2003; Formisano & Goebel, 2003; 

Formisano et al., 2002; Henson, Price, Rugg, Turner, & Friston, 2002; Hernandez, Badre, 

Noll, & Jonides, 2002; Liao et al., 2002; Richter et al., 2000).  In addition, accurate 

modeling of hemodynamic response function (HRF) shape may prevent both false 

positive and negative results from arising due to ill-fitting constrained canonical models 

(Calhoun, Stevens, Pearlson, & Kiehl, 2004; Handwerker, Ollinger, & D'Esposito, 2004).  
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A number of fitting procedures exist that potentially allow for characterization of 

the latency and duration of fMRI responses. It requires only a model that extracts the 

shape of the hemodynamic response function (HRF) to different types of cognitive 

events.  In analyzing the shape, summary measures of psychological interest (e.g., 

magnitude, delay, and duration) can be extracted.  In this paper, we focus on the 

estimation of response height (H), time-to-peak (T), and full-width at half-max (W) as 

potential measures of response magnitude, latency, and duration (Fig. 1).  These are not 

the only measures that are of interest—time-to-onset is also important, though it appears 

to be related to T but less reliable (Miezin et al., 2000)—but they capture some important 

aspects of the response that may be of interest to psychologists, as they relate to the 

latency and duration of brain responses to cognitive events.  As we show here, not all 

modeling strategies work equally well for this purpose—i.e., they differ in the validity 

and the statistical precision of the estimates they provide.   

 Ideally, estimated parameters of the HRF (e.g., H, T, and W) should be 

interpretable in terms of changes in neuronal activity, and they should be estimated such 

that statistical power is maximized.  The issue of interpretability is complex, as the 

evoked HRF is a complex, nonlinear function of the results of neuronal and vascular 

changes (Buxton, Wong, & Frank, 1998; Logothetis, 2003; Mechelli, Price, & Friston, 

2001; Vazquez & Noll, 1998; Wager, Vazquez, Hernandez, & Noll, 2005).  Essentially, 

the problem can be divided into two parts, shown in Figure 2.   

 The first issue is the question of whether changes in physiological, neuronal-level 

parameters (such as the magnitude, delay, and duration of evoked changes in neuronal 

activity) translate into changes in corresponding parameters of the HRF.  Potential 
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relationships are schematically depicted on the left side of Figure 2.  Ideally, changes in 

neuronal parameters would each produce unique changes in one parameter of the HR 

shape, shown as solid arrows.  However, neuronal changes may produce true changes in 

multiple aspects of the HR shape, as shown by the dashed arrows on the left side of 

Figure 2.  The second issue is whether changes in the evoked HR are uniquely captured 

by parameter estimates of H, T, and W.  That is, whatever combination of neuro-vascular 

effects leads to the evoked BOLD response, does the statistical model of the HRF recover 

the true magnitude, time to peak, and width of the response? This issue concerns the 

accuracy of the statistical model of the evoked response and the independence of H, T, 

and W parameter estimates, irrespective of whether the true HR changes were produced 

by uniquely interpretable physiological changes. 

 In this paper, we start from the assumption that meaningful changes can be 

captured in a linear or nonlinear time-invariant system, and chiefly address the second 

issue of whether commonly used HR models can accurately estimate true changes in the 

height, time to peak, and width of HR responses.  That is, we assess the interpretability of 

H, T, and W estimates (right boxes in Fig. 2) given true changes in the shape of the 

evoked signal response (center boxes in Fig. 2).    

Importantly, however, the complex relationship between neuronal activity and 

evoked signal response also places important constraints on the ultimate neuronal 

interpretation of evoked fMRI signal.  While a full analysis of BOLD physiology is 

beyond the scope of the current work, we provide a brief analysis of some important 

constraints in the discussion, and refer the reader to more detailed descriptions of BOLD 

physiology (Buxton, Wong, & Frank, 1998; Logothetis, 2003; Mechelli, Price, & Friston, 
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2001; Vazquez & Noll, 1998; Wager, Vazquez, Hernandez, & Noll, 2005).  In spite of 

this limitation, the estimation of the magnitude, latency, and width of empirical BOLD 

responses to psychological tasks is of great interest, because these responses may provide 

meaningful brain-based correlates of cognitive activity (e.g., Bellgowan, Saad, & 

Bandettini, 2003; Henson et al., 2002). 

 

To assume or not to assume? 

Typically used linear and nonlinear models for the HRF vary greatly in the degree 

to which they make a priori assumptions about the shape of the response.  In the most 

extreme case, the shape of the HRF is completely fixed; a canonical HRF is assumed, and 

the height (i.e., amplitude) of the response alone is allowed to vary (Worsley & Friston, 

1995).  The magnitude of the height parameter is taken to be an estimate of the strength 

of activation.  By contrast, one of the most flexible models, a finite impulse response 

(FIR) basis set, contains one free parameter for every time-point following stimulation in 

every cognitive event type modeled (Glover, 1999; Goutte, Nielsen, & Hansen, 2000; 

Ollinger, Shulman, & Corbetta, 2001).  Thus, the model is able to estimate an HRF of 

arbitrary shape for each event type in each voxel of the brain.  A popular related 

technique is the selective averaging of responses following onsets of each trial type 

((Dale & Buckner, 1997; Maccotta, Zacks, & Buckner, 2001); a time x condition 

ANOVA model is often used to test for differences between event types).  

Many basis sets fall somewhere midway between these two extremes and have an 

intermediate number of free parameters, providing the ability to model a family of 

plausible HRFs throughout the brain.  For example, a popular choice is to use a canonical 
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HRF and its derivatives with respect to time and dispersion (we use TD to denote this 

hereafter (Friston, Josephs, Rees, & Turner, 1998; Henson, Price, Rugg, Turner, & 

Friston, 2002)).  Such approaches also include the use of basis sets composed of principal 

components (Aguirre, Zarahn, & D'Esposito, 1998; Woolrich, Behrens, & Smith, 2004), 

cosine functions (Zarahn, 2002), radial basis functions (Riera et al., 2004), spline basis 

sets, and a Gaussian model (Rajapakse, Kruggel, Maisog, & von Cramon, 1998).  

Recently a method was introduced (Woolrich, Behrens, & Smith, 2004), which allows the 

specification of a set of optimal basis functions. In this method a large number of sensibly 

shaped HRFs are randomly generated, and singular value decomposition is used on the 

set of functions to find a small number of basis sets that optimally span the space of the 

generated functions. Another promising approach uses spectral basis functions to provide 

independent estimates of magnitude and delay in a linear modeling framework (Liao et 

al., 2002).  

Because linear regression is limited in its ability to provide independent estimates 

of multiple parameters of the HRF, a number of researchers have used nonlinear fitting of 

a canonical function with free parameters for magnitude and onset/peak delay (Kruggel & 

von Cramon, 1999; Kruggel, Wiggins, Herrmann, & von Cramon, 2000; Miezin, 

Maccotta, Ollinger, Petersen, & Buckner, 2000).  The most common criticisms of such 

approaches are their computational costs and potential convergence problems, although 

increases in computational power make nonlinear estimation over the whole brain 

feasible.  

In general, the more basis functions used in a linear model or the more free 

parameters in a nonlinear one, the more flexible the model is in measuring the magnitude 



HEMODYNAMIC RESPONSE MODELING  8 

and other parameters of interest.  However, flexibility comes at a cost: More free 

parameters means more error in estimating them, fewer degrees of freedom, and 

decreased power and validity if the model regressors are collinear.  In addition, even if 

the basis functions themselves are orthogonal, as with a principal components basis set, 

this does not guarantee that the regressors, which model multiple overlapping events 

throughout an experiment, are orthogonal.  Finally, it is easier and statistically more 

powerful to interpret differences between task conditions (e.g., A – B) on a single 

parameter such as height than it is to test for differences in multiple parameters (A1A2A3 

– B1B2B3)—conditional, of course, on the interpretability of those parameter estimates.  

The temporal derivative of the canonical SPM HRF, for example, is not uniquely 

interpretable in terms of activation delay; both magnitude and delay are functions of the 

two parameters (Calhoun, Stevens, Pearlson, & Kiehl, 2004; Liao et al., 2002). 

 All these problems suggest that using a single, canonical HRF is a good choice.  

