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Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological
processes being studied are known. However, in many areas of psychological inquiry, it is hard to specify this
information a priori. Examples include studies of drug uptake, emotional states or experiments with a
sustained stimulus. In this paper we assume that the timing of a subject's activation onset and duration are
random variables drawn from unknown population distributions. We propose a technique for estimating
these distributions assuming no functional form, and allowing for the possibility that some subjects may
show no response. We illustrate how these distributions can be used to approximate the probability that a
voxel/region is activated as a function of time. Further a procedure is discussed that uses a hidden Markov
random field model to cluster voxels based on characteristics of their onset, duration, and anatomical
location. These methods are applied to an fMRI study (n=24) of state anxiety, and are well suited for
investigating individual differences in state-related changes in fMRI activity and other measures.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The voxel-wise general linear model (GLM) (Worsley and Friston,
1995) has arguably become the dominant approach towards
analyzing fMRI data. It tests whether variability in a voxel's time
course can be explained by a set of a priori defined regressors that
model predicted responses to psychological events of interest. The
GLM has been shown to be a powerful and efficient way of analyzing
data as long as the nature, timing and duration of the psychological
processes under study can be specified in advance (Loh, Lindquist, and
Wager, 2008). However, in many areas of psychological inquiry, it is
hard to specify this information a priori. Examples include studies of
drug uptake, emotional states or experiments with sustained
stimulus. In these situations standard GLM-based analysis may not
be able to accurately model brain activity and new kinds of statistical
models are needed to capture state-related changes in activity.

The effectiveness of the GLM in modeling state-related activity is
limited in several ways. One limitation concerns the match between
the desired inference and that supported by the model. In many
experiments, the primary parameter of interest may be the timing of
activation rather than the magnitude. However, a GLM analysis does
not allow for direct inference on the onset and duration of activation.
The interpretable parameters of the GLM model refer to the
magnitude rather than the timing of the activation response. A set
of regressors which do a poor job of modeling the true activation
profile will have smaller estimated magnitudes than a set which
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accurately reflects the timing, but there is no way to directly estimate
the true timing of activation. It may be possible to indirectly account
for timing differences by using a set of flexible basis functions in the
GLM (Friston et al., 1998; Glover, 1999). However, the a priori
specification of an onset time is still necessary for the definition of the
regressors, and they are typically only able to account for very small
timing shifts. Further, such models are usually constrained in their
flexibility in order to avoid substantial losses in power and stability
(Calhoun et al., 2004; Lindquist and Wager, 2007; Lindquist et al.,
2008). Another limitation of the GLM approach is related to
reproducibility. Suppose that a brain region reproducibly responds
to a particular emotion, though the onset and duration varies across
participants and studies depending on the particular task demands
and individual propensities. In this case, there is no GLM model that
will give reproducible activation in the region of interest. However, a
more flexible model may capture consistencies in activation magni-
tude while allowing for variations in timing.

For the situations outlined above, model flexibility is critical.
Models that permit more data-driven estimates of activation, and
inferences on when and for how long activation occur, may be
advantageous for discovering state-related activations whose timing
can only be specified loosely a priori. Rather than treating psycho-
logical activity as a zero-error fixed effect specified by the analyst (as
in the GLM) and testing for brain changes that fit the specified model,
data-driven approaches attempt to characterize reliable patterns in
the data, and relate those patterns to psychological activity post hoc.
One particularly popular approach is independent components
analysis (ICA) (Calhoun et al., 2001; McKeown and Makeig, 1998;
Beckmann and Smith, 2004). Though ICA has proven efficient in
identifying brain activity patterns (components) that are reliable
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 1. In our model formulation each subject is allowed to switch states up to two
times. The timing of these state-changes are determined by change points τi and ωi,
chosen at random from the population distributions gτ and gω, respectively. In this
formulation, gτ represents the population distribution of the onset of activation, while
gω represents the population distribution of the duration.
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across participants and state-related changes in activity that can
subsequently be related to psychological processes, they do not
provide statistics for inferences about whether a component varies
over time and when changes occur in the time series; subsequent
GLM-based tests have been used for this purpose. In addition, because
they do not contain any model information, they capture regularities
whatever the source; thus, they are highly susceptible to noise, and
components can be dominated by artifacts.

In sum, the GLM approach is attractive due to its power to test
statistical hypotheses, while data-driven techniques are attractive due
to their flexibility to handle uncertainties in the timing of activation.
For these reasons, there is interest in extending the GLM framework to
enable it to handle uncertainties in onset and duration. In past work
(Lindquist et al., 2007; Lindquist and Wager, 2008), we have
introduced a technique that allows the predicted signal to depend
non-linearly on the transition time. It is a multi-subject extension of
the exponentially weighted moving average (EWMA)method used in
change-point analysis. We extended existing EWMA models for
individual subjects so that they were applicable to fMRI data, and
developed a group analysis using a hierarchical model, which we
termed Hierarchical EWMA (HEWMA). The HEWMA method can be
used to analyze fMRI data voxel-wise throughout the brain, data from
regions of interest, or temporal components extracted using ICA or
similar methods. While the HEWMAmethod is exploratory in nature,
it retains the inferential nature of the GLM approach. Further, the
HEWMA framework includes a step for estimating the time when the
activation profile in the population changes from a baseline state to a
state of activation, which we refer to as the “change point”, in keeping
with statistical literature on similar models.

