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Abstract 

The general linear model (GLM) approach has arguably become the dominant way to 

analyze functional magnetic resonance imaging (fMRI) data.  It tests whether activity in a brain 

region is systematically related to some known input function. However, it becomes impractical 

when the precise timing and duration of psychological events cannot be specified a priori. In this 

work, we introduce a new analysis approach that allows the predicted signal to depend non-

linearly on the transition time. It uses ideas from statistical control theory and change-point 

theory to model slowly varying processes with uncertain onset times and durations of underlying 

psychological activity.  Our approach is exploratory in nature, while retaining the inferential 

nature of the more rigid modeling approach. It is a multi-subject extension of the exponentially 

weighted moving average (EWMA) method used in change-point analysis. We extend existing 

EWMA models for individual subjects (a single time series) so that they are applicable to fMRI 

data, and develop a group analysis using a hierarchical model, which we term HEWMA 

(Hierarchical EWMA). The HEWMA method can be used to analyze fMRI data voxel-wise 

throughout the brain, data from regions of interest, or temporal components extracted using ICA 

or similar methods.  We validate the false-positive rate control of the method and provide power 

estimates using simulations based on real fMRI data. We further apply this method to an fMRI 

study (n = 24) of state anxiety.  A toolbox implementing all functions in Matlab is freely 

available from the authors. 

 

Keywords: fMRI, Change-point, EWMA 
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Introduction 

 The voxel-wise general linear model (GLM) approach has arguably become the dominant 

way to analyze functional magnetic resonance imaging (fMRI) data.  This model is well-suited 

for testing whether variability in a voxel’s time course can be explained by a set of a priori 

defined regressors that model predicted responses to psychological events of interest.  The GLM 

approach has proven particularly powerful for dealing with event-related designs, as a sequence 

of sparse events occurring at random intervals affords a relatively specific predicted response, 

and a good fit to the data is often interpreted in terms of signal evoked by a particular 

psychological event (Wager, Hernandez, Jonides, & Lindquist, in press; Worsley & Friston, 

1995).  Mixed block/event-related designs have been used to investigate state-effects in fMRI 

(Visscher, Miezin, Kelly, Buckner, Donaldson, McAvoy, Bhalodia, & Petersen, 2003), but 

inferences on states are subject to the limitations in interpretability of block designs, and only 

states that are under relatively precise experimental control (i.e., they can be turned on and off 

repeatedly by experimental manipulations) can be studied.  New kinds of statistical models are 

needed to capture state-related changes in activity, particularly when psychological states have 

uncertain onset times, temporal intensity profiles, and durations.   

 As an example, consider an fMRI study planned to assess the effects in the brain of a new 

short-acting drug (Fig. 1A)—an event that is not easily repeated many times in a block design.  

Researchers might be interested in the kinetics of the drug in different brain areas. Some areas 

might respond to the initial administration, and others might show sustained responses consistent 

with plasma concentrations.  Yet other areas may taper off or ramp up over the period of 

administration, as the brain coordinates an orchestrated response to different components of the 

experience. State-related activity is critical in many other domains, including drug pharmacology 
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(Breiter et al., 1997; Wise, Williams, & Tracey, 2004), memory (Donaldson, Petersen, Ollinger, 

& Buckner, 2001; Otten, Henson, & Rugg, 2002), motivation and emotion (Gray, Braver, & 

Raichle, 2002).  For example, a participant watching a funny film might experience amusement 

that builds gradually over time.  Without moment-by-moment reports, which may alter the 

experience (Taylor, Phan, Decker, & Liberzon, 2003), the progression of amusement over time 

will be difficult to specify.  This is true in general for emotional states, which are difficult to turn 

on and off rapidly (required for blocked or ER designs) and may last longer than or not as long 

as the putative eliciting event. 

 The GLM's effectiveness in modeling such state-related activity is limited in several 

ways, and developing new approaches could lead to fruitful alternatives.  One issue concerns the 

match between the desired inference and the inference provided by the model.  For example, 

researchers may be interested in making inferences on the onset and duration of brain activity in 

a number of research settings.  Suppose a GLM is specified that incorporates a sustained (10-s 

long) response to a stimulus, as is common with epoch-related designs. The GLM provides 

inferences on the magnitude of the hemodynamic responses. These inferences will be appropriate 

for testing hypotheses regarding the magnitude, but not for hypotheses concerning the duration 

of activation. For example, suppose that there is only a brief hemodyamic response to the 

stimulus. The regressor will fit partially, and may well reach statistical significance as the GLM 

tests whether the magnitude of the regressor is non-zero. However, it is clear that inferring a 

sustained response from this fit would be inappropriate. Thus, given a hypothesis about the 

duration of activity, it would clearly be more informative to perform inferences directly on the 

duration of activation.  The GLM does not provide for this type of inference. 

 Two other related issues with the GLM involve the potential for mis-modeling (Neter, 



 5

Kutner, Nachtsheim, & Wasserman, 1996), which can reduce sensitivity and lead to incorrect 

inferences, and limitations in reproducibility (Liou, Su, Lee, Aston, Tsai, & Cheng, 2006; 

Genovese, Noll, & Eddy, 1997) for some paradigms.  First, in the example above, even a partial 

fit to the regressor may lead to a significant result. Therefore, model significance alone is not 

enough to imply that the specified model is a better choice than other plausible alternatives.  

More flexible models reduce the risk of mis-modeling and increase sensitivity when the precise 

shape of the response cannot be accurately specified a priori, and this is an advantage of the 

flexible approach to modeling state-related activity we propose in this paper. Second, suppose 

that a brain region reproducibly responds to a particular emotion (e.g., anxiety), though the onset 

and time course varies across participants and studies depending on the particular task demands 

and individual propensities.  In this case, there is no GLM model that will give reproducible 

activation in the region of interest.  However, a more flexible model may capture consistencies in 

activation magnitude while allowing for variations in timing.    

 For each of the situations outlined above, model flexibility is crucial. Models that permit 

more data-driven estimates of activation, and inferences on when and for how long activation 

occur, may be advantageous for discovering state-related activations whose timing can only be 

specified loosely a priori. Rather than treating psychological activity as a zero-error fixed effect 

specified by the analyst (as in GLM analysis) and testing for brain changes that fit the specified 

model, data-driven approaches attempt to characterize reliable patterns in the data, and relate 

those patterns to psychological activity post hoc.  One particularly popular data-driven approach 

in the fMRI community is independent components analysis (ICA), a variant on a family of 

analyses that also includes principal components and factor analysis (Beckmann & Smith, 2004; 

Calhoun, Adali, & Pekar, 2004; McKeown & Sejnowski, 1998).   Recent extensions of these 



 6

methods can identify brain activity patterns (components) that are reliable across participants, 

treating participant as a random effect (Beckmann & Smith, 2005; Calhoun et al., 2004), and can 

identify state-related changes in activity that can subsequently be related to psychological 

processes.  However, these methods do not provide statistics for inferences about whether a 

component varies over time and when changes occur in the time series.  In addition, because they 

do not contain any model information, they capture regularities whatever the source; thus, they 

are highly susceptible to noise, and components can be dominated by artifacts.    