Indeed, it offers optimal power if the shape is specified exactly correctly.  However, the 

shape of the HRF varies as a function of both task and brain region, and any fixed model 

is bound to be wrong in much of the brain (Birn, Saad, & Bandettini, 2001; Handwerker, 

Ollinger, & D'Esposito, 2004; Marrelec, Benali, Ciuciu, Pelegrini-Issac, & Poline, 2003; 

Wager, Vazquez, Hernandez, & Noll, 2005). If the model is incorrectly specified, then 

statistical power will decrease, and the model may also produce invalid and biased 

results.  In addition, using a canonical HRF provides no way to assess latency and 

duration—in fact, differences between conditions in response latency will be confused for 

differences in amplitude (Calhoun, Stevens, Pearlson, & Kiehl, 2004). 
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Thus, neither the fixed-response nor the completely flexible response appear to be 

optimal solutions, and using a restricted set of basis functions is an alternative that may 

preserve validity and power within a plausible range of true HRFs (Woolrich, Behrens, & 

Smith, 2004).  However, an advantage of the more flexible models is that height, latency, 

and response width (duration) can potentially be assessed.  This paper is dedicated to 

consideration of the validity and power of such estimates using several common basis 

sets. In this work, we also introduce a new technique for modeling the HRF, based on the 

superposition of three inverse logit functions (IL), which balances the need for both 

interpretability and flexibility of the model.  In simulations based on actual HRFs 

measured in a group of 10 participants, we compare the performance of this model to four 

other popular choices of basis functions.  These include an enhanced smooth FIR filter 

(Goutte, Nielsen, & Hansen, 2000), a canonical HRF with time and dispersion derivatives 

(TD; (Calhoun, Stevens, Pearlson, & Kiehl, 2004; Friston, Josephs, Rees, & Turner, 

1998)), the nonlinear fit of a gamma function used by Miezin et al. (NL, (Miezin, 

Maccotta, Ollinger, Petersen, & Buckner, 2000)) and the canonical SPM HRF (Friston, 

Josephs, Rees, & Turner, 1998).  We show that the IL model can capture magnitude, 

delay, and duration of activation with less error than the other methods tested, and 

provides a promising way to flexibly but powerfully test the magnitude and timing of 

activation across experimental conditions.   

What makes a good model?   

Ideally, differences in estimates of H, T, and W across conditions would reflect 

differences in the height, time-to-peak, and width of the true BOLD response (and, 

ideally, unique changes in corresponding neuronal effects as well, though this is unlikely 
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under most conditions due to the complex physiology underlying the BOLD effect). 

These relationships are shown as solid lines connecting true signal responses and 

estimated responses in the right side of Fig. 2.  A 1:1 mapping between true and 

estimated parameters would render estimated parameters uniquely interpretable in terms 

of the underlying shape of the BOLD response. As the example above illustrates, 

however, there is not always a clean 1:1 mapping, indicated by the dashed lines in Fig 2.  

True differences in delay may appear as estimated differences in H (for example), if the 

model cannot accurately account for differences in delay. This potential for cross-talk 

exists among all the estimated parameters. We refer to this potential as confusability, 

defined as the bias in a parameter estimate that is induced by true changes in another 

nominally unrelated parameter. In our simulations, based on empirical HRFs, we 

independently varied true height, time to peak, and response width (so that the true values 

are known).  We show that there is substantial confusability between true differences and 

estimates, and that this confusability is dependent on the HRF model used. Thus, the 

chosen modeling system places practical constraints on the interpretability of H, T, and 

W estimates. 

Of course, the interpretability of H, T, and W estimates also depends on the 

relationship between underlying changes in neural activity and changes in the magnitude 

and shape of the true fMRI signal (Buckner, 2003; Buxton, Wong, & Frank, 1998; 

Logothetis, 2003; Riera et al., 2004), shown by solid arrows (expected relationships) and 

dashed arrows (problematic relationships) on the left side of Fig 2.  Underlying BOLD 

physiology limits the ultimate interpretability of the parameter estimates in terms of 

physiological parameters—e.g., prolonged changes in postsynaptic activity.  Because of 
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the complexity of making such interpretations, we do not attempt to relate BOLD signal 

to underlying neuronal activity, but rather treat the evoked HRF as a signal of interest.  

Future work may provide the basis for more accurate models of BOLD responses with 

physiological parameters that can be practically applied to cognitive studies (e.g., 

Buxton, Wong, & Frank, 1998).  For the present, we feel it is important to acknowledge 

some of the theoretical limitations imposed by BOLD physiology on the interpretation of 

evoked BOLD magnitude, latency, and response width, and thus we return to this point in 

the following sections.   

 

 

METHODS 

 
In this section we introduce a method for modeling the hemodynamic response 

function, based on the superposition of 3 inverse logit (IL) functions, and describe how it 

compares to four other popular techniques — a non-linear fit on two gamma functions 

(NL), the canonical HRF + temporal derivative (TD), a finite impulse response basis set 

(FIR), and the canonical SPM HRF (Gam) — in simulations based on empirical fMRI 

data. 

 

Overview of the Models 

We begin with an overview of the models included in our simulation study. 

(i)  The Inverse Logit Model 

The logit function is defined as x = log p(1− p)−1( ), where p takes values between 

0 and 1. Conversely, we can express p in terms of x as  
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p =
ex

1+ ex =
1

1+ e−x .        (1) 

 

This function is typically referred to as the inverse logit function and an example is 

shown in Fig. 3A. In the continuation we will denote this function as )(xL , i.e. pxL =)( .    

It is important to note a number of important properties of L(x) . It is an increasing 

function of x, which takes the values 0 and 1 in the limits. In addition, 5.0)( =− TtL  

when Tt = . 

To derive a model for the hemodynamic response function that can efficiently 

capture the details that are inherent in the function, such as the positive rise and the post-

activation undershoot, we will use a superposition of three separate inverse logit 

functions. The first describing the rise following activation, the second the subsequent 

decrease and undershoot, while the third describes the stabilization of the HRF, shown in 

Fig. 3A-C.  

Our model of the hemodynamic response function, h(t) , can therefore be written 

in the following form: 

 

( ) ( ) ( )333222111 )()()()|( DTtLDTtLDTtLth −+−+−= αααθ . (2) 

 

In this particular model the function h(t)  will be based on nine variable parameters 

(seven free parameters after imposing additional constraints), given by 

),,,,,,,,( 333222111 DTDTDT αααθ = . The α  parameters control the direction and 
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amplitude of the curve. If α  is positive, )(xL⋅α will be an increasing function that takes 

values between 0 and α . If α  is negative, )(xL⋅α will be a decreasing function that 

takes values between 0 and α− . The parameter T is used to shift the center of the 

function T time units. In effect it defines the time point, x, where L(x) =1 2  and can be 

used as a measure of the time to half-peak. Finally the parameter D controls the angle of 

the slope of the curve, and works as a scaling parameter.  

In our implementation of the model we begin by constraining the amplitude of the 

third inverse logit function, so that the fitted response ends at magnitude 0, by setting 

123 ααα −= . In addition we want the function );( θth  to begin at zero at the time point 

0=t . Therefore we place the constraint h(0 |θ) = 0on the model, which implies that  

 

( )
( ))()(

)()(

2233

1133
12 DTLDTL

DTLDTL
−+−
−−−

= αα .    (3)  

 

By applying these two constraints on the amplitude of the basis functions, this 

leads to a model with 7 variable parameters.  Fig. 3A–C shows an example of how 

varying the parameters can control the shape of the function )(xL . By superimposing 

these three curves we obtain the function depicted in Fig. 3D, which shows an example of 

an IL fit (solid line) to an empirical HRF (dashed line). Note that this function efficiently 

captures the major details typically present in the HRF and illustrates how effective three 

inverse logit functions can be in describing its basic shape. 
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The interpretability of the parameters in the model are increased if the first and 

second and the second and third IL functions are made as orthogonal as possible to one 

another. This will be true if the following conditions hold: 

 

T2 − T1 > (D1 + D2)k       (4) 

and 

T3 − T2 > (D2 + D3)k ,      (5) 

 

where k is a constant (see Appendix for more details). To ensure that these constraints 

hold, restrictions can be placed on the space of possible parameter values allowed in 

fitting the model. 

 

Problem Formulation 

Let us define ( )θ|tf  to be the convolution between the IL model for the 

hemodynamic response, denoted by ( )θ|th , and a known stimulus function, )(ts . Our 

non-linear regression model for the fMRI response at time it  can be written as 

  

( ) iii tfy εθ += |        (6) 

 

where ( )2,0~ σε VNi . In matrix format we can write this as 

 

( ) EXFY += θ;        (7) 
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where ( )T
NyyY K,1= is the data vector, ( )T

NE εε K,1=  is a noise vector and 

( ) ( ) ( )( )T
NtftfXF θθθ ;,,;; 1 K= .  

 The goal of our analysis is to find the parameters *θ  such that the model best fits 

the data in the least-squares sense, i.e. we seek 

 

( )θθ Sminarg* =        (8) 

where  

 

( ) ( )( ) ( )( )θθθ ;; 1 XFYVXFYS T −−= −  .    (9) 

 

Under the assumption that the noise is independent and identically distributed (iid), then 

IV =  and Eq. (9) can be written on the form 

 

( ) ( )( )∑
=

−=
n

i
ii tfyS

1

2;θθ .      (10) 

 

In this situation the value *θ  that maximizes ( )θS  is equivalent to the maximum 

likelihood estimate (MLE) of θ . 

It is well-known that fMRI noise typically exhibits temporal dependence and it is 

crucial that this dependence be taken into consideration when fitting the model. In our 

implementation we assume that the noise term can be modeled using an AR(1) model. 