A drawback of this estimation procedure is that the change points
were assumed to be fixed across subjects, i.e. all subjects change states
(e.g., from inactive to activated) at the same time. In this work, we
relax this condition, assuming that the change points for each subject
are randomly drawn from unknown population distributions (see
Fig. 1). We develop a procedure for estimating, for each individual
voxel, the distributions of onset and duration of the BOLD response.
We estimate these distributions assuming no functional form, and
allowing for the possibility that some subjects may show no response
at all. In our model we allow for up to two change points in each
subject's voxel time course, signifying the beginning and end of the
activated state. Joseph and Wolfson (1993) addressed the problem of
maximum likelihoodestimation inmulti-path change-point problems.
The procedure described in this paper is an extension of their method
applied to multi-subject fMRI data with multiple change points. We
further illustrate how these distributions can be used to approximate
the probability that a voxel is active at a given time point.

This model is formulated for a state-related shift from a baseline to
activated state and a subsequent return to baseline at a later,
unknown time. This type of model is suited for studying state-related,
single epoch paradigms, such as acute social stress (Wager et al.,
2009b,a), bolus drug infusion (Wise et al., 2004; Breiter et al., 1997),
or social exclusion (Eisenberger et al., 2003). In each of these
paradigms, scanning begins during a baseline condition, and partway
into scanning, an irreversible event happens (stressor, exclusion, drug
delivery), which persists for a period of time. The condition is either
reversed with a new manipulation (stress relieving instructions,
inclusion) or the brain returns to baseline naturally after some period
of time (e.g., drug washout). These situations are less readily
amenable to GLM-based analyses, making change-point models an
appealing choice for analysis.

Once the activation onset and duration have been estimated for
individual voxels, it is important to identify patterns of similar
activation across voxels and across brain regions. As a final step of our
analysis, we perform spatial clustering of voxels according to onset
and duration values and anatomical location using a hidden Markov
random field model. These types of models have been successfully
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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used to segment images based on structural characteristics (Zhang
et al., 2001; Zhang et al., 2008). Here we use a multivariate hidden
Markov random field (HMRF) model to estimate the grouping of
voxels based on their activation characteristics.

In summary, in this work we develop an approach towards
estimating voxel-specific distributions of onset times and durations
from the fMRI response, by modeling each subject's onset and
duration as random variables drawn from an unknown population
distribution. We also discuss a technique for performing spatial
clustering of voxels according to onset and duration characteristics,
and anatomical location using an HMRF model. Together these
procedures provide a spatio-temporal model for dealing with data
with uncertain onset and duration.

Theory

In this section we develop the ideas surrounding the estimation of
population distributions for onset and duration of activation and for
performing spatial clustering using the HMRF approach.

Multi-subject change point modeling

Wemodel each voxels time course using a two-state model where
at a given point in time a subject is considered to be either in an active
or an inactive state. For each voxel, suppose we have data from M
subjects measured at N different time points. For subject i, the time
profile of the voxel is modeled as a sequence of independent
identically distributed random observations yij, j=1…N, which may
at an unknown time point τi undergo a shift in mean of unknown
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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magnitude. This shift, referred to as a change point, represents the
location where the time course shifts from the inactive to the active
state. Further, this shift may be followed by a return to the inactive
state at time τi+ωi, where the second change point ωi is also
unknown. In this formulation τi represents the onset of activation for
subject i, while ωi represents the duration. Both τi and ωi are assumed
to be randomly drawn from separate unknown population distribu-
tions denoted gτ and gω, respectively. Fig. 1 provides an illustration.

The time course for each voxel can be modeled as arising from a
mixture of two distributions, one corresponding to the active and the
other to the inactive state, with the added constraint that, except
where separated by a change point, temporally contiguous observa-
tions come from the same mixture component. If f1 is the density of
observations generated during the non-activated state, and f2 is the
density for the activated state, the positions of the change points, τi
and τi+ωi, determine whether each observation yij was drawn from
f1 or f2.

In this work, we assume that f1 and f2 are both Gaussian, and seek
to estimate their parameters θ1=(μ1, σi

2=1…M) and θ2 = (µ2,
σi
2=1,…M), as well as the population distributions for the change

points τi and ωi. While the change points are allowed to vary across
subjects, the means of the baseline and activation states, μ1 and μ2,
are assumed to be equal for all subjects. In addition, the variances σi

2

are assumed to be constant across time, but allowed to differ across
subjects. In order to fit the model, τ={τi}i= 1...M and ω={ωi}i= 1...M

are treated as missing data. The sequences of onset times {τi} and
durations {ωi} are both assumed to be independent and identically
distributed sets of discrete random variables. No functional form is
assumed for the population distributions gτ(t)=P(τi= t) and gω(k)=
P(ωi=k). Rather, gω(k) is estimated for k=ωmin,…, ωmax and gτ(t) is
estimated for t=1,…, N−ωmin, where ωmin and ωmax are specified
by the researcher. Note that the values of ωmin and ωmax could be set
to 1 and N, respectively, but for speed of estimation we typically
choose a smaller range of reasonable values for activation duration.
Finally, the onsets and durations are assumed to be independent of
one another.