Thus, the capacity for statistical inference is a strength of the GLM, whereas the ability to 

discover activation patterns that are related to a relatively unconstrained psychological model 

(i.e., the approximate onset and offset of a mental state under loose experimental control) is a 

strength of data-driven methods.  In this paper, we present a model-driven approach for 

identifying changes in fMRI time series in individual and group data that allows for valid 

population inference.  What sets this work apart from the GLM approach is that the predicted 

signal depends non-linearly on the model parameter (transition time). In essence, the suggested 

approach can be seen as an extension of the GLM framework to allow for unknown transition 

times. The approach uses ideas from statistical control theory and change-point theory to model 

slowly varying processes with uncertain onset times and durations of underlying psychological 

activity.  Thus, like data-driven methods, the model uses the data to come up with estimates of 

whether, when, and for how long activation occurred with only minimal specification of a priori 

constraints.  Concretely, in our model, one need only specify the length of a “no activation” 

baseline period and, for some applications, that a brain region’s activity level alternates between 

two states (e.g., stimulated and rest).  The estimates can then be compared with psychological or 

physiological parameters of interest—such as subjective ratings, behavior, or physiological 
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responses—to constrain interpretation.  Thus, a benefit of the methods are that they are semi-

model-free methods of detecting activation and are therefore insensitive to variations in the 

phase lag and shape of the hemodynamic response across the brain. Though the methods 

presented here share the attractive features of data-driven analysis methods, it is still in its core a 

model-driven approach and it retains the inferential nature of the more rigid modeling approach: 

population statistical inferences are made on activation patterns.   

 The change-point analysis that we develop is a multi-subject extension of the 

exponentially weighted moving average (EWMA) change-point analysis (also called statistical 

quality control charts (Neubauer, 1997; Roberts, 1959; Shehab & Schlegel, 2000)).  Activity 

during a baseline period is used to estimate noise characteristics in the fMRI signal response.  

This activity is used to make inferences on whether, when, and for how long subsequent activity 

deviates from the baseline level.  We extend existing EWMA models for individual subjects (a 

single time series) to include AR(p) and ARMA(1,1) noise processes, then develop a group 

‘random effects’ analysis using a hierarchical model, which we term HEWMA (Hierarchical 

EWMA).  

 The HEWMA method may be used to analyze fMRI data voxel-wise throughout the 

brain, data from regions of interest, or temporal components extracted using ICA or similar 

methods.  Here, we provide power and false-positive rate analyses based on simulations, and we 

apply HEWMA to voxel-wise analysis of an anxiety-producing speech preparation task.  We 

demonstrate how the method detects deviations from a pre-task-instruction baseline and can be 

used to characterize differences between groups of individuals in both evoked fMRI activity and 

changes in states. 

 The method also provides inferences on the number and timing of changes in the state of 
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activity, denoted change-points (CPs). Knowledge of the CPs may provide a basis for 

discriminating anticipatory activity from responses to a challenge (e.g., activity that begins in 

anticipation of pain from that elicited by painful stimuli; (Koyama, McHaffie, Laurienti, & 

Coghill, 2005; Wager, 2005)). CP maps may also be used to identify brain regions that become 

active at different times during a challenge (e.g., the early, mid, or late phases of a tonic painful 

stimulus).  These maps may provide meaningful characterizations of differences among 

individuals: For example, the onset time of brain responses to anxiety may provide clinically 

relevant markers of anxiety disorders.  In studies of emotion, the speed of recovery from adverse 

events is thought to be an important predictor of emotional resilience (Fredrickson, Tugade, 

Waugh, & Larkin, 2003; Tugade & Fredrickson, 2004), and CPs could provide direct brain 

measures of recovery time.   In cognitive psychology, brain CPs in problem solving and insight 

tasks may provide a direct neural correlate of traditional time-to-solution measures in cognitive 

studies (Cheng & Holyoak, 1985; Christoff et al., 2001).  Inferences on the duration of activation 

could have similar advantages, including tests on the duration of pharmacological or emotion-

related activity and the duration of cognitive task-set related activity in cognitive state-item 

designs. 

  

     Methods 

There are a large variety of change-point detection problems that present themselves in 

the analysis of time series and dynamical systems.  In this section, we first develop a method for 

detecting changes in activation patterns for a single time series using exponentially weighted 

moving averages (EWMA), and then develop a hierarchical extension (HEWMA) appropriate for 
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multisubject fMRI studies. Further, we introduce methods for estimating the exact timing and 

duration of the detected change.  

 

I. The exponentially weighted moving-average (EWMA) model 

Given a process that produces a sequence of observations ( )T
nxxxx K

r ,, 21=  (e.g., an 

fMRI time series), we first consider a two-state model where the data is modeled as the 

combination of two normal distributions, one with mean 0θ  and covariance matrix Σ, and the 

second with mean 1θ  and the same covariance Σ . During a baseline acquisition period, the 

process generates a distribution of data with mean 0θ , and while in this state, the process is 

considered to be in-control.  The observations follow this distribution up to some unknown time 

τ , the change-point, when the process changes (i.e., a new psychological state results in 

increased or decreased neural activity), resulting in the generation of fMRI observations from the 

second distribution with mean 1θ  (see Fig. 1A). While in this second state, the process is deemed 

to be out-of-control, or in the out-of-control (OOC) state. The statistical model for this 

framework can be written as follows: 

ttt sx ε+=  for nt K,1=        (1) 

where ts  denotes the signal and εt  the noise at time t.  The signal is specified by 

⎩
⎨
⎧

+=
=

=
       ,1for         

              ,1for          

1

0

nt
t

st
K

K

τθ
τθ

      (2) 

and ( )T
nεεεε ,,, 21 K

v =  follows a mean-zero normal distribution with covariance matrix Σ , i.e. 

( )Σ,0~ Nε
r .         (3) 
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The diagonals of the n x n matrix Σ  are the noise variance estimates for each observation, and the 

off-diagonals are the covariance among observations induced by autocorrelation in the fMRI 

time series. At a later stage we will relax the constraint of a single change-point and allow ts  to 

move between the two states. 

The problem of detecting and estimating change-points has been studied extensively in 

the change-point and statistical quality control literature.  In statistical control the exponentially 

weighted moving average (EWMA) control chart has become a popular and flexible approach 

for detecting deviations from some baseline mean. It is based on the EWMA statistic, tz . The 

statistic is a temporally smoothed version of the data, and is defined as follows:  

1)1( −−+= ttt zxz λλ     for nt K,1=    (4) 

or, equivalently, 

( ) 0

1

0
)1(1 θλλλ t

t

j
jt

j
t xz −+−= ∑

−

=
−   for nt K,1=    (5) 

where 10 << λ  is a constant smoothing parameter chosen by the analyst, and the starting value 

0z  is set equal to the baseline mean, 0θ .  Thus, each value of tz  is a weighted average of the 

current observation tx  and the previous value of the EWMA statistic.  Notably, since the EWMA 

statistic is a weighted average of the current and all past observations, it is relatively insensitive 

to violations to the normality assumption. Smoothing the data (i.e., decreasing λ ) can increase 

power to detect deviations from the null model by regularizing the data; however, the optimal 

choice of smoothing parameter depends on the nature of the deviations. A general rule of thumb 

is to choose λ  to be small (more smoothing) if one is interested in detecting small but sustained 

shifts in the process, and larger (less smoothing) if the shifts are expected to be large but brief. 
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The optimal choice of λ  is discussed in greater detail in Lucas & Saccucci (Lucas & Saccucci, 

1990) .  

Without loss of generality we will assume that 00 =z , and therefore we can rewrite the 

sequence of EWMA statistics in matrix notation as 

xz rr
Λ=         (6) 

where ( )T
nzzzz K

r ,, 21=  and   

  

Λ = λ 

1 0
(1− λ) 1

(1− λ) 1
M O

(1− λ)n−2 1
(1− λ)n−1 (1− λ)n−2 K (1− λ) 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

    (7) 

is a lower triangular smoothing matrix. 

 

II. Statistical inference on the presence of activation in EWMA 

In general, we are interested in making inference on two features of the model stated in 

Eqs. 1-3. First, we seek to develop statistical tests to determine whether a change in distribution 

(i.e., a departure from the baseline state of fMRI activity) has indeed taken place, i.e., whether to 

reject the null hypothesis 10 θθ = .  If a change is detected, we would also like to estimate when 

exactly the change took place, i.e. estimate the unknown parameter τ .  