As ( )θ;XF  is a non-linear function in θ , the process of finding the parameters that 
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maximize Eq. (9) will almost always involve using an iterative search method. In order to 

speed-up the computational efficiency of the applied algorithm, we would like to avoid 

repeatedly inverting the matrix V . Under the assumption of AR(1) noise we can 

fortunately express the inverse of V  as, 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−

−

=−

100
0

00
00

0
001

1

φ
φ

φφ
φφ

φ

OOM

OOOM

LL

d
d

V      (11) 

 

where 21 φ+=d . Using this expression allows us to circumvent the need for repeated 

inversion of the correlation matrix and we can rewrite Eq. (9) as 

 

( ) ( ) ( )∑
=

−−+−=
n

i
ii zzzS

2

2
1

22
1 1, φφφθ      (12) 

where 

)|( θiii tfyz −= .       (13) 

 

Note that for 0=φ , the cost functions defined in Eqs. (9) and (12) are equivalent. In the 

continuation we will include the φ  term when referring to θ , i.e. ),( φθθ = . 

The optimization problem stated in Eq. (12) can be solved using a number of 

different methods. Traditionally deterministic methods for solving the problem have been 
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used, but recently with increased computational power stochastic approaches have 

received increased attention. 

 

Deterministic Solutions 

The optimization problem stated in Eq. (8) can be solved using numerical 

algorithms such as the Gauss-Newton or Levenberg-Marquardt algorithms. Both these 

methods are iterative and make use of the Jacobian of the objective function at the current 

solution. In addition, they both have fast rates of convergence. The Gauss-Newton has 

quadratic convergence, which implies that there exists a constant 0>µ  such that  

 

µ
θθ

θθ
=

−

−+
2

1

k

k

k
iml       (14) 

 

for each iteration k, where kθ  denotes the estimate of the parameter vector after the kth 

iteration and θ  the true minimum. The Levenberg-Marquardt algorithm combines the 

Gauss-Newton algorithm with the method of gradient descent to guarantee convergence 

with quadratic convergence near the minimum. Though the convergence properties are 

comparable, the Levenberg-Marquandt algorithm is more robust, in the sense that it is 

able to find a solution even if it starts out far away from the final minimum.  Both the 

Gauss-Newton and Levenberg-Marquardt algorithms are easily implemented for the IL 

model, using the fact that the inverse logit function has a straightforward 

derivative ))(1)(()(' xLxLxL −= . 
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Stochastic Solutions 

The problem with deterministic methods is that they always converge to the 

nearest local minimum-error from the initial value, regardless of whether it is a local or 

global minimum. Hence, the parameter estimate is strongly dependent on the initial 

values given to the algorithm. As it is common for non-linear functions to have multiple 

local minima in addition to the global minimum that is being sought, it may be beneficial 

to use a stochastic approach that samples points across all of parameter space, as they are 

less likely to converge to a local minimum. Though such methods are computationally 

slower than deterministic methods, they are more likely to find the global extreme point 

and will at the very least allow us to investigate whether the fits obtained using the faster 

deterministic methods are accurate.  

The simulated annealing algorithm (Metropolis et al. 1953, Kirkpatrick et al. 

1983) is one such approach, which involves moving about randomly in parameter space 

searching for a solution that minimizes the value of the cost function. This method allows 

for an initially wide exploration of parameter space, which is increasingly narrowed 

about the global extreme point as the method progresses. This is possible, as the 

algorithm employs a random search which not only accepts changes that lead to a 

decrease in the value of the cost function, but also some changes that increase it.  

There are four steps to implementing the simulated annealing algorithm: 

 

1. Choose an initial value for the parameter vector 0θ . (Unlike the L-M 

algorithm this choice is not critical). 
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2. Choose a new candidate solution, 1+iθ , based on a random perturbation 

of the current solution of iθ . 

3. If the candidate solution decreases the error, as defined by the cost 

function )(θS  (Eq. 12), then automatically accept the new solution. If 

the error increases, accept the candidate solution with probability 

{ }1),/))()(exp((min 1 iii SS τθθ +− , where iτ  is the so-called temperature 

function at iteration i. The temperature function decreases for each 

iteration of the algorithm and as 0→iτ  the parameters will only be 

updated if 0<∆h . 

4. Update iτ  to 1+iτ  and repeat from step 2. 

 

Setting the temperature function is a critical part of the simulated annealing method, as 

high values of τ  give wider exploration, and less chance of getting stuck in a local 

minimum, while lower values reduce the likelihood of moving unless the error is 

decreased.  By starting out with a large value of  τ  and letting it converge to zero, we are 

allowing for a wide exploration in the beginning of the algorithm, which will narrow as 

the number of iterations increase. If the temperature function is allowed to decrease at a 

slow enough pace the global minimum can be reached with probability 1. However, it is 

typically not practical to use such a slowly decreasing schedule, and therefore it can not 

be guaranteed that a global optimum will be reached. 

The candidate solution is obtained by perturbing the current solution by the 

outcome of a uniformly distributed random variable, which we will denote θ∆ . In our 
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implementation we vary the amount each of the components of θ  are allowed to jump 

according to the following: 

 

),(~ 11 rrunifTi −∆   

),(~ 22 rrunifDi −∆  

),(~ 33 rrunifi −∆δ  

),(~ 44 rrunif −∆φ .       (15) 

 

The objective function, as it is stated in Eq. 12, is not convex. Therefore, whether 

or not a deterministic solution will converge to its global optimum will strongly 

dependent on the initial values given to the algorithm. To circumvent this issue, we 

recommend using the simulated annealing approach, and this is the model fitting method 

we will use in the continuation of this paper. To determine an appropriate temperature 

function we randomly generated a number of sensibly shaped HRFs, which we used as 

pilot data to calibrate our schedule. In our implementation we let ( )iCi += 1logτ , where 

C is a large positive number chosen so that the acceptance rate of the algorithm is 

approximately 80%. For the simulation study performed in this paper we used values on 

the order of 51 =r , 1.02 =r , 1.03 =r  and 1.0=φ .  It should be noted that other 

distribution functions could have been used instead of the uniform to perturb the solution. 

We tested the convergence properties of the simulated annealing approach at a 

number of randomly chosen starting points and it converged in a consistent manner to the 

global minimum.  Simulated annealing converged much more reliably than the 

deterministic methods. In order to better characterize the distribution of the parameter 
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estimates obtained using simulated annealing, we also performed a series of 1000 

simulations on each of 5 plausible signal-to-noise ratio (SNR) levels for fMRI data, 

ranging from 0.05-0.5. Visual inspection of the distributions suggested that the parameter 

estimates were normally distributed for each SNR.  This conclusion was supported by 

tests of skewness and kurtosis on each distribution, for which the 95% confidence 

intervals all contained 0, as expected if parameter estimates follow a normal distribution.  

 

 (ii)  Non-Linear fit on two Gamma functions 

The model consists of a linear combination of two Gamma functions with a total 

of 6 variable parameters, i.e.  
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where A  controls the amplitude, α  and β  control the shape and scale, respectively, and 

c determines the ratio of the response to undershoot. Γ represents the gamma function, 

which acts as a normalizing parameter. This model can fit a wide variety of different 

HRF shapes within the ranges of commonly observed event-related responses. The six 

parameters of the model are fit using the Levenberg-Marquardt algorithm.  

 

(iii) Temporal Derivative 

This model consists of a linear combination of the canonical HRF, which is 

described in greater detail in (v), and its temporal derivative. Therefore there are two 
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variable parameters: the amplitudes of the HRF and its derivative. Amplitude estimation 

was performed using the estimation procedure outlined in Calhoun (Calhoun, Stevens, 

Pearlson, & Kiehl, 2004). 

 

(iv) Smooth FIR 

In our implementation we used a semi-parametric smooth FIR model (Goutte, 

Nielsen, & Hansen, 2000), as it was expected to outperform the standard FIR model. In 

general, the FIR basis set contains one free parameter for every time point following 

stimulation in every cognitive event type modeled. Assume that x(t) is a T-dimensional 

vector of stimulus inputs, which is equal to 1 at time t if a stimuli is present at that time 

point and 0 otherwise. Now we can define the design matrix corresponding to the FIR 

filter of order d as, 
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In addition, let Y be the vector of measurements.  

The traditional least-square solution, 

 

( ) YXXX TT 1ˆ −
=β      (18) 
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is very sensitive to noise.  The individual parameter estimates will also be noisy, which 

increases the variance of H, T, and W estimates considerably.  In particular, FIR HRF 

estimates contain high-frequency noise that is unlikely to actually be part of the 

underlying hemodynamic response. To constrain the fit to be smoother (but otherwise of 

arbitrary shape), Goutte et al. put a Gaussian prior on β  and calculated the maximum a 

posteriori estimate: 

 

   ( ) YXXX TT
map

112ˆ −−Σ+= σβ     (19) 

 

where the elements of Σ  are given by 
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This is equivalent to the solution of the least square problem with a penalty function, i.e., 

βmap  is the solution to the problem: 

 

( ) ( ){ }∑+−− jiij
T s ββσββ 2max XyXy    (21) 

 

where sij  are the components of the matrix 1−Σ . Note that replacing Σ  with the identity 

matrix gives the ridge regression solution (Jain, 1985).  As with ridge regression the 

estimates will be biased with a certain amount of shrinkage. 
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The parameters of this model are h , ν  and σ . The parameter h controls the 

smoothness of the filter and Goutte recommends that this value be set a priori to:  

 

    
TR

h
/7
1

=        (22) 

 

We used this value in our implementation. In calculating the filter, only the ratio of the 

parameters  ν  and σ  is actually of interest, and we determined empirically, using pilot 

data, that the ratio: 
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2
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ν

σ        (23) 

 

gave rise to adequately smooth FIR estimates, without giving rise to significant biases in 

the estimates due to shrinkage. 