Given the onset and duration of the signal and assuming
independence in time, the joint density of the time series for subject
i is the product of the densities of the yij, i.e.

f yi1; N ; yiN ; θ1; θ2 jτi;ωið Þ

=
Yτi −1

j=1

f ðyij; θ1Þ
Yτi + ωi −1

j=τi

f ðyij; θ2Þ
YN

j=τi + ωi

f ðyij; θ1Þ ð1Þ

Since in practice τ andω are unknown, the data can bemodeled by
amixture of components with different values of τ andωweighted by
gτ (•) and gω (•), making the joint likelihood given the entire data Y=
{yij}, i=1…M, j=1…N,

l Y ; θ1; θ2; gτ ·ð Þf g; gω ·ð Þf gð Þ

=
YM
i=1

Xωmax

ωi =1

XN−ωi + 1

τi =1

f yi1; N ; yiN ; θ1; θ2 jτi;ωið Þgτ τið Þgω ωið Þ ð2Þ

To estimate the unknown parameters θ = {μ1, μ2, σ1
2,…, σM

2 , gτ (•),
gω (•)} we must find

θ̂ML = argmax
θ

log l Y; θð Þf g ð3Þ

The maximum likelihood estimates (MLEs) can not be computed
directly from the likelihood function, but by treating τi and ωi as
missing data, we can employ the EM-algorithm (Dempster et al.,
1977) to compute the estimates. The details of the EM-algorithm
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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implementation are in Appendix A. Here we simply note that as the
EM-algorithm is deterministic, it can converge to a local maximum
and is sensitive to initial parameter estimates. The analysis should
therefore be repeated under various initial conditions until the
investigator is reasonably certain that the global MLE has been
found.

Estimating gτ and gω with smoothness constraints
The voxel-specific estimates of gτ and gω can be defined as the

MLEs under the change point mixture model formulated above. The
drawback of this approach is that gτ(τ) is assumed to be independent
of its neighboring terms gτ(τ−1) and gτ(τ+1) for each possible
value of τ, resulting in estimated densities which tend to be noisy and
rough (see Fig. 2 for an example). It is common in non-parametric
density estimation to perform some regularization of the estimated
density, based on the assumption that in most situations, gτ(τ) will
tend to be close to gτ(τ+1), meaning that even if g does not assume a
standard parametric form (e.g., Gaussian), we still assume it will be
relatively smooth. As regularization reduces the variability in the
density estimates, it is often considered to be preferable to
unregularized non-parametric MLE. To obtain smoother estimates,
we can incorporate additional smoothness assumptions about gτ and
gω into the model formulation. We first discuss two equivalent
approaches: maximum penalized likelihood and a Bayesian approach
that allows for the inclusion of a prior on gτ and/or gω. In addition, we
also discuss the smoothed EM-algorithm (Silverman et al., 1990).

Maximum penalized likelihood estimation (MPLE) (Silverman,
1986) imposes a penalty term on the log-likelihood function, creating
a new objective function from which the parameters are estimated:

θ̂MPL = argmax
θ

log l Y; θð Þ− λJ θð Þf g ð4Þ

where l(•) is the likelihood function defined in Eq. (2), J is a penalty
function and λ is a tuning parameter controlling the relative impact of
the penalty term. The use of the penalized likelihood necessitates the
specification of the tuning parameter λ, which can either be pre-
specified or incorporated directly into the estimation procedure. The
penalty term can alternatively be interpreted as the logarithm of the
prior density in a Bayesian formulation. If we incorporate priors on gτ
and gω into the model, the log posterior distribution will contain a
termwhich behaves like a penalty termwith respect to the maximum
a posteriori (MAP) estimates of gτ and gω. The standard maximum
likelihood estimates for gτ and gω can in this context be viewed as
being the MAP estimates calculated using a non-informative prior.

We have found that rather than placing priors directly on gτ and
gω, it is beneficial to first model them as functions constrained to be
non-negative and sum to 1, thus ensuring that they are proper density
functions, and thereafter place priors on the parameters of these
functions. We begin by defining two auxiliary variables ητ and ηω and
modeling gτ and gω using the softmax function (Bishop, 2006), i.e.

gτ t jητ
� �

=
exp ητ tð Þ� �

P
l exp ητ lð Þ� � ð5Þ

and

gω t jηω
� �

=
exp ηω tð Þ� �

P
l exp ηω lð Þ� � : ð6Þ

Next, we assume that ητ∼N (0, Στ ) and ηω∼N (0, Σω). To obtain a
smooth solution we define both covariance terms to be on the form

X
ij
=

exp −h
2
j i − j j

� �
for j i − j jbk

0 otherwise

8><
>: ð7Þ
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 2. (A) An example of 20 simulated time courses of length 215 whose onset and duration were randomly sampled from population distributions gτ and gω, respectively. (B) The
true distribution of gτ (bold black) compared to estimates obtained using the MLE, MPLE and EMS approaches. Note the roughness of the estimate obtained using the MLE approach.
(C) The same results for gω. (D) A heat map depicting the probability of activation as a function of time computed using the MLE, MPLE and EMS estimates of gτ and gω.
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where h represents the precision of the covariance and k allows one
to truncate the covariance after a certain number of observations. In
general, our prior/penalty imposes a covariance structure on the
density across values of τ and ω in which nearby values have positive
covariance, which decreases exponentially as a function of proximity.
The parameters h and k impact the width and smoothness,
respectively, of the estimated distributions. Larger values of h result
in very peaked distributions (potentially with peaks at multiple
modes), smaller values give wider distributions. Small values of k
allow formore jagged distributions, while still shrinking the estimates
at most possible values of τ and ω. Values of h and k can either be
determined empirically, or in a more principled manner using leave-
one-out cross-validation. We take the former approach in the first
simulation study, while we take the latter approach in the second
simulation study and in the analysis of experimental data. Cross-
validation is performed by finding the values of h and k that minimize
the average mean squared error between the left-out time course and
expected time course obtained from fitting the model to the
remaining M−1 subjects. To fit the maximum penalized likelihood
model one needs to use a generalized EM-algorithm outlined in
Appendix B.