For detecting activation, the null hypothesis is that there is a single, baseline state where 

the mean (denoted µ) is constant.  The alternative is that there are two or more states with 

different mean activity levels, though here we consider only the simplest two-state (baseline and 

activation) alternative.  Thus,  
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00 : θμ =H  for nt K,1=  

0: θμ =aH  for τK,1=t  and 1θμ =  for nt K,1+= τ     (8) 

Our aim is to assess the probability of observing the data under the null hypothesis ( )Σ,~ 0θNxr .  

In our analysis the parameters of the covariance matrix are estimated using data acquired during 

a baseline period in which the subject remains in a resting state (Fig. 1A and 1B). For each 

EWMA statistic zt  following the baseline period, we compute a test statistic tT : 

Tt =
zt −θ0

Var(zt )
.        (9)  

where )( tzVar  is the variance of the EWMA statistic at time t. The statistic T follows a t-

distribution with df degrees of freedom (discussed below), providing p-values according to 

classical inference. Further, control limits (analogous to confidence intervals) for detecting 

values of zt that vary significantly from baseline can be calculated as follows: 

)(*
0 tzVart±θ        (10) 

where t* is a critical value from the t-distribution corresponding to the desired false positive-rate 

(see control limits in Fig. 1B).  If zt  at any time exceeds the control limits, the process is deemed 

to have changed states and the null hypothesis is rejected.  The control limits incorporate 

correction for multiple tests across time, as discussed below. 

EWMA statistic variance 

Under white noise, it can be shown (Montgomery, 2000) that 

( )( )t
tzVar 22 11

2
)( λ

λ
λσ −−
−

=        (11) 

For AR(1) noise, the minimum autocorrelation model appropriate for fMRI data, )( tzVar  has 

previously been derived (Schmid, 1997). Explicit derivations of )( tzVar  for a variety of 
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different underlying noise models (e.g. AR(p) and ARMA(1,1)) can be found in Lindquist and 

Wager (Lindquist & Wager, In press). To summarize, for an AR(p) process, the autocorrelation 

function is given by 

∑
=

−=
p

m

h
mmGAk

1
)(γ         (12) 

where mG  are the roots of  

01 2
21 =−+−− p

p zzz φφφ K         (13) 

for   m =1,K p and mA  are constants (Brockwell & Davis, 2002). In this situation, 
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For an ARMA(1,1) process, the autocorrelation function can be calculated (Brockwell & Davis, 

2002) as follows: 
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In general, for a process with fixed length and covariance matrix Σ, the covariance matrix of the 

time series of EWMA statistics ( zr ), is given by TΛΣΛ=Σ* . Hence the variance of zr  is in turn 

given by the diagonal elements of Σ*. 

Correction for search across time and for spatial correlation 

The p-values that are calculated at each time point must be controlled for search over the 

time series.  Bonferroni correction is overly conservative because of positive dependence across 

time.   A more sensitive procedure, which we adopt, uses Monte Carlo integration.  Under the 

null hypothesis, the sequence of test statistics { }nTTTT ,,, 21 K
r

=  follows a multivariate t-

distribution with covariance matrix Σ* and df degrees of freedom calculated using 

Satterthwaite’s approximation. Familywise error rate (FWER) control across the time series is 

provided by randomly generating vectors of n-length t-values from the ),( * dft Σ  distribution and 

using their maxima to estimate a distribution of maximum null-hypothesis t-values (Nichols & 

Holmes, 2002):   

{ }
{ }knk
TT

K,1max max
∈

=          (15) 

We use the multivariate T random number generator provided in Matlab (Mathworks, Natick, 

MA) with 10,000 samples at each voxel, which runs in less than 0.3s for n=200 on a personal 

computer with a 2.53 GHz Pentium 4 processor and 1.00 GB of RAM. The 95th percentile of the 

distribution of maxT  provides a critical t-value, *T , for two-tailed FWER control1. If any T > T*, 

the voxel is significantly activated (or deactivated) relative to the baseline period. 

It should be noted that the null distribution of a likelihood ratio test for the hypotheses in 

Eq. 8 has been worked out analytically in Hawkins (1977) and Worsley (1979) for the case when 

                                                 
1 The test is two-tailed because maxT  is defined based on the absolute value of T. 
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εt are independent and identically distributed (iid) normal random variables. However, the 

distributions of the test statistics are rather complicated and numerical methods are used to study 

them. Siegmund (1985) provides analytic approximations for these distributions. However, all 

the results are for the iid normal case, while we are dealing with data that has significant 

autocorrelation. Using the permutation methods described above allows us to expand the 

application to comfortably handle temporally autocorrelated noise models.   

Finally, we use false detection rate (FDR) (Genovese, Lazar & Nichols (2003)) to correct 

for correlation over space. As FDR works on the p-values, it is directly applicable after applying 

EWMA. 

 

III. Estimation and inference on change-points (CPs) 

 There are several methods for estimating τ , the time point at which the state shift takes 

place.  In the ‘zero-crossing’ method (Nishina, 1992), the last time point at which the process 

crosses 0θ  before *TT > is the estimate of τ .  More formally, let us assume that At  is the first 

time the EWMA statistic exceeds the control limits: 

 { }*|min TTtt t
A >= .        (16) 

The change-point estimator of τ for an increase in the process mean is given by the latest time 

point prior to At  in which tz  lies below 0θ̂ , which is the estimated baseline mean. That is, we 

define 

{ }0
ˆ,|maxˆ θτ ≤≤= t

A zttt .        (17) 

The change-point estimator of τ for a decrease is defined in an analogous manner. The method’s 

main advantages are that it is conceptually straightforward and computationally efficient.  
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Activation duration and multiple change-points 

 A limitation of the zero-crossing method is that only a single, initial CP is assessed, and 

there is no clear provision for assessing return to the baseline state or the presence of multiple 

CPs.  One possible approach would be to assume a return to baseline once the EWMA statistic 

crosses back across the control limit. Hence, the total number of OOC points can give a rough 

indication of the activation duration, though durations are likely to be biased toward zero.  

As an alternative, we can use a Gaussian mixture model to classify each observation as 

either belonging to the baseline (in control) or activated (OOC) distribution. This procedure also 

allows us to estimate the length of time spent in the activated state. Though, the mixture model is 

philosophically different from change-point estimation using the zero-crossing method (it is an 

estimation rather than an inferential technique), we present it here as a flexible approach towards 

studying state changes in an fMRI time series, which can be extended to multiple activation 

states. In the mixture model approach, we assume that the data has been pre-whitened using the 

covariance estimates obtained from the EWMA stage of the analysis. We then model the fMRI 

time course as a mixture of two normal distributions, with different means, as follows: 

),(~ 2
100 σθNX  for the baseline state, and ),(~ 2

211 σθNX  for the activated state (see Fig. 1C for 

an example).  

We can write this mixture as 

  10)1( XXX Δ+Δ−=           (18) 

where the random variable Δ  is equal to one with probability p and equal to zero with 

probability 1-p. The density function of X can be written 

)()()1()(
10

xpfxfpxf XXX +−= .      (19) 

where )(xf
iX  is the normal probability density function with mean iθ  and variance 2

iσ . 
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We can fit this model to the data using maximum likelihood methods. The unknown parameters 

of the model are ),,,,( 2
2

2
110 pσσθθ and the log-likelihood can be written: 

( )∑
=

=
n

i
iX xfpl

1

2
2

2
210 )(log)|,,,,( xσσθθ      (20) 

The parameters that maximize this term can be found using the EM-algorithm (see Appendix A). 

Once we have determined the maximum likelihood estimates of the parameters in this 

model, we need to classify each data point according to which state they belong to. This can be 

done using Bayes’ formula. The probability that a data point belongs in the active (OOC) state is 

given by: 

)(
)(

)|( 1

iX

iX
i xf

xpf
xactiveP = .        (21) 

If 5.0)|( >ixactiveP , then the time point is classified as belonging to the active state, otherwise 

it is classified as belonging to the original baseline state. The mixture model approach is 

attractive as it does not require one to specify the number of change-points present in the time 

course a priori. 