 

(v) Gamma 

This model again consists of a linear combination of two Gamma functions. 

However in this implementation all parameters except the amplitude is fixed, giving rise 

to a model with only one variable parameter. The other parameters were set to be α1 = 6, 

162 =α , 121 == ββ  and 6/1=c , which are the defaults implemented in SPM99 and 

SPM2.  

 

Estimating parameters 
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After fitting each of the models, the next step is to estimate the height (H), time-

to-peak (T) and width (W). Of particular interest is to estimate the difference in H, T and 

W across different psychological event types. Most of the models used have closed form 

solutions describing the fits (the Gamma based models & IL), and hence clear estimates 

of H, T and W can be derived from combinations of parameter estimates. However, a 

lack of closed form solution (e.g., for FIR models) does not preclude reading off the 

values from the fits. 

When H, T, and W cannot be calculated directly using a closed form solution, we 

use the following procedure to estimate them from fitted HRF estimates. Height estimates 

are calculated by taking the derivative of the model function and setting it equal to 0. In 

order to ensure that this is a maximum, we should check that the second derivative is less 

than 0. If dual peaks exist, we choose the first one. Hence, our estimate of time-to-peak is 

{ }0)(''  &  0)('|min <== ththtT , where t indicates time and )(' th  and )('' th  denote first 

and second derivatives of the HRF )(th . For high-quality HRFs this is sufficient, but in 

practical application in a wide range of studies, it is also desirable to constrain the peak to 

be neither the first nor last parameter estimate. To estimate the peak we use )(ThH = .  

Finally, to estimate the width we perform the following steps: 

 

(i) Find the earliest time point tu such that tu > T  and 2/)( Hth u < , i.e. the last 

point before the peak that lies below half maximum. 

(ii) Find the latest time point lt  such that tl < T  and 2/)( Hth l < , i.e. the last point 

after the peak that lies below half maximum. 
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(iii) As both tu and lt  take values below H5.0 , the distance d = tu − tl  

overestimates the width. Similarly, both tu−1 and 1+lt  take values above H5.0 , 

so the distance d = tu−1 − tl +1 underestimates the width. We use linear 

interpolation to get a better approximation of the time points between (tl, tl +1) 

and ),( 1 uu tt −  where )(th  is equal to H5.0 . According to this reasoning, we find 

that   

W = (tu−1 + ∆ u) − (tl +1 + ∆ l )    (24) 

        where 

∆ l =
h(tl +1) − 0.5H
h(tl +1) − h(tl )

     (25) 

      and 

∆ u =
h(tu−1) − 0.5H
h(tu−1) − h(tu)

.     (26) 

 

For high-quality HRFs this procedure suffices, but if the HRF estimates begin 

substantially above or below 0 (the session mean), then it may be desirable to calculate 

local HRF deflections by calculating H relative to the average of the first one or two 

estimates.   

For the Gamma based models simple contrasts exist for the magnitude. For TD 

we use the bias corrected amplitude estimate given by Calhoun et al. (Calhoun, Stevens, 

Pearlson, & Kiehl, 2004). For the IL model we derive a number of contrasts in the 

appendix, the results of which are presented here. If the constraints given in [4] and [5] 

hold, the first and second logit functions are approximately orthogonal and the estimates 

of H, T and W are given by:  
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1α=H ,       (27) 

kDTT 11 += ,       (28) 
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Note that the estimates of H and T are independent of one another. The estimate of W 

depends to a certain degree on both H and T, but the simulation studies we present here 

show that it is less impacted by changes in H and T than the other models. 

 Note that although we use model-derived estimates of H, T, and W where 

possible, the direct approach of estimation from the fitted HRFs is also valid.  This is 

aided in the case of the IL model by the fact that the inverse logit function has a 

straightforward derivative, as ))(1)(()(' xLxLxL −= . 

 Simulation Study 

The simulations are based on actual HRFs obtained from a visual-motor task in  

10 participants (spiral gradient echo imaging at 3T, 0.5 s TR; (Noll, Cohen, Meyer, & 

Schneider, 1995)). Seven oblique slices were collected through visual and motor cortex at 

high temporal resolution, 3.12 x 3.12 x 5 mm voxels, TR = 0.5 s, TE = 25 ms, flip angle 

= 90, FOV = 20 cm.  Participants viewed contrast-reversing checkerboards (16 Hz, 250 

ms stimulation, full-field to 30 degrees of visual angle) and made manual button-press 

responses upon detection of each stimulus. ‘Events’ consisted of 1, 2, 5, 6, 10, or 11 such 

stimuli spaced 1 s apart, followed by 30 s of rest (open-eye fixation).  For the simulation 
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study, we used the 5-stimulus events only; 16 such events were presented to each 

participant.  BOLD activity time-locked to event onset, averaged across a region in the 

left primary visual cortex defined in a separate localizer scan for each individual, served 

as the true HRFs in our simulation.  Thus, we obtained 10 empirical HRFs, one for each 

participant.  This data has been used previously to describe nonlinearities in BOLD data 

(Wager, Vazquez, Hernandez, & Noll, 2005).   

We began by constructing stimulus functions for 6-minute runs of randomly 

intermixed event types (A & B), occurring at random intervals of length 2-18 seconds. 

Assuming a linear time-invariant system, the stimulus functions were convolved with the 

empirically derived HRFs, and AR(1) noise was added to the resulting time course.  

The HRFs for A and B were modified prior to creating the time course in order to 

create three kinds of “true” effects  an A – B amplitude difference, time-to-peak 

difference, and duration difference.   In total we ran 3 types of simulations: 

 

S1. (Height mod) The HRF corresponding to event B has half of the amplitude of 

the HRF corresponding to event A. In this scenario there is a true A – B 

difference in H of 0.5, but no time-to-peak or duration difference. 

 

S2. (Delay mod) The HRF corresponding to event B has a 3 second onset delay 

compared to HRF A. In this scenario there is a 3-s  difference in T between the 

HRFs, but no amplitude or duration difference. 
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S3. (Duration mod) The width of HRF B is increased by 4 seconds compared to 

HRF A by extending the time at peak by 8 time points (0.5 s TR). In this 

scenario there is a 4 s  difference in W between the HRFs, but no amplitude or 

time-to-peak difference. 

 

Each of these three simulations was performed using the HRF for each of the 10 

participants without modifications for HRF A, and modified as above for HRF B. For 

each participant the simulation was repeated 1000 times using different simulated AR(1) 

noise in each repetition.   

We were interested in the efficiency and bias of A – B differences for individuals 

and in the group analysis treating participant as a random effect.  For each participant in 

each simulation, we estimated A – B differences in H, T, and W.  We quantified the 

relative statistical power of each type of model to recover these “true” effects.  We also 

quantified the confusability of true differences in one effect (e.g., the manipulation of T 

in S2) with apparent differences (bias) in another (e.g., the estimated W in S2).  This was 

accomplished by examining the relative statistical power across model types for detecting 

these ‘crossed’ effects, whose magnitude—if H, T, and W estimates are independent— 

should be 0, as well as calculating how the true change in one parameter induced changes 

in the bias of the other non-modulated parameters.     

 

Application to voxel-wise time courses 

Using data from the same experiment described in the previous section, we 

extracted the time courses from individual voxels, contained in the visual cortex, from 



HEMODYNAMIC RESPONSE MODELING  30 

each of the 10 subjects. To each voxel-wise time course we applied the five different 

fitting procedures used in this paper and estimated H, T and W for each. 

 
Relationships between neural activity and activation parameters 

Relating neural activity to model parameters is complex, and ultimately places 

constraints on the interpretation of the parameter estimates. Here, we conduct a 

preliminary exploration of the conditions under which changes in neuronal acitvation 

parameters may lead to specific changes in corresponding HR parameters.  We stress that 

our analysis here is necessarily greatly simplified ; however, it may provide some rules of 

thumb for the range of conditions under which H, T, and W might roughly correspond to 

changes in neuronal activity magnitude, onset delay, and duration.  For the purposes of 

this illustration, we assume that changes in neural firing rates (or postsynaptic activity) 

during brief periods of cognitive activity constitute neural ‘events’ – for example, an 

‘event’ may consist of a brief memory refreshing operation that increases neural activity 

briefly and recurs with some frequency.   

The theoretical relationships between neural events (event magnitude, event train 

onset and event train duration) and fMRI signal (H, T and W) vary depending on the 

duration of event trains and nonlinear properties of the response.  We consider these 

relationships assuming linear responses and, separately, nonlinear magnitude saturation 

effects using estimates from previous work (Wager, Vazquez, Hernandez, & Noll, 2005).  

To construct what HR responses might look like if the response saturates nonlinearly in 

time, we performed the modified convolution procedure described in Wager et al., 2005, 

using event trains that varied in event magnitude, onset, and duration.  We vary the length 

of epochs from brief, 1 s events to 18 s stimulation epochs, and consider whether true 
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differences between two conditions A and B yield estimated differences only in the 

parameters varied or in others as well. 