The smoothed EM-algorithm (Silverman et al., 1990) is an
alternative approach that adds a smoothing step to each iteration of
the standard EM-algorithm. For our problem, after the model
parameters are estimated using maximum likelihood in the M-step,
a pre-defined smoothing kernel can be applied to the estimates of gτ
and gω, and these smoothed estimates are used in the next iteration.
We use a simple local smoother,

h kð Þ
τ tð Þ = 2−2j Xj

r= − j

2j
r + j

� �
g kð Þ
τ t + rð Þ; ð8Þ

to create a smoothed version of gτ(k), the estimated density from the
kth iteration of the EM-algorithm. We then pass hτ(k) on to the (k+1)
th iteration in place of gτ(k).
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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In certain special cases the smoothed EM can be shown to be
related to the maximum penalized likelihood estimates, but it is
essentially an ad hoc procedure without rigorous theoretical
justification. Fig. 2 compares the results of the standard MLE, MPLE,
and smoothed EM estimation procedures on simulated data.

Spatial clustering

A natural unit of analysis in fMRI is a multi-voxel region whose
voxels show similar properties with respect to the timing of activation
and de-activation. We wish to create a segmented image consisting of
cluster labels for each voxel in the brain, identifying which voxels
exhibit similar behavior with respect to onset and duration of
activation. We expect the clusters containing similar voxels will
exhibit some spatial coherence, but allow clusters which consist of
networks of spatially disjoint regions. To achieve these goals we
implement a hiddenMarkov random fieldmodel described below.We
begin by giving a brief overview of Markov random field models.

Markov random field models
We use a Markov random field (MRF) model for the unobserved

field of cluster labels to describe the spatial structure of the image.
MRFs are a way to incorporate an assumption of spatial smoothness
into the image segmentation algorithm. In our application we assume
that two neighboring voxels are somewhat more likely to be in the
same cluster than two non-neighboring voxels. The global depen-
dence properties of a MRF are controlled by the specification of local
properties, i.e. the spatial dependence structure of the entire image is
determined completely by the conditional distribution of a voxel
given neighboring voxels. This property eases the computational
burden and is a reasonable assumption in many applications. The use
of MRFs in image analysis was popularized by, among others, Besag
(1974) and Geman and Geman (1984).

Let S = (1, 2,…, N) be the index of voxels in the image. Suppose
each voxel has a label from the set L={1, 2,…, L} where L denotes the
total number of clusters. Further let X=(x1, x2,…, xN), be the
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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configuration of labeled voxels, where xi ∈ L for every i ∈ S. The
collection of all possible configurations of labeled sites, denoted X, is
then

X = X = xi : ia S; xi a Lð Þf g: ð9Þ

A random field X is said to be a Markov Random Field if after
conditioning on the cluster labels of its neighborhood, the probability
that a given voxel belongs to any particular cluster is independent of
the rest of the image. The neighborhoods are defined by a neighbor-
hood system, which in our application consists of the 4 immediately
adjacent voxels.

An important theoretical result in Markov random field theory is
that any MRF can be equivalently characterized by a Gibbs
distribution on X=(x1,…,xN) of the form

P Xð Þ = e−U Xð Þ
P

Vax e
−U Vð Þ ð10Þ

where U(X) is called the energy function. In this application we
consider models with only pair-wise interactions between voxels. Let
i∼ j denote that xi and xj are neighbors. We can then write the energy
function as

U Xð Þ =
X
ifj

Vijðxi; xjÞ; ð11Þ

the exact form of which will be described below.

Hidden Markov random field models
A Hidden Markov Random Field (HMRF) model derives from the

concept of a Hidden Markov Model. In an HMRF model, the random
field of cluster labels, X , is unobserved while the data D is observed on
S . At each voxel, we assume that the observed value di, which may be
multivariate, is drawn from a probability distribution whose para-
meters depend on the cluster to which it belongs. Given xi= l, the
conditional distribution of di is

p di j lð Þ = f di; θlð Þ: ð12Þ

We assume that that the functional form of f (•) is the same for
each l ∈ L, and that the di are conditionally independent of one
another given the field X, i.e.

P D jXð Þ =
Y
iaS

p di jxið Þ: ð13Þ

The joint density of an (xi, di) pair given the neighborhood XNi
is

given by

p xi;di jXNi

� 	
= pðdi jxiÞp xi jXNi

� 	
; ð14Þ

and thus the marginal distribution of di, given the labels of
neighboring sites is

p di jXNi
; θl

� 	
=

X
laL

fðdi; θlÞp l jXNi

� 	
ð15Þ

If we assume that the random variables xi are independent of one
another the HMRF reduces to a finite mixture model.

In our application, the observed data in the HMRF model consists
of features estimated from the fMRI time courses including the
expected value and standard deviation of the onset and duration in
the population, as well as the difference in means between states.
Further, we assume that f(•) is multivariate Gaussian with dimension
p, where p is the number of features; typically equal to five in our
application. Finally, we also need to model the distribution of the
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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unobserved cluster labels X. We choose a model of the form Eq. (10)
with

U Xð Þ =
X
ifj

βij1xi =xj
ð16Þ

where 1xi =xj is equal to 1 if xi and xj belong to the same cluster, and 0
otherwise. The local characteristics of this model are then given by

Pðxi = l jXNi
Þ =

exp
P

jaXNi
βij1xj = l

n o
P

kaL exp
P

jaXNi
βij1xj =k

n o : ð17Þ

Here the β parameters control the amount of spatial coherence,
with larger values giving increased coherence. If βij=β for all i and j,
this is the Potts model, a well-studied model originating in statistical
mechanics (Potts, 1952). The goal of the Markov random field model
is to enforce some spatial smoothness in the estimated clusters.
However, there is a danger of over-smoothing with these models if
the spatial dependence overwhelms the observed differences
between neighboring regions. Therefore special care needs to be
taken when determining β, and in our implementation it is estimated
directly from the data.