It is important to note that in the EWMA framework the noise covariance was not 

assumed to vary between the baseline and OOC states. In this section we have relaxed this 

assumption to allow the covariance to vary (up to a scaling term) between the states. This was 

done to increase the flexibility of the mixture model. However, we return to the assumption of 

non-varying noise covariance in the next section where the HEWMA framework is presented. 

 

IV. Hierarchical EWMA (HEWMA) for population inference 

The EWMA procedure outlined above is suitable for studying a single time series for an 

individual subject. In fMRI analysis we are typically most interested in detecting whether an 
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effect is present over an entire group of subjects. Group changes are of primary interest in the 

neurosciences for making population inferences. For this reason, we developed a group analysis 

using a hierarchical (i.e., mixed effects) extension of EWMA.  

It should be noted that there does exist a multivariate extension of the EWMA framework 

- the multivariate exponentially weighted moving average (MEWMA) (Lowry, Woodall, Champ 

& Rigdon (1992)). However, direct application of MEWMA is not appropriate for our purposes. 

For one, the MEWMA approach is only useful for performing a fixed-effects analysis, while we 

are primarily interested in mixed effects analysis and the ability to make population wide 

inference. Secondly, the MEWMA approach does not differentiate between the direction of the 

change in mean, while we are interested in studying activations and deactivations separately.  

To circumvent these two shortcomings of the MEWMA approach, we instead chose to 

develop the hierarchical exponentially weighted moving-average (HEWMA) model that allows 

us to perform a mixed-effects analysis on fMRI group data using the same type of analysis that 

the EWMA method allows for single-subject data. We use the EWMA statistic and covariance 

matrix defined previously, together with a between-subjects covariance term, to obtain the 

HEWMA statistic, which is a weighted population average, and its corresponding covariance 

matrix. Thereafter, the Monte-Carlo procedure used in the EWMA framework is applied to get p-

values and test the hypothesis of consistent activation within the group, or alternatively 

differences in activation between groups. 

  The data consist of a time course from one voxel, an ROI or a component for each of m 

subjects.  Independent analysis is performed for each voxel/ROI/component time series (i.e., the 

massive univariate approach). Let i
tx  denote the data for subject i at time t, where mi K,1=  and 

nt K,1= . Our hierarchical mixed-effects model takes the following form: 
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where ηt  is the subject-level noise term at time t and i
ts , the underlying signal for subject i, is 

considered to be either in a baseline or activated state at each time point. Finally, the population 
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shows how the subject mean state-values are drawn from a larger population.  In matrix format 

we can write Eq. 22 as 

iii sx εrrr
+=          (25) 

where ( )Ti
n

iii xxxx K
r ,, 21= , ( )Ti

n
iii ssss K

r ,, 21=  and ( )Ti
n

iii εεεε K
r ,, 21= . Here ( )i

i N Σ,0~ε
r  and 

the vector isr  can be considered the equivalent of beta weights, one weight for each time point. 

Similarly, we can write Eq. 23 as 

η
rrr

+= pop
i ss         (26) 

where ( )Tpop
n

poppop
pop ssss K

r ,, 21=  and the noise vector η
r

 is ( )BN Σ,0 .  Here ΣB  represents the 

noise covariance matrix between subjects, and the off-diagonals are zero for independent 

subjects; thus, η
r

 is an n x 1 vector of iid ( )BN σ,0  random variables.  This implies that the true 

subject-level effect varies over time and may differ among subjects. 

The multi-level model can be written in single-level format as: 

     i
pop

i
pop

i ssx ξεη
rrrrrr

+=++=       (27) 
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where ( )Bi
i N Σ+Σ,0~ξ

r
; that is, the overall noise term is distributed with a variance equal to 

the sum of between-subjects and within-subjects variances.  In the continuation we write 

Bi
iV Σ+Σ= . Thus, in the HEWMA model the unknown parameters are 10 ,θθ , τ , and the 

variance components iΣ  and BΣ . Note that if we have first performed a single-level analysis 

(EWMA) on each subject (see Eq. 4) we can use the EWMA statistics ( i
tz  for subject i at time t) 

in the second level. In this case, we can assume that the within-subject variance components iΣ  

are known, and brought forward, from the first level of analysis.  

Estimation of the HEWMA statistic and its variance components  

 When calculating the total variation in subject i’s EWMA statistic we write, 

       T
ii VV ΛΛ=*  

T
B

T
i ΛΛΣ+ΛΛΣ=  

**
Bi Σ+Σ= ,         (28) 

 where *
iΣ  is the variance brought forward from the single subject analysis and *

BΣ  can be 

calculated using the fact that 2
BnB I σ=Σ . The only unknown term that needs to be estimated 

within the HEWMA framework is therefore the parameter Bσ . Hence, we can write ΛΛ=Σ T
B α*  

where ΛΛT  denotes the known portion and α  the unknown portion of the covariance matrix.  

In our approach we estimate the unknown variance component using restricted maximum 

likelihood (ReML). Our approach is equivalent to that used in SPM2 (Friston et al., 2002), which 

uses an EM-algorithm to estimate the parameters of interest. To simplify notation we begin by 

rewriting the problem in matrix form. Let, 

[ ]TTm
G zzzz r

L
rrr    T2T1=        (29) 



 21

be the combined vector of EWMA-statistics for all m subjects (G denotes group). Recall, that in 

the hierarchical model we can write the covariance matrix for each individual subject as 

***
BiiV Σ+Σ= . Hence, it follows that the covariance matrix for Gzr  can be written: 
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       (30) 

Further, let [ ]T
nnn IIIG    L=  be an nmn × matrix where nI  is the nn ×  identity matrix.  Using 

this notation we can define the HEWMA-statistic, popzr , as 

poppopG zGz ξ
rrr

+=          (31) 

where the covariance matrix popξ
r

 is ( )*,0 GVN .  We can then estimate the HEWMA statistic using 

generalized least squares regression: 

( ) GG
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Hence the estimate of popzr  will be a weighted average of the individual subject’s EWMA 

statistics. The covariance matrix for the HEWMA statistic can be written as: 

( )
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In order to estimate the HEWMA statistic and its covariance matrix, we first need an estimate of 

*
iV . In our approach the within-subject component *

iΣ is assumed known from the first level and 

the general form of *
BΣ  is also assumed known up to a scaling term. Hence we can write the total 
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variance for subject i as **
i

T
iV Σ+ΛΛ= α , where α  is the unknown and ΛΛT  the known part of  

*
BΣ . 

The problem of estimating the parameter α , is similar to the variance component 

estimation procedure performed in SPM2 (Friston et al., 2002). There they find the so-called 

hyper-parameter using an EM-algorithm and we will follow the same general outline here. Let, 

GGG QV Σ+= α*  where  

ΛΛ⊗= T
mG IQ   and  
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The parameters α  and popZ  are estimated iteratively using the EM-algorithm in Appendix B. 

Corrected p-values and population change-point estimates 

 The final step in the HEWMA framework is performing a Monte Carlo simulation to get 

corrected p-values (searching over time). This is done as described in the EWMA section, except 

here we use popZ  and its covariance matrix to calculate the relevant test-statistics and define the 

multivariate t-distribution. Fig. 6 shows an example of the whole procedure where the HEWMA 

group activation, popZ , is estimated from the time courses of 24 subjects. Monte Carlo 

simulations are used to find corrected p-values. Fig. 6B shows the observed max T-statistic as a 

black line overlaid on the distribution of the max T-statistic under the null hypothesis.  Finally, 

FDR is used to correct for spatial correlations. 