 

RESULTS 

 

Organization of results 

In three simulations, we varied the true difference in H (S1), T (S2), and W (S3) 

between two versions of the same empirical HRFs (HRF A and HRF B). In Figs 4-6 the 

results are shown for each of the three simulations. In the top row, the true effects are 

shown by horizontal lines, and means and error bars for each of the 10 “participants,” 

each with a unique empirically-derived HRF, are shown by the vertical lines. In the 

bottom panels the between-subjects (‘random effects’) means and standard errors are 

shown.  These can be used to assess the significance of the modulated HRF A – HRF B 

effect in each simulation, as well as biases in estimates of non-modulated parameters.  

Figure 7A summarizes these results in bias vs. variance plots for the H, T and W effects 

for each simulation type. Figure 7B (which we denote as confusability plots) shows a 

scatter plot of the change in bias for the two non-modulated parameters for each 

simulation type. Tables 1-3 show the average magnitude (M), latency (L) and width (W) 

over the “participants” and repetitions for each of the five models and event types, and 

can be used to assess the accuracy of each fit.  For comparison purposes, the true values 

imposed by the manipulations are also shown on the bottom row.  Finally, Table 4 

provides an overall summary of statistical power for estimating both modulated and non-

modulated (cross-talk) effects across all the simulations.     
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For each simulation type (S1-S3) we will discuss the bias present in the estimates 

of H, T and W, for both event types (A and B), using each of the five different models. 

Fig 8 shows typical fits for each event, model and simulation type and gives an indication 

of the apparent biases present in the estimates. We will also discuss the accuracy of each 

model in estimating A-B effects, the confusability of modulated effects with those that 

are not modulated, and the power of each method to detect true effects. Below follows a 

description of the results for each simulation type. 

 

Simulation 1: Modulation of height 

 The results of simulation 1 are summarized in Table 1 and Figures 4, 7 and 8. 

Truth was an A – B H difference of 0.5, with no modulation of T or W.  Table 1 shows 

the average estimates of the parameters H, T and W for each event type and each model. 

The means and error bars for each of the 10 “participants” are shown by the vertical lines 

in the top panel of Figure 4. In the bottom panel, the between-subjects means and 

standard errors are shown, as would be most relevant for a group analysis.  These results 

are summarized in the bias vs. variance plot appearing in the first row of Figure 7A. The 

first column of Figure 7B shows the change in bias in the estimated T and W effect that is 

induced by the change in height. Finally, the first column of Figure 8 shows a typical fit 

for each model, selected to be representative of the thousands of model fits performed. 

When the height of HRF B is modulated, the IL model gives a good overall fit for 

each event type, though T is slightly underestimated (Table 1).  Figure 4 shows that the 

IL model produces accurate estimates of the A – B height difference. Further, Table 4 

shows that the method is second in statistical power to the smooth FIR model.  The IL 
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model also produces the least bias in both T and W (bias is undesirable) for any of the 

models (Figures 4 and 7, Table 4). Clearly, there is almost no cross-talk present, as both 

the A-B latency and width effects are non-significant. This can also be seen in the first 

column of Figure 7B, as the point corresponding to the IL model lies extremely close to 

the origin.   

The NL model effectively estimates the A-B height difference.  However, this 

model has the least statistical power of all included models. In addition, Table 1 shows 

that both H and W are underestimated for both HRF A and B.  In addition, as Figures 4 

and 7 show, amplitude modulation induces bias in estimates of T (HRF B is estimated to 

peak later).   

The TD model gives perhaps the best overall estimates of A-B effects, though it is 

not the most powerful. Table 1 indicates that in the individual fits for HRF A and B, the 

estimated parameter values for H and T are consistently close to the true values. 

However, the estimates of W are underestimated for both event types. Table 4 indicates 

that the TD model, together with the IL model, has the lowest parameter confusability of 

all the models—i.e., T and W estimates are relatively unaffected by modulation of H, and 

are not statistically significant. Each of the other three models has some degree of 

confusability with T and W. 

For the FIR model there is a surprisingly strong bias present in the estimate of 

both T and W, though the bias in T induced by the amplitude change is a fraction of the 

power to detect changes in H. The bias arises solely from the estimate of HRF B. The 

model parameters indicate that this method gives rise to an estimated HRF that is taller 

and has a shorter width and a later peak than the true curve. The estimate of HRF A on 
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the other hand is extremely accurate, and this model is the most statistically powerful at 

detecting the A – B height difference.  

Finally, the estimate of height for the Gam model is biased for both HRF A and B, 

but the estimate of A-B is accurate. The bias arises due to the fact that the true width of 

the underlying HRFs is shorter than the width of the canonical fitted function, which 

causes the estimate of H to be too low. Note that the blue bars in Fig. 4 imply that no 

estimate is available for T and W using the Gam model; i.e. both the width and latency 

are fixed when using a canonical HRF.   

 

Simulation 2: Modulation of hemodynamic delay  

 Simulation 2 involved a true 3 s difference in T, and no modulation of H and W.  

The results are summarized in Table 2 and Figures 5, 7 and 8. Table 2 shows the average 

estimates over the 1000 repetitions for each event type and model. The results for each of 

the 10 individual “participants” are shown in Figure 5, while the second row of Figure 7A 

and the second column of Figure 7B show the bias vs. variance and confusability plots, 

respectively. Finally, the second column of Figure 8 shows a typical fit for each model, 

selected to be representative of all the model fits performed. 

For true changes in T we obtain a good fit with the IL model, with no significant 

cross-talk present (Figs. 5 and 7, Table 4). The NL model gives a rather accurate estimate 

for the difference in time-to-peak, but H and W estimates for HRF B are severely 

corrupted by the delay. Thus, the delayed HRF B has a substantially smaller estimated 

magnitude, and modulation of T also induces A–B differences in both the estimates of H 

and W (Fig. 7 and Table 4).   
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For the TD model, the estimate of the parameters of HRF B is underestimated for 

both H and T. The shift is too large for this model to handle, as it can only handle shifts 

of approximately 1 s.  Modulation of T induces A–B differences in both the estimates of 

H and W (Fig. 7 and Table 4).  

The FIR model, on the other hand, gives a good overall fit for both event types 

with the width being slightly underestimated. The estimates of the A-B differences are 

extremely accurate, with little to no confusability present. In addition, it is the most 

statistically powerful at detecting the A – B latency difference.  

As expected, the Gam model is unable to handle shifts in T, and a strong bias is 

induced in H. In addition, since the latency and width are fixed, we have no estimate of 

these components.  These results are not surprising, as this is a highly constrained model 

that is only effective if the true shape is consistent with the model. It is therefore unable 

to appropriately model shifts in onset or prolonged duration in the underlying signal. 

 

Simulation 3: Modulation of response width  

 Finally, Simulation 3 involved a 4 s extension W for condition B, and no 

modulation of H or T.  The results are summarized in Table 3 and Figures 6, 7 and 8. 

Table 3 shows the average estimates over the 1000 repetitions for each event type and 

model, while the results for each of the 10 “participants” are shown in Figure 6. The third 

row of Figure 7A shows bias vs. variance plots and the third column of Figure 7B shows 

confusability plots. The last column of Figure 8 shows a typical fit for each model, 

selected to be representative of the thousands of model fits performed. 
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When the width of HRF B is extended, the IL model produces differences in 

estimated W (desirable) and T (undesirable).  Figure 6 shows that the IL model provides 

the most accurate estimates of W, and though the power to detect differences in W is 

second to the smooth FIR model it is substantially greater than the other models.  The IL 

model also shows the least bias in estimates of H and T.  It should be noted from studying 

Table 3 that in the individual fits for HRF A and B, the estimated parameter values are 

consistently very close to the true values.  

With true differences in W, the amplitude estimate of HRF B using the NL model 

is consistently underestimated, leading to a bias in H for A – B.  Estimated differences in 

T are also created, and these are actually more reliable than estimates of W (Table 4).  

Since the shape of the gamma density is fixed in this model, the shape can be scaled but 

not stretched. Hence, the increased width pulls the function away from its true position 

during the rise, thus delaying the time-to-peak and shortening the width.  Thus, true 

differences in some measures (H, T, and W) are highly confusable, as they induce 

estimated differences in multiple measures. 

For TD the magnitude estimate of HRF B is consistently overestimated. The 

estimate of T will be clouded by the estimate of width (T is overestimated, W is 

underestimated). The added width pulls the function away from its true position during 

the rise, thus delaying the time-to-peak and thereby shortening the width. The model has 

difficulty detecting the true A-B effect in W. In fact, estimated differences in both H and 

T are created which are both more reliable than estimates of W. 

The FIR model fits the general shape of both event types well, except for the fact 

that the FIR model has a difficult time modeling the plateau present in event type B. The 
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plateau has a length of 4 seconds and the time-to-peak is estimated uniformly over the 

plateau, giving a mean T estimate that overestimates by approximately 2 s. Estimated 

differences in T were more reliable than estimates of W.  

Lastly, as expected, strong bias exists for the Gam model, as this model is unable 

to handle prolonged duration in the underlying signal. 