Once we have formulated the model we are interested in
estimating X and θ based on the data D. The conditonal maximum a
posteriori estimate (MAP) of X is given by

X̂ = argmax
XaX

P Y jX; θð ÞP Xð Þf g ð18Þ

Since X and θ are both unknown and highly interdependent, they
cannot be estimated directly. As in the two-state change point
problem described above, if we phrase the problem as one of missing
data, where the missing data is the set of class labels X, we can again
employ an EM-algorithm. In our implementation we use an EM-
algorithm with stochastic variation (Zhang et al., 2008) to estimate
clusters. Using this approach the expectation of the conditional log
likelihood given the observed data is computed stochastically in the
E-step using the Swendsen–Wang algorithm (Swendsen and Wang,
1987); an efficient sampler developed specifically for the Potts
model. In the M-step, the cluster-wide means and standard
deviations and the spatial regularization parameter β are updated.
The appropriate number of clusters is determined using the AIC-
criterion (Akaike, 1973). For more details about the EM-algorithm we
refer interested readers to Zhang et al. (2008).

In implementing the HMRF model, we typically incorporate
additional a priori information about the image. Specifically, the
boundaries of the entire brain regionmay be known, and it is useful to
remove non-brain regions from the clustering algorithm, as they
affect brain region voxels through spatial proximity, and waste
computational time. Also, when the non-brain region is large or non-
contiguous, we may see more than one cluster label assigned in the
non-brain region, which affects the within-brain clustering. In our
analysis we typically prescreen voxels using HEWMA and hence
perform clustering on a fractured image consisting solely of active
voxels.

Estimation of the within-cluster distribution

Once we have clustered voxels according to characteristics
related to their onset and duration, it may be of interest to obtain
within-cluster estimates of gτ and gω. We assume that the image
can be segmented into clusters 1,…, L, and that within each cluster
the voxels have common distributions for onset and duration gτ

(l)

and gω
(l), l=1, …L. The voxel-specific estimates ĝτ and ĝω are

assumed to be replicated estimates of the true gτ
(l) and gω

(l). Because
for each voxel the ĝτ and ĝω have typically been smoothed as a part
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 3. Illustration of Simulation 1 (second data set). Data was simulated for M=20
subjects and N=200 time points. (A) The onsets for the first 15 subjects were drawn
from a Poisson distribution with mean 10. The onset times were thereafter shifted 50
time points. The remaining 5 subjects were assumed to have no activation. (B) The
distribution for the duration followed a Poisson distribution with mean 20. (C) Example
time courses with change points sampled from the distributions shown in (A) and (B).
Note 25% of the subjects showed no activation.
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of the penalized estimation procedure, we have determined
empirically that simply averaging across voxels in the cluster
provides results that well represent the true underlying population
distribution. However, if we use estimates that are rougher (i.e.
obtained using the standard MLE) we can compute a smoothed
estimate of the cluster density using a spline basis set and obtain a
solution which is constrained to be positive and integrate to 1
(Silverman, 1986).

Approximating the probability of activation

As a final step in the analysis, we can approximate the probability
that a certain cluster is active at a specific time point. Given estimates
of gτ(l) and gω

(l), l=1,… L, the probability of activation for cluster l is
given by

P cluster l activated at time tð Þ = P τ V t V τ + ωð Þ

=
Xt

j=1

P τ = jð ÞP ω z t − jð Þ

=
Xt

j=1

g lð Þ
τ jð Þ

Xωmax

k= t− j

g lð Þ
ω kð Þ

ð19Þ

This allows us to quantify our uncertainty about the activation
status of a cluster and allows us to compare the timing of activation of
different clusters with one another. For an example see the heat map
in Fig. 2. The estimates of gτ(l) and gω

(l) can also be used to estimate the
expected time of onset of the activation, as well as the expected
duration. These values are given by

E τð Þ =
X
t

tgτ tð Þ ð20Þ

and

E ωð Þ =
X
k

kgω kð Þ: ð21Þ

respectively.

Methods

Simulations

To assess the performance of our method we performed two
separate simulation studies. The first illustrates the multi-subject
change point estimation procedure for estimating population dis-
tributions for the onset and duration of activation. In particular we
compare the fits obtained using the various fitting procedures (EM,
Penalized EM and smoothed EM). The second illustrates the
application of the combined change-point detection/spatial clustering
methodology to simulated fMRI data.

Simulation 1
To illustrate the multi-subject change point estimation procedure,

it was applied to three sets of simulated data consisting of M=20
subjects and N=200 time points. For each data set, the onset and
duration of activation for the 20 subjects were randomly drawn from
different discrete probability distributions. For the first data set the
onset distribution was assumed to follow a Poisson distribution with
mean 10. The observed onset times were thereafter shifted 50 time
points. In the second data set, 15 subjects were simulated in a similar
manner as described above. The remaining 5 subjects were assumed
to have no activation. Finally a bimodal distribution (a mixture of
Poisson) was used to generate onset times for a third data set. In each
of the three data sets the distribution for the duration followed a
Poisson distribution with mean 20. Noise was added to each time
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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course, corresponding to signal-to-noise ratios (SNR) of 0.5, 1, and 2.
See Fig. 3 for an example of the generating distributions and sample
time courses for the second data set.

The multi-subject change point estimation procedure was applied
to all three data sets. Estimates of gτ and gω were computed using the
standard MLE (henceforth denoted MLE), the penalized maximum
likelihoodmethod (MPLE) with penalty terms preset to h=0.005 and
k=5 and the smoothed EM-algorithm (EMS) using the smoothing
kernel from Eq. (8) with j=2. This whole procedure was repeated
100 times. After each repetition, the Kullback–Leibler divergence
between the true and estimated values of gτ was computed. The same
procedure was repeated for gω. This allowed us to quantify the
similarity between the estimated distributions and their true values.