 Change-point estimation can either be performed directly on the HEWMA statistic using 

the methods described for the single subject case, or performed on the individual subjects’ time 

courses. Though specific inferential techniques have not been developed for CP estimation in the 
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group (HEWMA) analysis, the latter approach can be taken with a few minor alterations of the 

single subject framework.  When using the zero-crossing method, population inference is 

straightforward using a sign permutation test. Here the change-point is defined to be the first 

time point, prior to the HEWMA statistic being in the active state, in which a significant number 

of the individual time courses have crossed the baseline mean. Alternatively, it is possible to 

estimate the change-point for each individual subject and apply bootstrap methods to construct 

tests and confidence intervals for the population change-point. In addition, we have developed 

theory for using MLE methods for estimating the number of change-points, as well as their 

timing. This material will be published in a separate paper dealing solely with change-point 

estimation. 

 

V. Simulations 

In order to test the EWMA and HEWMA methodology and the efficiency of the change-

point estimation procedure we performed a set of three simulation studies outlined in detail 

below. In Simulation 1, we simulate a single-subject dataset with four active regions, each with a 

different activation onset time, and estimate both the likelihood of activation and CPs using 

EWMA with the zero-crossing method. In Simulation 2, we assess the false positive rate (FPR) 

and power for the HEWMA method across values of the smoothing parameter λ . Simulation 3 

assessed power and FPR across varying durations of the baseline period used for estimating 

variance components. 

Note that in each of our simulations the noise is considered spatially independent. This was 

done to show the accuracy of the p-values in the case when they are considered uncorrected 

across space. In an application to real data, FDR (Genovese, Lazar & Nichols, 2002) can be used 
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to correct these p-values in he same manner that they are used to correct GLM-based p-values 

(Worsley & Friston, 1995). 

Simulation 1.  As shown in Fig. 2, we constructed a 6464 ×  phantom image containing a 

square region of size 4848×  representing a human brain. The image intensities are assigned 

values of 1 or 0 for the points inside or outside of the square, respectively. Four smaller squares, 

with dimensions 88× , are placed inside the larger square to simulate ROIs with static contrast to 

the larger square. To simulate a dynamic image series, this base image is recreated 250 times 

according to a boxcar paradigm consisting of a prolonged period of activation of length 50 time 

points during which the signal within the four squares increases to 2.  The onset time of 

activation varies between the four regions and takes values of 60, 80, 100 and 120 time points. 

Hence, each region has activation of similar length and intensity, but with varying onset times. 

Noise simulated using an AR(2) model with standard deviation equal to 1 is added to each 

voxel’s time course.  We analyzed the simulated data set using EWMA with 2.0=λ and an 

AR(2) noise model. We further estimated onset times (change-points) and p-values for all active 

voxels. 

Simulation 2.  The next simulation sought to study the false positive rate (FPR) and perform 

power calculations for the HEWMA method. Actual fMRI noise was extracted from non-

significant voxels of the brain (chosen because their HEWMA statistics gave rise to p-values 

above .95), obtained from the experimental data described in the next section. In total 50,350 

noise time courses of length 215 time points were included in the study. The simulation 

mimicked a group analysis consisting of 20 subjects. For the FPR study, null hypothesis data 

with no activation was created by randomly sampling time series from the collection of noise 

time courses. This was done for each of 20 “subjects” and a random between-subject variation 
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with a standard deviation of size one third of the within-subject variation was added to each 

subject’s time course. A significance level of 05.0=α was used to determine “active” voxels. 

For the power calculations the same procedure was repeated, with the difference that an active 

period of length 50 time points was added to the noise data, with intensity equivalent to a 

Cohen’s d of 0.5 (Cohen, 1988). This coincides with values observed in experimental data 

(Wager, Vazquez, Hernandez, & Noll, 2005). 

The HEWMA method was performed on 5000 replications of each of these two data types 

for λ  values set equal to 0.1, 0.3, 0.5, 0.7 and 0.9. The analysis was further performed using 

noise models in the HEWMA framework corresponding to white noise (WN), AR(1), AR(2) and 

ARMA(1,1) noise. For each simulation the first 60 time points were used as a baseline period.  

Simulation 3.  The procedure was identical to that for Simulation 2, except that in this 

simulation, the baseline length was either 20, 40, 60 or 80 time points. The analysis was again 

performed using noise models in the HEWMA framework corresponding to white noise (WN), 

AR(1), AR(2) and ARMA(1,1) noise. For each simulation λ  was set equal to 0.2 and a 

significance level of 05.0=α  was used. 

 

VI. Experimental fMRI data collection and analysis 

 Participants.  We applied the HEWMA method to data from 30 participants scanned with 

BOLD fMRI at 3T (GE, Milwaukee, WI). The experiment was conducted in accordance with the 

Declaration of Helsinki and was approved by the University of Michigan institutional review 

board. Six participants were excluded because of motion or nonlinear normalization artifacts, 

leaving 24 participants.  They were discarded prior to analysis due to substandard spatial 
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normalization and/or excessive head motion.  It should be noted that these subjects would also 

have been excluded from a standard GLM analysis. 

 Task design.  The task used was a variant of a well-studied laboratory paradigm for 

eliciting anxiety (Dickerson & Kemeny, 2004; Gruenewald, Kemeny, Aziz, & Fahey, 2004; Roy, 

Kirschbaum, & Steptoe, 2001), shown in Fig. 5. The design was an off-on-off design, with an 

anxiety-provoking speech preparation task occurring between lower-anxiety resting periods.  

Participants were informed that they were to be given two minutes to prepare a seven-minute 

speech, and that the topic would be revealed to them during scanning.  They were told that after 

the scanning session, they would deliver the speech to a panel of expert judges, though there was 

“a small chance” that they would be randomly selected not to give the speech.   

 After the start of fMRI acquisition, participants viewed a fixation cross for 2 min (resting 

baseline).  At the end of this period, participants viewed an instruction slide for 15 s that 

described the speech topic, which was to speak about “why you are a good friend.”  The slide 

instructed participants to be sure to prepare enough for the entire 7 min period.  After 2 min of 

silent preparation, another instruction screen appeared (a ‘relief’ instruction, 15 s duration) that 

informed participants that they would not have to give the speech.  An additional 2 min period of 

resting baseline followed, which completed the functional run.  

 Heart rate was monitored continuously, and heart rate increased after the topic 

presentation, remained high during preparation, and decreased after the relief instruction (data 

will be presented elsewhere).  Because this task involves a single change in state, as in some 

previous fMRI experiments (Breiter & Rosen, 1999; Eisenberger, Lieberman, & Williams, 

2003), and the precise onset time and time course of subjective anxiety are unknown, this design 

is a good candidate for the HEWMA analysis. 
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Image acquisition.  A series of 215 images were acquired using a T2*-weighted, single-

shot reverse spiral acquisition (gradient echo, TR = 2000, TE = 30, flip angle = 90) with 40 

sequential axial slices (FOV = 20, 3.12 x 3.12 x 3 mm, skip 0, 64 x 64 matrix).  This sequence 

was designed to enable good signal recovery in areas of high susceptibility artifact, e. g. 

orbitofrontal cortex. High-resolution T1 spoiled gradient recall (SPGR) images were acquired for 

anatomical localization and warping to standard space. 

Image analysis.  Offline image reconstruction included correction for distortions caused 

by magnetic field inhomogeneity.  Images were corrected for slice acquisition timing differences 

using a custom 4-point sync interpolation and realigned (motion corrected) to the first image 

using Automated Image Registration (AIR; (Woods, Grafton, Holmes, Cherry, & Mazziotta, 

1998)).   SPGR images were coregistered to the first functional image using a mutual 

information metric (SPM2).  When necessary, the starting point for the automated registration 

was manually adjusted and re-run until a satisfactory result was obtained.  The SPGR images 

were normalized to the Montreal Neurological Institute (MNI) single-subject T1 template using 

SPM2 (with the default basis set).  The warping parameters were applied to functional images, 

which were then smoothed with a 9 mm isotropic Gaussian kernel.   