 

Application to voxel-wise time courses 

We applied the 5 fitting methods to time courses obtained from individual voxel 

contained in the visual cortex. Figure 9 shows the results from one representative subject, 

whose data consisted of 89 separate voxels. Panels B and C show representative fits from 

an individual voxel and panel A illustrates the consistency of the estimators over the 89 

voxels. Consistency is important, as we expect brain responses in these pre-localized 

regions of the visual cortex to be relatively homogeneous across voxels (which average 

over ocular dominance columns and other functional features), and so it is likely that 

much of the variability across voxels in some of the fits is due to error. The results show 

that the IL model gives the most consistent estimates across the 89 voxels for each of H, 

T and W. 

 

Relationships between neural activity and activation parameters 

Figure 10A shows a train of brief stimulus events (vertical lines) occurring every 

1 s for 18 s, which are intended to serve as a simplified model of neural activity, and the 

HR shape that is predicted from the (nonlinear) results in Wager et al. (2005).  Different 

task states may change the magnitude of neural activity during events, the onset latency 
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for the event train, and/or the duration of the event train.  If the ‘true’ HR delay predicted 

by our model varies as a function of changes in true neural magnitude (and so on for 

other parameter combinations), then the HRF will be of limited usefulness, because it 

cannot provide information about the type of neuronal change that occurred.    

We first deal with the interpretability of H estimates.  For brief events, increases 

in H were caused by either true increases in magnitude or increases in duration. This is 

because increases in the duration of brief events (Figs. 10D and 10G) tended to translate 

into changes in HR height. Changes in H for the three types of simulated neuronal effects 

(increases in magnitude, onset latency, and duration) are shown by the solid lines in Figs. 

10 E, F, and G.  Conversely, true increases in magnitude did not evoke changes in T or W 

(Fig. 10B and 10E).   

Figure 10B shows HRFs for conditions A and B (solid and dashed lines, 

respectively) at short and long epoch durations.  Figure 10E shows epoch duration on the 

x-axis, and parameter differences (A – B) on the y-axis; an ideal, unbiased response 

would be a flat line at 0.5 for H (solid line), and flat lines at zero for T and W (dashed 

and dotted lines, respectively). That is, magnitude increases produced expected increases 

in H for brief events, though observing H cannot tell us about whether the magnitude or 

duration of neuronal activity was different across conditions.  For longer epochs, 

magnitude increases produced increases only in H; the confusability between true 
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duration and apparent height fell to zero after about 8 s.  Thus, the HRF height for brief 

events is not uniquely interpretable, but the HRF height for longer epochs is1.  

We next turn to the interpretability of estimates of T.  For brief events, changes in 

T could be caused by true changes in onset (Figs. 10C and 10F) or by changes in duration 

(Figs. 10D and 10G).  This is because duration increases also increased the peak latency. 

For longer epochs, T changes could be caused by true changes in onset or changes in 

height (Figs. 10B and 10E).  This is because height increases disproportionately affect the 

early part of the HR (a nonlinear effect not observed with the linear canonical HRF), 

shifting T earlier for intense stimuli.  Thus, T changes are not uniquely interpretable in 

terms of neuronal latency.   

Changes in W, for short epochs, were not reliably evoked by any method; true 

changes in duration produced the expected changes in W at much reduced levels (Figs. 

10D and 10G).  Changes in W for all types of simulated neuronal effects are shown by 

the dotted lines in Figs. E, F, and G.  For long epochs, changes in W were produced only 

by changes in duration, and these appeared to reach their asymptotic true values with a 10 

s stimulation epoch (that is, 10 s for condition A and 13 s for condition B in our 

simulations).  Thus, changes in W may be interpreted as changes in neuronal response 

duration.     

 

 

                                                 
1 Note, however, that these results do not necessarily hold for processes with a 

different neuronal density (e.g., spike bursts every 500 ms instead of 1 s), and they are 

presented mainly for illustrative purposes here. 
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DISCUSSION 

 

To date most fMRI studies have been primarily focused on estimating the 

magnitude of evoked HRFs across different tasks. However, there is a growing interest in 

testing other statistics as well, such as the time-to-peak and duration of activation 

(Bellgowan, Saad, & Bandettini, 2003; Formisano & Goebel, 2003; Richter et al., 2000). 

The onset and peak latencies of the HRF can, for instance, provide information about the 

timing of activation for various brain areas and the width of the HRF provides 

information about the duration of activation. However, the independence of these 

parameter estimates has not been properly assessed, as it appears that even if basis 

functions are independent (or a nonlinear fitting procedure provides nominally 

independent estimates), the parameter estimates from real data may not be independent.   

The present study seeks to both bridge this gap in the literature and present a new 

estimation method based on the use of inverse logit functions.  To assess independence, 

we determine the amount of confusability between estimates of height (H), time-to-peak 

(T) and full-width at half-maximum (W) and actual manipulations in the amplitude, time-

to-peak and duration of the stimulus. This was investigated using a simulation study that 

was based on empirical HRFs and illustrated how a variety of popular methods work on 

actual fMRI data.   It is important to note that this is not an exhaustive survey of HRF 

fitting methods, and some very promising linear methods are not addressed in our 

simulations (e.g., Liao (Liao et al., 2002); Henson (Henson, Price, Rugg, Turner, & 

Friston, 2002)). In addition, Ciuciu et al. (2003) has introduced an unsupervised FIR 

model which estimates its parameters using an EM-type algorithm. This promising 
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approach may potentially improve on the fit of the smoothed (supervised) FIR used in 

this paper, and decrease the amount of confusability present in that model.  

In this work we identified the interpretability of parameter estimates and 

statistical power to detect true effects as two important criteria for a modeling system.  

Our results show that with any of the models we tested, there is some degree of 

confusability between true differences and estimates.  With some models, the 

confusability is profound.  For example, delaying the onset of activation by 3 s produced 

highly reliable changes in estimated response magnitude in most models tested.  Even 

models that attempt to account for delay such as a gamma function with nonlinear fitting 

(Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000) or temporal and dispersion 

derivatives (Calhoun, Stevens, Pearlson, & Kiehl, 2004; Friston, Josephs, Rees, & 

Turner, 1998) showed strong biases.  As might be expected, the derivative models and 

related methods (e.g., Liao (Liao et al., 2002); Henson (Henson, Price, Rugg, Turner, & 

Friston, 2002)) may be quite accurate for very short shifts in latency (< 1 s) but become 

progressively more inaccurate as the shift increases.  The IL model and the smooth FIR 

model did not show large biases, and the IL model showed by far the least amount of 

confusability of all the models that were examined. 

The strongest biases were found for all models when the response width was 

manipulated by extending the HRF at its peak by 4 s.  No model was bias-free, but the IL 

model showed no bias in H and only a slight bias in T (Table 4).  This feature may be 

useful in comparing task conditions that have processes that are extended in time over a 

number of seconds, such as working memory and expectation/anticipation paradigms and 

tasks with long separation between phases of trials (e.g., cue – target).  Thus, the FIR 
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model sacrifices some interpretability, particularly in dealing with prolonged stimulation 

periods, for the benefit of power.  It may be an excellent choice for modeling shorter-

duration events, whereas the IL model may fare better with longer and more variable 

epochs. In fact, the ability to model both events and extended epochs is a design feature 

that motivated our development of the IL model. 

Notably, the smooth FIR model had the highest power for estimating true effects 

of all the models (Table 4).  The canonical HRF did not fare well because the empirical 

HRFs on which our study was based tended to peak earlier than the canonical HRF, and 

because individual differences in the shape and timing of activity were translated into 

differences in H.  The IL and smooth FIR models can account for individual differences 

in timing and delay without affecting H, which increases power in H estimation.  The 

nonlinear gamma and derivative-based models have a limited ability to do this, and 

power is lower on average across H and T estimates.  Interestingly, the derivative model 

has high power for estimating H but not T, and vice versa for the nonlinear gamma 

model.  The IL and smooth FIR models are both consistently high in power and less 

biased than either of the other methods, with the FIR model having higher power, but 

increased bias compared to the IL model. As for the individual model fits, both the FIR 

and IL models are able to accurately fit HRF A (Tables 1-3). However, the IL model is 

far more effective at modeling HRF B in all three simulation types, and thereby gives rise 

to less cross-talk than the FIR model. 
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Relationships between neural activity and activation parameters 

As mentioned in the introduction, problems with parameter interpretability can 

come from two major sources.  This paper addresses the simpler issue of whether 

differences in evoked HRF shape can be accurately captured by a variety of linear 

models.  The best models (IL and smooth FIR) were able to accurately capture changes in 

HRs with high sensitivity and specificity; that is, changes in one estimate were seldom 

confused for another.  Ultimately, researchers may want to interpret parameter changes in 

terms of underlying neuronal activity.  This is a much more complex problem that 

involves building physiological models of the sources of BOLD signal (Buxton, Wong, & 

Frank, 1998; Logothetis, 2003; Mechelli, Price, & Friston, 2001; Vazquez & Noll, 1998; 

Wager, Vazquez, Hernandez, & Noll, 2005).   