Simulation 2
To assess the effectiveness of our multi-stage analysis procedure,

images of size 40×40 were simulated. The images are grouped into 3
activation clusters in which the locations of shifts into and out of the
activated state were drawn randomly from common (by region)
distributions for onset and duration. The simulated images contain
multiple regions with homogeneous distributions of timing para-
meters amid voxels with no activation, see Fig. 4. Noise was added to
the simulated images corresponding to SNRs of 0.5, 1, and 2. HEWMA
was applied to each of the three sets of functional data and significant
voxels (pb0.01) were moved to the second stage of the analysis.
Estimates of gτ and gω were computed for these voxels using the MLE,
the EMS with j=2, and the MPLE with penalty terms h and k
determined using leave-one-out cross-validation. Images were
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 4. Illustration of Simulation 2. Time courses for the dark red, light blue and yellow voxels are generated using the distributions for activation onset and duration shown at the
right. Dark blue voxels consist of noise time courses with no activation.
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segmented with the HMRF clustering algorithm, using the expected
values and standard deviations of the estimated gτ (k) and gω (k) and
the differences in means between the activated and inactivated states
as observed data (i.e. p=5). The appropriate number of clusters was
determined in each case using the AIC-criterion.

Experimental data

We applied ourmethods to data from 24 participants scanned with
BOLD fMRI at 3T (GE, Milwaukee, WI). The experiment was conducted
in accordancewith theDeclaration ofHelsinki andwas approvedby the
University of Michigan institutional review board. The task used was a
variant of a well-studied laboratory paradigm for eliciting anxiety
(Dickerson and Kemeny, 2004; Gruenewald et al., 2004; Roy et al.,
2001), shown in Fig. 5. The design was an off–on–off design, with an
anxiety-provoking speech preparation task occurring between lower-
anxiety resting periods. Participants were informed that they were to
be given 2 min to prepare a 7-min speech, and that the topic would be
revealed to them during scanning. They were told that after the
scanning session, they would deliver the speech to a panel of expert
judges, though therewas “a small chance” that theywouldbe randomly
selected not to give the speech. After the start of fMRI acquisition,
participants viewed a fixation cross for 2 min (resting baseline).

At the end of this period, participants viewed an instruction slide
for 15 s that described the speech topic, which was to speak about
“why you are a good friend”. The slide instructed participants to be
sure to prepare enough for the entire 7-min period. After 2 min of
silent preparation, another instruction screen appeared (a relief
instruction, 15 s duration) that informed participants that they would
not have to give the speech. An additional 2 min period of resting
baseline followed, which completed the functional run. Heart rate was
monitored continuously, and heart rate increased after the topic
presentation, remained high during preparation, and decreased after
Fig. 5. The experimental paradigm. Participants were told they would silently prepare a spee
in front of a panel after the session. They were informed of the topic via visual presentation
(visually) that they would not have to give a speech after all, and they rested quietly for th

Please cite this article as: Robinson, L.F., et al., Change point estimatio
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the relief instruction. Because this task involves a single change in
state, as in some previous fMRI experiments (Breiter and Rosen, 1999;
Eisenberger et al., 2003), and the precise onset time and time course
of subjective anxiety are unknown, this design is a good candidate for
our change point analysis.

A series of 215 images were acquired using a T2⁎-weighted, single-
shot reverse spiral acquisition (gradient echo, T=2000, TE=30, flip
angle=90) with 40 sequential axial slices (FOV=20, 3.12×
3.12×3 mm, skip 0, 64×64 matrix). This sequence was designed to
enable good signal recovery in areas of high susceptibility artifact, e.g.
orbitofrontal cortex. High-resolution T1 spoiled gradient recall (SPGR)
images were acquired for anatomical localization and warping to
standard space.

Offline image reconstruction included correction for distortions
caused by magnetic field inhomogeneity. Images were corrected for
slice acquisition timing differences using a custom 4-point sync
interpolation and realigned (motion corrected) to the first image
using Automated Image Registration (AIR; (Woods et al., 1998)).
SPGR images were coregistered to the first functional image using a
mutual information metric (SPM2). When necessary, the starting
point for the automated registration was manually adjusted and re-
run until a satisfactory result was obtained. The SPGR images were
normalized to the Montreal Neurological Institute (MNI) single-
subject T1 template using SPM2 (with the default basis set). The
warping parameters were applied to functional images, which were
then smoothed with a 9-mm isotropic Gaussian kernel. Individual-
subject data were subjected to linear detrending across the entire
session (215 images) and analyzed with EWMA. An AR(2) model was
used to calculate the EWMA statistic and its variance, and they were
both carried forward to the group level HEWMA analysis. We used
custom software to calculate statistical maps throughout the brain,
including HEWMA (group) t and p-values for activations (increases
from baseline) and deactivations (decreases from baseline).
ch under high time pressure during fMRI scanning, which they would subsequently give
after 2 min of baseline scanning. After 2 min of speech preparation, they were informed
e final 2 min of scanning.

n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Significant voxels (pb0.01) were brought forth to the next level of
analysis, where the distribution of onset and duration were estimated
using the penalized maximum likelihood method with penalty terms
h and k determined using leave-one-out cross validation. Next,
images were segmented with the HMRF clustering algorithm, using
the expected values and standard deviations of the estimated gτ (k)
and gω (k) and the differences in means between the activated and
inactivated states as observed data. The number of clusters was
determined using the AIC-criterion. Finally, for each cluster the
estimates of the distribution of onset and duration were combined to
cluster-wise estimates and the probability of activation as a function
of time was estimated for each cluster.