 Individual-subject data were subjected to linear detrending across the entire session (215 

images) and analyzed with EWMA.  An AR(2) model was used to calculate the EWMA statistic 

( tz ) and its variance, and zr  and the variance estimates were carried forward to the group level 

HEWMA analysis.  We used custom software (see author note for download information and 

appendices) to calculate statistical maps throughout the brain, including HEWMA (group) t and 

p-values for activations (increases from baseline) and deactivations (decreases from baseline); 

individual and group CPs (calculated on the group HEWMA t-time series) using the zero-
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crossing method, activation duration as estimated by the number of OOC points, and CP and run-

length estimates using the Gaussian mixture model described above.   

 Significant voxels were classified into sets of voxels showing similar behavior using k-

means clustering.  We considered activations and deactivations separately, and used k-means 

clustering on the group CP and longest activated run length (from the mixture model) to assign 

voxels into classes with similar behavior.  To do this, we used the k-means algorithm 

implemented in Matlab 7.4  (Mathworks, Natick, MA) with the v x 2 matrix of values for the v 

significant activated (or deactivated) voxels as input.  This choice was arbitrary and is primarily 

for data visualization; other clustering algorithms may also be used effectively.  The number of 

classes was determined by visual inspection of the joint histogram of CP and duration values.  

Twelve classes were used for the analyses reported here.  Sets of contiguous supra-threshold 

voxels (‘regions’) of the same class were the unit of analysis for interpretation.  

 Examining the systematic features in the time courses of regions of interest permits us to 

make inferences about the role the region plays in the speech preparation task.  Rather than being 

limited to testing whether a voxel is activated during the preparation interval on average 

compared with baseline periods, the HEWMA method can detect a number of different types of 

interesting systematic features, including sustained activation during the preparation task, 

transient activation during instruction presentation, fluctuations in baseline activity that may be 

related to the start of scanning, and others.  Of particular interest are voxels whose activation 

onset is near the time of task onset (at 60 TRs or 120 s) and whose activity is sustained 

throughout the task (at least 60 TRs/120 s), which may reflect sustained anxiety.   
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Results 

I. Simulation results  

Simulation 1.  We used EWMA to create a significance map and a change-point map that 

accurately depicts the difference in onset time between regions. Setting the smoothing parameter 

2.0=λ and the significance level 05.0=α , we analyzed each voxel using the EWMA 

procedure outlined in the Methods section. Fig. 2A depicts the theoretical significance map, with 

equal amount of activation present within each of the four active regions. Fig. 2C depicts the 

actual significance map obtained using EWMA. This indicates that we were able to accurately 

detect a large number of active voxels within the region of activity, with a minimal number of 

false positives outside of the region. Fig. 2B depicts the theoretical change-point map, where the 

intensity varies depending on the onset time. Fig. 2D depicts the actual change-point map 

obtained by calculating the zero-crossing change-point estimate for each voxel deemed active in 

the prior analysis. The CP map provided accurate estimates of the onset times for the four 

regions, as indicated by the similar intensity values for the true values (Fig. 2C) and estimates 

(Fig. 2D).  Examination of the error in CP estimation showed a distribution that was centered at 

zero with a slight left–skew (mean = -2.0, St. Dev. = 6.3, median = 0 and IQR = 5). 

  Simulation 2.  Figs. 3A and 3B shows the FPR and power calculations for each noise 

type as a function of the smoothing parameter λ . Fig. 3A shows that the number of false 

positives increases for each noise type as a function of λ (i.e., with less smoothing). This is 

natural, as low values of λ entail a greater amount of smoothing, and minimize the risk of the 

null hypothesis data venturing too far from the baseline mean. The nominal alpha level of 0.05 is 

shown by the horizontal dashed line. As λ  increases, the amount of smoothing decreases and the 

FPR exceeds 05.0=α . The ARMA model performs worse than the other models in FPR and 
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power, while the other models appear to behave in a similar manner (though are somewhat 

conservative, with FPRs near 0.01 with low λ ).  All models control the FPR appropriately with 

λ ≤ .4.   

Studying Fig. 3B, it appears that though the power increases slightly for each noise type 

as a function of λ , it does not vary in a significant manner. All noise models gave roughly 

equivalent results. However, we suggest the use of the AR(2) model as it has the flexibility to 

model periodic noise oscillations that are often produced in fMRI as a result of physiological 

changes. Fig. 5A shows an ROC curve for this noise model corresponding to each of the five 

smoothing parameters.  

In summary, our simulation studies indicate that a low value of λ  will give a test with 

reasonable power and low false positive rates. Increasing the value of λ  will lead to a slight 

increase in power, but at the cost of an increase in FPR. In the continuation we use λ = 0.2. 

 Simulation 3.  Fig. 3C and 3D shows the FPR and power calculations for each noise type 

as a function of the baseline period length. Studying Fig. 3C, it is clear that the number of false 

positives decreases for each noise type as the baseline period increases. This is natural as a long 

baseline period allows for more data to accurately estimate the parameters of the model. The 

ARMA model performs significantly worse than the other models, and gives rise to a 

dramatically inflated FPR for baseline lengths less than 60 time points. This performance may be 

due to the fact that the baseline period is too short to get an accurate estimate of the variance 

components for this model type, as the ARMA parameter estimation is more complex than for 

the other models (i.e. MLE vs. method of moments). Studying Fig. 3D, it appears that though the 

power increases slightly for each noise type as a function of baseline length, it does not vary 

substantially across baseline durations except for the ARMA model which performed worse than 
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the other models. We again suggest the use of the AR(2) model, and Fig. 5B shows an ROC 

curve for this noise model corresponding to each of the four baseline lengths. 

 In summary, our simulation studies indicate that an increased baseline leads to increased 

power as well as decreased FPR, which is advantageous.  However, it is interesting to note that 

the WN, AR(1) and AR(2) models are all robust enough to handle a baseline period as short as 

20 time points.  Naturally, these values depend on the noise characteristics, so collecting more 

baseline data (e.g., 60 time points) is recommended. The ARMA model, on the other hand, 

requires a baseline of at least 60 time points.   

 

II. FMRI results 

 The HEWMA analysis on the experimental data revealed task-related changes consistent 

with previous literature on neuroimaging of emotion (Phan, Wager, Taylor, & Liberzon, 2004; T. 

D. Wager, K. L. Phan, I. Liberzon, & S. F. Taylor, 2003)  including activations in dorsolateral 

and rostral medial prefrontal cortices, middle temporal gyrus, and occipital cortex (Figs. 6 and 

7).  Deactivations were found in ventral striatum and ventral anterior insula. The activation is 

consistent with what might be expected in a cognitively complex task, which involved visual 

cues at two periods during the task, the mental effort and subvocal rehearsal required to prepare a 

speech, and the anxiety elicited by the task context.  In particular, the rostral PFC has been 

strongly implicated in processing of self-relevant information and the representation and 

regulation of aversive emotional states (Ochsner et al., 2004; Phan, Wager, Taylor, & Liberzon, 

2002; Quirk & Gehlert, 2003; Quirk, Russo, Barron, & Lebron, 2000; Ray et al., 2005; T. 

Wager, K. L. Phan, I. Liberzon, & S. F. Taylor, 2003).  Information about the onset and duration 

of activation provided by the HEWMA analysis can constrain interpretation of the roles of these 



 32

regions in task performance. 

 Estimates were made of the time of onset and duration of activity for activated regions.  