Based on preliminary analysis using a simple nonlinear model (Wager 2005) it 

appears that estimated latency differences are not uniquely attributable to neuronal onset 

delays, but could be caused by true differences in firing rate, delay or duration. Estimated 

width differences may generally be attributable to increases in the duration of neuronal 

activity.  For brief events, estimated height differences could be caused by either duration 

increases or activity magnitude increases. For longer epochs (> 8 s) estimated heigh 

differences are caused only by increases in firing rate.  These results do not render 

models of the HRF useless; finding differences in HRF time to peak among conditions 

would constitute scientific evidence that may correspond with behavioral performance or 

distinguish the responses of one brain region from another.  In addition, finding a 

significant difference in T but no difference in W (for brief events) or no difference in H 

(for long events) may be sufficient evidence to make a claim about differences in 
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neuronal onset latency.  Other combinations of significant results may be similarly 

interpretable depending on the specifics of the study. 

However, this simulation has many limitations, including that it does not attempt 

to model physiological parameters, and second, that the nonlinearity estimates used do 

not take into account differences in stimulation density.  In these simulations, all models 

use trains of brief stimuli repeated at 1 s intervals, consistent with the density used in the 

experiments from which the nonlinearity estimates were derived (Wager et al., 2005).  In 

addition, the nonlinear model here provides a rough characterization of nonlinearities, 

which may vary both with brain region and with task.  Thus, these results are suggestive, 

but cannot provide definitive guidelines on the complex issue of how evoked HRF shapes 

may be related to underlying neuronal activity.  

 

Choosing a hemodynamic response model 

When determining which HRF model to use, the first question one is faced with is 

how strongly assumptions should be made a priori. Models with few assumptions and 

many variable parameters have the flexibility to model a large variety of shapes and are 

able to handle unexpected behavior in the underlying response. However, as the number 

of parameters in the model increases, the number of degrees of freedom in the statistical 

tests of the parameters decreases. In addition, it is also much simpler and more 

statistically powerful to test contrasts across event types (e.g. A – B) on a single 

parameter such as height than it is to test for differences in multiple parameters (e.g. 

A1A2A3 – B1B2B3).  An ANOVA F-test will accomplish the goal of testing for multiple 

parameters, but the statistical power of the test decreases sharply as a function of the 
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number of parameters included in the test, and then the problem remains of interpreting 

which parameters are carrying the difference.   

Critically, free parameters in most flexible basis sets are not directly interpretable 

(e.g. as the response magnitude or latency).  Consider, for example, the TD model.  Let 

us denote A1 and B1 as the responses to the canonical HRF for conditions A and B, A2 

and B2 the temporal derivatives, and A3 and B3 the dispersion derivatives.  One cannot 

simply fit the basis set and compute the contrast A1 – B1, ignoring the other parameters, 

and interpret the result as the difference in magnitude between A and B.  This is because 

the amplitude of the fitted response depends on a combination of all three parameters, 

and so each one is only interpretable in the context of the others.    

 This suggests that perhaps using a single canonical HRF may be the best choice. 

If, in fact, the actual shape of the HRF matches the model perfectly and that the shape is 

invariant across the brain, using a single canonical HRF offers optimal power.  However, 

it is reasonable to assume that the shape of the HRF varies as a function of both task and 

brain region, and therefore any fixed model will undoubtedly to be wrong in much of the 

brain, and will be wrong to different degrees across individuals.  If the model is 

incorrectly specified, then statistical power decreases and the model may also produce 

invalid and biased results, as was shown in our study.  As is well known in statistics, the 

fact that a linear model explains a significant amount of the variance in the data is no 

guarantee that the underlying model is correct.  For example, imagine that one conducts 

an experiment with trials spaced 15 s apart.  A canonical HRF such as that used in SPM, 

consisting of a positive-going gamma function peaking at 6 s and a negative-going 

gamma function peaking at 16 s, is used to model the response at the onset of each trial.   
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Now imagine that a particular brain region shows activity increases not in response to the 

trial onset, but in the inter-trial interval in preparation for the predictable onset of the next 

trial.  Such a region would be likely to show a negative activation, leading the researchers 

to erroneously infer that the region was deactivated by the task.  In fact, in our example, it 

is activated in anticipation of the task.  Such potential problems require the checking of 

assumptions, including that the model is correctly specified, which is difficult to do in 

brain imaging due to the massive number of tests involved (though methods have been 

developed; (Luo & Nichols, 2003)).  Finally, using a canonical HRF provides no way to 

assess latency and duration and differences between conditions in response latency will 

be confused for differences in amplitude (Calhoun, Stevens, Pearlson, & Kiehl, 2004). 

In this work we introduced a new HRF modeling technique, based on the 

superposition of three inverse logit functions, which attempts to balance flexibility and 

ease of interpretation.  Our study showed the efficiency of the fitting procedure compared 

with four other commonly used models. In particular, the IL model was by far the most 

effective at modeling the combination of HRF types A and B for each of the three types 

of simulations, and therefore gave rise to significantly less cross-talk than the other 

models. The mayor drawback of our method is that it is relatively time-consuming using 

a non-linear fitting procedure. The ultimate speed of the IL model will depend on 

whether deterministic (e.g. Gauss-Newton, L-M algorithms) or stochastic (simulated 

annealing) are used. The deterministic algorithms take on the order of 5 times longer than 

the FIR model, while the simulated annealing algorithm roughly doubles that time. As an 

alternative to non-linear least-squares fitting, one could instead use a priori knowledge to 

specify each parameter in the model, except for the three amplitude parameters, and use 
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the three resulting inverse logit functions as temporal basis functions in the GLM 

framework. Alternatively, one could follow the methodology outlined in Woolrich et. al. 

(Woolrich, Behrens, & Smith, 2004) and generate a large number of plausible HRF 

shapes, by randomly sampling values for the parameters from an appropriate range. 

Using singular value decomposition one can thereafter find the optimal basis set that 

spans the space of generated functions and use this set as our temporal basis functions. 

 

 

CONCLUSIONS 

 
In this work, we introduce a new technique for modeling the HRF, based on the 

superposition of three inverse logit functions (IL), which balances the need for 

interpretability and flexibility of the model.  In simulations based on actual HRFs, 

measured on a group of 10 participants, we compare the performance of this model to 

four other popular choices of basis functions.  We show that the IL model can capture 

magnitude, delay, and duration of activation with less error than the other methods tested, 

and therefore provides a promising way to flexibly but powerfully test the magnitude and 

timing of activation across experimental conditions.   
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APPENDIX 

 

Conditions to ensure minimal overlap between the IL functions 

 The interpretability of the parameters in the IL model are increased if the first and 

second and the second and third IL functions are made as orthogonal as possible to one 

another. This implies that the rise in the first function needs to stabilize prior to the 

decrease in the second function. In principal the first function will not reach its maximum 

value of 1 until t = ∞ . However, one can set a constraint to the effect that the first 

function needs to complete 99% of its rise prior to the second function completing 1% of 

its decrease, i.e. assuming L1(t1) = 0.99 and L2(t2) = 0.01 then we need to derive 

constraints that ensure that t1 < t2 holds. 

To find these constraints we need to re-express 1t  and 2t  in terms of the 

parameters of the model. Define 1t  as the time point when ctL =)( 11 , where 99.0=c in the 

example above, but can reasonably be set to take other values as well. This implies that, 

 

1+ exp −
(t1 − T1)
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⎜ 

⎞ 

⎠ 
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⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
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Through simple algebra, this equation can be rewritten as: 
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    kDT 11 +=        (31) 

 

where ( ) ⎟
⎠
⎞⎜

⎝
⎛ −=

−− 11 1log ck . 

In a similar manner we can rewrite 2t  as, 

kDTt 222 −= .       (32) 

 

Combining these two expressions, the condition t1 < t2 can be written as  

 

T2 − T1 > (D1 + D2)k       (33) 

 

Using exactly the same reasoning an equivalent condition for minimizing the overlap 

between the second and third IL function is given by, 

 

kDDTT )( 3223 +>− .      (34) 

 

Parameter estimates 

Assuming the two constraints (33) and (34) hold, the estimates for height, time-to-

peak and width are easily expressed as functions of the parameters of the model. 

 

(i) Height 
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Assuming c ≈1, the first and second IL function will have minimal overlap and 

the height can be reasonably estimated as the amplitude of the first logit function, i.e. 

1δ=H . 

 

(ii) Time-to-peak 

Again, assuming 1≈c , the time-to-peak can be estimated, using Eq. 31, as 

kDTT 11 −= . 

 

(iii) Width 

 To find the full-width at half-maximum, we need to determine (a) the time point 

when the first IL function reaches half of its height and (b) the time point when the 

second IL function crosses 15.0 δ . The time point (a) is simply given by 1T , so the 

problem boils down to finding time point (b), i.e. we want to find the time *t  when  

122 5.0*)( δδ =tL . This implies that, 

 

1+ exp −
(t *−T2)
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      (35) 

 

which can be rewritten as: 

 

t* = T2 − D2 log 2δ2

δ1

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (36) 
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Hence, the FWHM is the distance between *t  and 1T , i.e. 

1* TtW −=  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= 1

2
log

1

2
212 δ

δ
DTT .     (37) 
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Table 1.   

 

 
  
 

 

 

 

 

 

 

Note. Simulation 1 - The average height (H), time-to-peak (T) and width (W) over all the 

“participants” and repetitions for each of the five models and event-types together with 

the true values. 