Results

Simulations

Simulation 1
The KL-divergence was used to assess the difference between the

estimated values of gτ (t) and gω (k) and the true distributions used
to create the simulations. The results for gτ(t) are shown in Fig. 6.
Analogous results for gω(k), not presented here, gave rise to similar
results. The left column shows the 3 distributions used to generate the
subject-specific onset times. The center and right columns show
boxplots of the estimated KL-divergence between the true and
Fig. 6. Results of Simulation 1. The left column shows the true value of gτ for the three simu
(0.25) probability of no activation, indicated by mass at the end of the time course. The cent
distributions at three different SNR levels, with estimates computed using the MLE approach
the penalty term gives rise to closer fits and therefore smaller KL-divergences.

Please cite this article as: Robinson, L.F., et al., Change point estimatio
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estimated value of gτ (t) for 100 different repetitions of the simulation
obtained using theMLE andMPLE approaches, respectively. Results for
the EMS approach produced similar results to the MLE and are not
presentedhere. Each set of simulationswere repeated using 3 different
SNRs. It is clear from studying the boxplots that when the SNR is low
(e.g., 0.5), theMLE approach gives rise to extremely variable estimates
of the true onset distribution. The estimates improve as the SNR
increases. These results are consistent with empirical evidence
showing that for low SNR values the MLE estimation gives rise to
noisy and rough estimates that are ill-suited for estimating the true
underlying distribution which is smooth. The MPLE approach per-
forms consistently better than theMLE, particularly at low SNR. This is
not surprising as these estimates not only reflect the shape of the true
underlying distribution but also its smoothness properties.

Results varied according to the shape of the generating distribution.
For a simple unimodal distribution (Fig. 6A), the MPLE gave
consistently accurate results for all SNR levels. However, as the
generating distribution became more complicated the difference in
accuracy between low and high SNR became more apparent. This was
particularly true for the distribution where some subjects showed no
reaction (Fig. 6C).

Simulation 2
HEWMA analysis was performed on each data set and voxels

deemed significant (pb0.01) were moved to the second stage of
lated data sets. Note that the bottom right figure represents a distribution with positive
er column shows box plots of the KL-divergence between the true and estimated onset
. The right column shows similar results for the MPLE approach. Clearly the inclusion of

n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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Fig. 7. Results of Simulation 2. Using the results of our change-pointmethods, simulated
images were segmented into spatial clusters. For low SNRs, clustering based on the
results of the MPLE approach performed significantly better than the MLE approach.

Fig. 9. The estimated distributions for onset and duration are shown for each of the four
clusters defined in Fig. 8. The results are averaged across all voxels contained in each
cluster. These distributions are used to calculate the probability of activation presented
in Fig. 8.
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analysis. For these voxels, estimated clusters were computed using
our spatial clustering algorithm with observed data obtained using
both the MLE and the MPLE approach. Results using data obtained
with the EMS approach produced similar results to the MLE and are
not presented here. Results for three different SNR levels are shown in
Fig. 7. In each case the AIC-criterion correctly picked 3 clusters of
activation. For the MLE approach the ability of the clustering
algorithm to correctly classify regions is adversely effected by
decreases in SNR. This effect is much less pronounced when using
observations obtained via the MPLE approach. Both these results are
consistent with those found in Simulation 1, as the noisy estimates of
the distribution of onset and duration obtained using the MLEmethod
would appear to be ill-suited to use for clustering purposes.

In general, our simulations indicate that the MPLE approach gives
the most accurate estimates of the true underlying distributions that
generated the observed change points. For these reasons, we strongly
recommend using the MPLE approach over the MLE and EMS
approaches unless the SNR of the data is high.
Fig. 8. (A) The brain is split into 4 clusters of spatially coherent activation. (B) The estimated
the probability of elevated heart rate (HR) is shown. The timing of the original visual cue a
comparison purposes. Activation in the ventromedial prefrontal cortex (Cluster 4) correlate

Please cite this article as: Robinson, L.F., et al., Change point estimatio
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Experimental data

A full description of the results of the HEWMA analysis can be
found in previous work (Lindquist et al., 2007; Lindquist and Wager,
2008). Here we instead concentrate on results relating directly to the
change point/spatial clustering framework developed in this paper.
The results for a single slice are presented in Figs. 8–9. The HEWMA
analysis passed through 5 spatially coherent regions of activation
consisting of 301 voxels. For each of these voxels, theMPLE estimation
procedure was performed and the results were spatially clustered.
The analysis revealed four coherent clusters of activation (see Fig. 8).
Fig. 9 shows the estimated distributions of onset and duration
averaged across all voxels contained in each of the clusters. The
average probability of activation was calculated for each cluster, as
was the probability of elevated heart rate (Fig. 8).

Results indicate that the visual cortex (blue in Fig. 8) has a high
probability of being activated during the presentation of the visual cue
(as expected). The ventral striatum (red in Fig. 8) has a high probability
of activation after the relief cuewas given, indicating this regionmaybe
associated with relief. The superior temporal cortices (green) associ-
ated in social neuroscience studies with inferences about agency,
probability of activation is shown in a heat map for each of the four clusters. In addition
nd the speech preparation is shown in block format on the bottom right hand side for
s highly with heart-rate increases in the task.

n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.
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among other things, showed evidence of activation during the first part
of the speech preparation task. Finally, the ventromedial prefrontal
cortex (yellow), an area associated with visceromotor control, self-
related attention, and generation and regulation of emotion based on
context was the only area to show sustained activation during speech
preparation. Activation in this region correlated highly with heart-rate
increases in the task (Wager et al., 2009b).

The results show how the HEWMA analysis with activation
probability estimation can identify brain regions with different
relationships to task performance. Because of differences in onsets
and durations, these activations could not be easily detected using the
widely adopted GLM framework.