The range of estimated onset times, from around 40 TRs (80 s) to around 180 TRs (360 s) from 

the start of scanning indicates that different regions were activated at different times during 

scanning.  Most significant voxels showed activation onsets around the time of task onset (60 

TRs), when the visual cue to begin speech preparation was presented (Fig. 7).  Likewise, 

activation duration estimates from the Gaussian mixture model ranged from transient increases 

(approx. 10 TRs or 20 s) to sustained increases (~80 TRs, 160 s).  The 2-D histogram of 

significant voxels by CP and estimated duration is shown in Fig. 7B. K-means classification was 

used to provide a way to identify classes of activated voxels with similar onset and duration 

estimates. Class membership is indicated by color in the histogram in Fig. 7B.  The diversity of 

onset times and durations suggests that a variety of different GLM models would be required to 

detect these activations.  

 Examining the group time courses of voxels in these regions corroborates this view and 

provides additional evidence.  Time courses for two patterns of responses are shown in Fig. 8, 

including a medial prefrontal region showing sustained activity throughout the anxiogenic task 

and an occipital region showing transient responses to the instruction periods (when visual 

stimuli were presented). The baseline period in Fig. 8 is indicated by the shaded gray box in each 

panel, and the HEWMA-statistic time course is shown by the thick black line (+/- one standard 

error across participants, shown by gray shading).  Control limits are shown by dashed lines; 

thus, the region is significantly activated if the HEWMA-statistic exceeds the control limit at any 

time point. Importantly, the time course of activation in rMPFC parallels the structure of the task 

in that activation begins around the onset of speech instructions and is sustained throughout the 
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duration of the preparation interval.  This region has been related in many neuroimaging studies 

to subjective anxiety and self-referential processing (Breiter & Rosen, 1999; Dougherty et al., 

2004; Eisenberger et al., 2003; Ray et al., 2005; Wang et al., 2005), and is thus a 

neurophysiologically plausible candidate to show sustained activation related to the anxiogenic 

task.  

 
Discussion 

Typically statistical methods in fMRI can be categorized into two broad categories: 

hypothesis and data driven approaches. Hypothesis-driven approaches test whether activity in a 

brain region is systematically related to some known input function.  In this approach, typically, 

the general linear model (GLM) is used to test for differences in activity among psychological 

conditions or groups of participants.  However, for many psychological processes, the precise 

timing and duration of psychological activity can be difficult to specify in advance.  In this 

situation the GLM approach becomes impractical, as the psychological activity cannot be 

specified a priori. Data-driven methods, such as independent components analysis (ICA), give 

an account of the data using few a priori assumptions. Instead, they attempt to characterize 

reliable patterns in the data, and relate those patterns to psychological activity post hoc. The 

main drawback of these methods is that they do not provide statistics for making inferences 

about whether a component varies over time and when changes occur in the time series.  

The purpose of the HEWMA method is to allow for the detection of systematic changes 

in activity with a variety of onset times and activation durations.  The differences in onset and 

duration are likely to reflect differences in functional anatomy, i.e., the way in which each 

activated region participates in the task.  Both the EWMA and HEWMA methods for fMRI data 

analysis are designed to detect regions of the brain where the signal deviates reliably from a 
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baseline state. The methods make no a priori assumption about the behavior of these changes, 

and the method will detect activation and deactivation, as well as regions with both short and 

prolonged activation duration. In this sense, both EWMA and HEWMA can be thought of as 

searches for activity differences across time, correcting for the multiple comparisons tested and 

accounting for the correlation among observations.  

 Once a systematic deviation from baseline has been detected, the second step in the 

analysis entails estimating when exactly the change took place, as well as the recovery time (if 

any).  This estimation procedure can be performed using the zero-crossing method or a Gaussian 

mixture model. Other methods are under development as well (e.g. an MLE approach) and we 

present the methods above as a starting point for further work.  Once these estimates are 

obtained, we can cluster the active voxels into groups whose estimates behave in a similar 

manner. This allows us to classify regions and even discard of regions for which the activation 

was triggered by effects such as drift or movement. As a final step, after estimating the change-

point for each active voxel in the brain, we summarize the results in a Change-point Map (CPM). 

A CPM is an image of the brain with a color-coded change-point mask superimposed, whose 

intensity varies depending on the estimated onset time of activation. 

 In this paper we have assumed that the change points were fixed in time across groups of 

subjects. We feel this provides a useful first step towards estimating the latency of processes in 

the brain. There may be situations where the change-point, corresponding to a certain stimuli, 

differs across subjects. In this case it may prove beneficial to instead allow the change-points to 

vary randomly across subjects. This topic is often referred to as multi-path change-point 

problems (Asgharian & Wolfson, 2001), and will be the focus of future work. 
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In addition, we have chosen to detrend the fMRI time courses prior to the 

EWMA/HEWMA analysis in order to remove nuisance parameters (e.g. drift). However, it 

would be relatively straightforward to extend the EWMA framework to simultaneously estimate 

the trend regressors while performing the change-point detection. For example, there are 

methods are testing for change-points in simple linear regression (Kim & Siegmund 1989), 

which would directly allow for the modeling of drift components in the model. While we have 

not further explored these techniques at this time, this is an interesting direction for future 

research. 

Recommended choices for analysis parameters 

 The main decisions that need to be made before applying these methods to experimental 

data are the choice of the smoothing parameter λ  and the length of the baseline period. 

According to our power and false-positive rate analyses, a relatively low value of λ  gives high 

power, with a strong control of the FPR. In our analysis of experimental data we typically choose 

a value of 0.2, as this appears to give rise to an adequate amount of smoothing for the analysis of 

fMRI data. The optimal value of λ will vary depending on whether brief or sustained changes 

are of greater interest, with lower values being more appropriate for more sustained activity. The 

length of the baseline period is another issue. The data within this period is used to estimate the 

baseline mean, as well as the within-subject variation, and our simulations show that, 

unsurprisingly, longer baseline periods produce more accurate estimates. However, our analysis 

indicates that the method is relatively stable for even very short baseline periods for white noise, 

AR(1) and AR(2) models. The ARMA model showed increased sensitivity to short baseline 

periods with drastically increased FPR and decreased power.  Though some models give 

reasonable results with relatively short baseline periods,  a longer baseline period of at least 60 
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time points is recommended to ensure stable estimates of the baseline activation variance. The 

AR(2) model may be most appropriate for fMRI data, as it has the flexibility to model periodic 

noise oscillations that are often produced in fMRI as a result of physiological changes (e.g., 

pulsatile motion of the brain due to breathing and cardiac activity).  

Potential applications 

 HEWMA appears to be an appropriate analysis for group fMRI data, particularly when it 

is not possible to replicate experimental manipulations within subjects (e.g., a state anxiety 

induction that cannot be repeated without changing the psychological nature of the state).  

Emotional responses are one prime candidate for applications of the method.  But there are a 

number of other domains in which it may be useful as well, and the method applies to any 

longitudinal data with enough observations so that repeated measures ANOVA (for example) is 

impractical.  HEWMA may be particularly useful for arterial spin labeling and perfusion MRI 

studies, which measure brain activity over time without the complicating factors of signal drift 

and highly colored noise in fMRI (Liu, Wong, Frank, & Buxton, 2002; Wang et al., 2005).   

 Another potential use is in identifying voxels of interest and characterizing brain 

responses in ‘ecologically valid’ tasks, such as free viewing of films.  In a recent paper, for 

example, participants watched a 60 min segment of an action movie (Hasson, Nir, Levy, 

Fuhrmann, & Malach, 2004).  The investigators examined the time-course of activity throughout 

the brain and assessed whether increases in particular regions were systematically related to 

features of the film (e.g., presentation of scenes, hands, faces).  HEWMA could be used in this 

situation to identify voxels that respond consistently across participants during viewing, which 

would reduce false positives by providing a reduced set of voxels of interest and providing some 

quantitative tools for characterizing the duration and number of activated periods.   
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 HEWMA could also be applied to changes in state-related activity evoked by learning, 

e.g., tonic increases brain activity as a function of expertise, or to studies of tonic increases 

following solutions to ‘insight’ problem-solving tasks.  Expertise results in functional and 

structural reorganization of cortex (Kilgard & Merzenich, 1998; Kourtzi, Betts, Sarkheil, & 

Welchman, 2005), and HEWMA could be used to more precisely characterize the time-course of 

both types of changes (i.e., do shifts occur gradually or suddenly?)  In an ‘insight’ task, 

participants are presented with a problem that requires a novel combination of elements 

(Bowden, Jung-Beeman, Fleck, & Kounios, 2005; MacGregor, Ormerod, & Chronicle, 2001).  