 

IL 1.0257    4.8695    5.0287     0.5006    4.8723    5.0165 
NL 0.9461    4.9180    4.5268 0.4229    5.1465    4.3002 
TD 0.9952    4.8641    4.5236    0.4859    4.9456    4.4780 
FIR 1.0116    5.0860    4.9078     0.5479    5.5385    4.3674 
Gam 0.9401    5.5000    5.5000    0.4776    5.5000    5.5000 
 

True 
 

1.0000    5.0000    5.0000     
 

0.5000    5.0000    5.0000 

H T W H T W

Event Type A       Event Type B 
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Table 2.   

  
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Note. Simulation 2 - The average height (H), time-to-peak (T) and width (W) over all the 

“participants” and repetitions for each of the five models and event-types together with 

the true values. 

 

IL 0.9978    4.9135    5.0092 0.9942    8.0700    5.0521 
NL 0.9723    4.6631    4.4406       0.7706    8.0635    3.9813    
TD 0.9700    4.8016    4.4446     0.9003    7.1894    4.9835 
FIR 1.0114    5.0756    4.9192     1.0142    8.0786    4.8996 
Gam 0.9887    5.5000    5.5000     0.7074    5.5000    5.5000 
 

True 
 

1.0000    5.0000    5.0000     
 

1.0000    8.0000    5.0000 

H T W

Event Type A       Event Type B 

H T W
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Table 3.   
 
 
 
 
 
 
 
  
 
 

 
 
 
 
 
 
 
 
 

 
 
Note. Simulation 3 - The average height (H), time-to-peak (T) and width (W) over all the 

“participants” and repetitions for each of the five models and event-types together with 

the true values. 

IL 1.0157    4.9183    4.7790     0.9969    5.2824    8.9002 
NL 0.9476    4.6632    4.5472 0.8157    6.5994    6.0840 
TD 1.0016    4.7811    4.4341 1.2410    6.1079    5.3303 
FIR 1.0092    5.0823    4.9243       1.1023    7.0621    8.5430 
Gam 0.9786    5.5000    5.5000 1.2573    5.5000    5.5000 
 

True 
 

1.0000    5.0000    5.0000     
 

0.5000    5.0000    9.0000 

H T W H T W

Event Type A       Event Type B 
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Table 4.  

 

 Power (at p < .0001)  Estimated effects (t-values) 
 Inverse Logit estimates  Inverse Logit estimates 
True A-B 

effect Height Delay Width  Height Delay Width 
S1: Height 1.00    69.27 n.s. n.s 
S2: Delay  1.00   n.s. -58.33   n.s. 
S3: Width  0.05 1.00  n.s. -4.14 -42.36 

        
 Nonlinear Gamma Estimates  Nonlinear Gamma Estimates 
 Height Delay Width  Height Delay Width 
S1: Height 1.00 0.05   15.55 -4.13 n.s. 
S2: Delay 0.95 1   7.88 -69.66 3.95 
S3: Width 0.17 1.00 0.99  5 -22.08 -8.73 

        
 TD Estimates  TD Estimates 
 Height Delay Width  Height Delay Width 
S1: Height 1.00    51.76 n.s. n.s. 
S2: Delay 0.44 1.00   5.86 -15.71 -2.91 
S3: Width 1.00 1.00 0.12  -13.5 -13.18 -4.75 

        
 Smooth FIR Estimates  Smooth FIR Estimates 
 Height Delay Width  Height Delay Width 
S1: Height 1.00  0.22  192.72 -3.63 5.2 
S2: Delay  1.00   n.s. -188.84 n.s. 
S3: Width 1.00 1.00 1.00  -46.17 -69.8 -65.95 

        
 Gamma Estimates  Gamma Estimates 
 Height Delay Width  Height Delay Width 
S1: Height 1.00 N/A N/A  24.47 N/A N/A 
S2: Delay 0.97 N/A N/A  8.24 N/A N/A 
S3: Width 0.64 N/A N/A  -6.38 N/A N/A 

 

Note. An overall summary of statistical power for estimating both modulated and non-

modulated (cross-talk) effects across all the simulations. Power estimates for detecting A 

- B differences at p < .0001 are shown in the left columns, and average t-values for A - B 
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estimates are shown in the right columns.  For clarity of presentation, cells with power < 

5% are left empty.  The absolute magnitudes of the t-values and power estimates depend 

on the signal-to-noise ratio in the simulations, but it is informative to compare across 

analysis types and to assess whether modulations in some parameters reliably induce 

effects in other parameters.  The diagonal elements show the power for estimates 

(columns) when the corresponding effect is modulated (rows).  High power in these 

diagonal elements indicates more sensitivity to experimental effects.  The off-diagonal 

elements show power in estimates when other effects are modulated.  High power in 

these elements is undesirable, as it indicates bias in the estimates that decreases the 

interpretability of parameter estimates. n.s., not significant at p < .05 uncorrected. 
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Figure Captions 

 

Figure 1:  Estimates of response height (H), time-to-peak (T), and full-width at half-max 

(W) from a simulated HRF.  

 

Figure 2:  Relationship between neural activity, evoked changes in the BOLD response, 

and estimated parameters.  Solid lines indicate expected relationships, and dashed lines 

indicate relationships that, if they exist, create problems in interpreting estimated 

parameters.  For task-induced changes in estimated time-to-peak to be interpretable in 

terms of the latency of neural firing, for example, estimated time-to-peak must vary only 

as a function of changes in neural firing onsets, not firing rate or duration.  The 

relationship between neural activity and true BOLD responses determines the theoretical 

limits on how interpretable the parameter estimates are.  The relationship between true 

BOLD changes and estimated BOLD changes using a model introduce additional model-

dependent constraints on the interpretability of parameter estimates. 

 

Figure 3: The functionsδ L(A(t − T)) with parameters: (A) 0.1=δ ,  15=T  and 75.0=A , 

(B) 3.1−=δ ,  27=T  and 4.0=A  and (C) 3.0=δ ,  66=T  and 5.0=A . 

(D) The three functions in (A)-(C) superimposed (bold line) together with actual HRF 

function (Dotted line).  

 

Figure 4:  Results for Simulation 1 - In the top row, the true effects are shown by 

horizontal lines, and means and error bars for each of the 10 “participants” are shown by 
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the vertical lines. In the bottom panels the between subject means and standard errors are 

shown. The blue bars imply that no estimate is available for T and W using the Gam 

model. 

 

Figure 5:  Results for Simulation 2 - In the top row, the true effects are shown by 

horizontal lines, and means and error bars for each of the 10 “participants” are shown by 

the vertical lines. In the bottom panels the between subject means and standard errors are 

shown. 

 

Figure 6:  Results for Simulation 3 - In the top row, the true effects are shown by 

horizontal lines, and means and error bars for each of the 10 “participants” are shown by 

the vertical lines. In the bottom panels the between subject means and standard errors are 

shown. 

 

Figure 7:  (A) Bias vs. variance plots for the estimated A-B difference. Each row 

represents a simulation (S1 – S3) and each column represents an estimated parameter (H, 

T and W).  (B) Scatter plots of the change in bias for the two non-modulated parameters, 

induced by the change in the modulated parameter, for each simulation type. For clarity 

the point )0,0(  is marked as the cross between the dotted lines in the x and y-axis. Points 

that lie close to the origin imply that the method induces little confusability. 
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Figure 8:  Typical fits for IL, NL, TD, FIR and Gam (Rows 1-5 respectively) for 

simulations S1, S2 and S3 (Columns 1-3 respectively) are shown in bold, while the 

underlying empirical HRFs are depicted using dotted lines. 

 

Figure 9:  Results from an application of the 5 fitting procedures to 89 single voxel time 

courses. (A) The means and error bars for the estimates of H, T and W for each of the 5 

methods. (B) HRF estimates for each method extracted from a representative single voxel 

time course. (C) The model fit using the IL method extracted from a representative single 

voxel time course. 

 

Figure 10: Exploration of the relationship between changes in trains of neural events and 

changes in height (H), time to peak (T), and width (W) of activation.  A) a train of events 

(18 s. one burst of simulated neural activity per second) and the predicted activation 

accounting for nonlinear neuro/vascular responses (see text for details). Each event 

represents a collection of action potentials that occur in response to a cognitive event.  

Analyses were conducted using a linear activation model as well, but are less 

physiologically plausible and are not shown for space reasons.   B) Effects of increasing 

the amplitude of neural events, a proxy for neural firing rate.  For short-duration (3 s) and 

long-duration (18 s) trains, both H and W are affected to some degree.  C) Increasing the 

onset latency of event trains affected only T, but not H or W.  D) Increasing the duration 

of event trains affected H, T, and W for short trains (3 to 6 s durations), but only affected 

W for long trains (12 to 15 s durations and longer).  Thus, W is most interpretable for 

long stimuation epochs (> 12 s), but may reflect increases in either duration or intensity 
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of firing.  These results are illustrative rather than exhaustive, and all activation 

parameters should be interpreted with caution. E-G) Parameter differences (A-B) for H, T 

and W for each of the three types of simulated neuronal effects. Each figure shows epoch 

duration on the x-axis, and parameter differences on the y-axis.   
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

A    Bias vs. Variance Plots  

 

B    Confusability Plots  
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Figure 8 

 

 

 

 



HEMODYNAMIC RESPONSE MODELING  75 

Figure 9 
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Figure 10 

 

 

 

 