Once participants solve the task, there is a qualitative shift in their understanding of how the 

elements of the problem relate that cannot be reversed (the solution is ‘obvious’ once one knows 

it).  This profound shift is poorly understood, in part because appropriate methods have not been 

devised to study its brain mechanisms in healthy participants. 

 Another potential use is in longitudinal studies of brain function or structure, and how 

they change with development or with the progression of a neurological or psychiatric disorder.  

For example, Mayberg and colleagues have conducted several longitudinal studies of resting 

FDG PET activity in depressed patients over the course of treatment (Goldapple et al., 2004; 

Mayberg et al., 2002).  The time course corresponding to brain activity changes throughout the 

treatment process is unknown, and HEWMA could be used to locate regions that respond to 

treatment and identify the time at which they do so. 

   

Conclusions 

 In this paper we developed a new approach, HEWMA, that can be used to make 

inferences about individual or group fMRI activity, even when conditions are not replicated (e.g. 
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a single experimental induction of emotion). The HEWMA method is an extension of EWMA, a 

time series analysis method in statistical process-control theory and change-point theory, to 

multisubject data. It permits population inference, and can be used to analyze fMRI data voxel-

wise throughout the brain, data from regions of interest, or temporal components extracted using 

ICA or similar methods. Simulations show that the method has acceptable false-positive rate 

control, and application to an fMRI study of anxiety shows that it produces reasonable and novel 

results with empirical data.  A toolbox implementing all functions in Matlab is freely available 

from the authors (see Author Note). 

 The HEWMA approach can complement GLM-based and purely data-driven methods 

(such as ICA) by providing inferences about whether, when, and for how long systematic state-

related activation occurs in a particular brain region. Although it is developed here for fMRI data 

analysis, the method could be useful in detection of deviation from a baseline state in any type of 

time series data, including ASL, longitudinal studies of brain structure or PET activity, and 

others. 
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Figure Captions 
 

Figure 1.  A schematic overview of: (A) the model of true activation, (B) the EWMA statistic 

and its control bounds, and (C) the Gaussian mixture model (illustrated using a separate 

simulation). The parameter τ  represents the true change-point, and τ̂  its estimate.  N0 is the first 

time point after the baseline period, while N is the total number of time points in the potential-

activation period.  Nooc is the first time point that is positively identified as activated, and it is 

used to calculate τ̂  in the zero-crossing method.  Control limits are critical values for the 

EWMA statistic, tz , correcting for multiple dependent comparisons across time.  In the mixture 

model, 41̂−τ  are estimates of when there is an active-nonactive or nonactive-active state change 

and 21ˆ −ω are estimates of the durations of two example activation periods. 

 

Figure 2.  Results from a simulated single run experiment (Simulation 1) using an effect size 

equal to 1 and an AR(2) noise model.  (A-B) The true significance and change-point maps, (C) 

the significance map obtained from the EWMA analysis of the data (using 2.0=λ  and the 

AR(2) control bounds) and (D) the change-point map estimated using the zero-crossing method. 

To the right are examples of both active and non-active time courses plotted together with their 

control limits. The data is represented by the light gray line and the EWMA statistic by the dark 

black line. 

  

Figure 3.  (A-B) Simulation 2. Simulated power and false positive rates for HEWMA with 

varying smoothness parameter λ , and a fixed baseline length of 60 TRs. (C-D) Simulation 3.  

Same plots with fixed 2.0=λ  and varying baseline length. 

 

Figure 4.  (A) Simulation 2. Receiver operating characteristic (ROC) curves show the fraction of 

true positives (true positive rate, TPR) vs. the fraction of false positives (false positive rate, FPR) 
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for HEWMA using our recommended noise model (AR(2)) with varying smoothness parameter 

λ , and a fixed baseline length of 60 TRs. The optimal primary threshold for discriminating 

active and inactive voxels is p < .08. In these simulations, higher lambdas (less smoothing) 

produced more sensitive results (but with false positive rates that exceed the nominal threshold; 

see Fig. 3). Sensitivity with real datasets will vary depending on the smoothness of the true 

underlying signal. (B) Simulation 3.  ROC plots with fixed 2.0=λ  and varying baseline length.  

 

Figure 5. A schematic of the experimental task design for the fMRI study. See text for a detailed 

explanation. 

 

Figure 6. (A) HEWMA group activation, popzr , in the medial frontal cortex and the estimated 

change-point for onset of activation (CP, green line). (B) Results of Monte Carlo simulations for 

finding corrected p-values. Black line: observed max T; distribution: null hypothesis max T.  (C) 

Case weights calculated by taking the inverse of Eq. (28). Weights are based on variability 

during the baseline interval.  Higher variance will result in a lower weight for that subject.  (D) 

The individual time courses for the 24 subjects.  

 

Figure 7. (A) Left: Regions with significant activations in HEWMA (corrected over time and 

false discovery rate (FDR) corrected at  alpha = .05 over space; (Genovese, Lazar, & Nichols, 

2002)).  Right: Regions color-coded according to K-means classification (7 classes).  (B) 

Histogram of number of voxels by CP and activation duration, color-coded by estimated class.  

(C) Axial slices of regions shown in (A).  
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Figure 8.  The brain surface is shown in lateral oblique and axial views. Significant voxels are 

colored according to significance.  Increases are shown in red-yellow, and decreases are shown 

in light-dark blue. (A) Time course from a region showing sustained activity in rostral medial 

PFC (single representative voxel).  The baseline period is indicated by the shaded gray box, and 

the HEWMA-statistic is shown by the thick black line (+/- one standard error across participants, 

shown by gray shading).  The control limits are shown by dashed lines.  (B) A similar plot 

showing transient responses to presentation of task instructions in visual cortex. 
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Appendix A 

EM-algorithm for Gaussian Mixture Model 

The fMRI time course is modeled as a mixture of two normal distributions, with different 

means and variances: ),(~ 2
000 σθNX  and ),(~ 2

111 σθNX . We can write this 

as 10)1( XXX Δ+Δ−= , where the random variable Δ  is equal to one with probability p and 

equal to zero with probability 1-p. The density function of X can be written 

)()()1()(
10

xpfxfpxf XXX +−= .      

where )(xf
iX  is the normal probability density function with mean iθ  and variance 2

iσ . The 

log-likelihood can be written: 
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The unknown parameters ),,,,( 2
1

2
010 pσσθθ  that maximize this term can be found using the EM-

algorithm. 

 

Perform the following two steps until convergence: 
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Appendix B 

EM-algorithm for HEWMA 

Let Λ be the lower triangular smoothing matrix (defined in Eq. 7) and [ ]T
nnn IIIG    L=  

an nmn × matrix where nI  is the nn ×  identity matrix. Further, let Gzr  be the combined vector of 

EWMA-statistics for all m subjects and GGG QV Σ+= α*  its covariance matrix, where  

ΛΛ⊗= T
mG IQ   and   
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In our implementation the within-subject component *
iΣ is assumed known from the first level, 

and GQ is also assumed known. The unknown parameter α  is estimated iteratively using the 

EM-algorithm below. This is equivalent to the variance component estimation performed in 

SPM2 (Friston et al., 2002). 

 

Perform the following two steps until convergence: 

E-step:  GGG QV Σ+= α*    
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