Discussion

In this work we introduce a technique for studying state-related
single epoch paradigms, which we apply to an fMRI study of state
anxiety. The data analysis was performed in a three-step procedure. In
the first stage we employed HEWMA (Hierarchical EWMA) (Lindquist
et al., 2007; Lindquist and Wager, 2008), as a simple screening
procedure to determine which voxels have time courses that deviate
from a baseline level and should be moved into the next stage of the
analysis. Once a systematic deviation from baseline was detected, the
second step in the analysis entailed estimating when exactly the
change took place, as well as the recovery time (if any). We estimated
voxel-specific distributions of onset times and durations from the
fMRI response, by modeling each subjects onset and duration as
random variables drawn from an unknown population distribution.
We estimated these distributions assuming no functional form, and
allowing for the possibility that some subjects may show no response.
Finally, we performed spatial clustering of voxels according to onset
and duration characteristics, and anatomical location using a hidden
Markov random field model. This three-step procedure provides a
general spatio-temporal model for dealing with data with uncertain
onset and duration. Earlier work (Lindquist et al., 2007; Lindquist and
Wager, 2008) introduced the HEWMA procedure, as well as a simple
approach towards performing the latter two steps of the analysis
which employed a finite mixture model and k-means clustering,
respectively. The current paper is concerned with introducing
improved methods for performing these two latter steps; relaxing
the assumption that all subjects have the same onset and duration of
activation and incorporating spatial considerations into the clustering
algorithm.

While the whole analysis procedure outlined above could
reasonably be combined into a single model, it would be complicated
and computationally expensive to fit. We propose the multi-stage
approach as a stop-gap solution until a single spatio-temporal model
is feasible. Simulations indicate that the multi-stage approach
provides an adequate balance between computational costs and
efficiency. A weakness of the proposed approach is the fact that the
parameter estimates between steps are treated as data, measured
without error. This comeswith certain risk of increased bias due to the
propagation of errors through various steps of the analysis. In the
current context, reducing data using HEWMA may result in inflated
false-positives and false-negatives (i.e. voxels may be moved to the
second stage that ought not and voxels that are not moved may have
mistakenly been left behind, thus biasing results).

It is important to note that the HEWMA stage of the analysis is
simply used to locate voxels of interest and can be replaced by an
alternative data reduction technique or excluded altogether. In the
latter case the change point methodology could be applied directly to
every voxel in the brain. However, the computational costs would be
high and we find the use of an initial data reduction procedure to be
beneficial. As an alternative to HEWMA, the change point methodol-
ogy could be applied directly to data from ROI studies or to temporal
components obtained from a PCA or ICA analysis. Alternatively, the
Please cite this article as: Robinson, L.F., et al., Change point estimatio
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combined change point/spatial clustering technique could be applied
to voxels deemed active in a mediation analysis (Wager et al., 2008).

The change point methods developed in this paper are appropriate
for group fMRI data, particularly for studies when it is not possible to
replicate experimental manipulations within subjects (e.g., a state
anxiety induction that cannot be repeated without changing the
psychological nature of the state). Emotional responses are one prime
candidate for application of the method. Others include identifying
voxels of interest and characterizing brain responses in “ecologically
valid” tasks, changes in state-related activity evoked by learning, or to
studies of tonic increases following solutions to “insight” problem-
solving tasks. Still another interesting application is longitudinal studies
of brain function or structure, and how they change with development
or with the progression of a neurological or psychiatric disorder. In
general, our proposed approach may be particularly useful for arterial
spin labeling and perfusion MRI studies, which measure brain activity
over time without the complicating factors of signal drift and highly
colored noise found in fMRI (Liu et al., 2002; Wang et al., 2005).

Currently the model is designed to handle a single state-related
shift from a baseline to activated state and a subsequent return to
baseline at a later unknown time. This type of model is suited for
studying state-related single epoch paradigms. The current approach
does not readably extend to event-related paradigms, as it only allows
for a single activation and it does not directly take information about
the hemodynamic response into consideration. The model could
potentially be generalized for other situations, including more rapid
alteration among multiple states. One possible extension is to allow
for the possibility of multiple activation onsets and durations though
out the course of the time series. This can be done by extending the
likelihood function defined in Eqs. (1) and (2) to allow for multiple
returns to the active state at unique time points, and the problem
would extend to estimating distributions for multiple onsets and
durations. Though the extension of the likelihood function and the
resulting EM-algorithm used to estimate these multiple distributions
would appear relatively straight forward, it would lead to a significant
increase in computational costs. In addition, there may be particular
confounds if the response is non-linear which will mean that simply
adding extra parameters to the likelihood will not necessarily give the
same form of the distributions. Finally, the conditional nature of
change points in this situation may complicate matters even further.
Another possible extension relates to the number of states included in
the model. In certain applications it may be desirable to extend the
model to allow for different baselinemeans before and after activation,
thereby necessitating a three-statemodel. This can be donewithin our
current model formulation by exchanging the last term in the product
of Eq. (1) by f (yij , θ3) where θ3=(μ3, σi

2, i=1 …M) represents the
parameters associated with the second baseline period.

Our model makes a number of assumptions, namely that the data
are independent identically distributed within states and that state
means are equal across subjects. While it is generally assumed that
fMRI data is autocorrelated, we make the independence assumption
to simplify computation. There remains the option to pre-whitened
the data prior to analysis (Woolrich et al., 2001), though as data used
for this type of model tend to have a strong low frequency component
special caremust be taken to avoid removing signal from the data. The
method could alternatively be generalized to handle colored noise, by
incorporating a covariance matrix corresponding to an autocorrela-
tion model (e.g. AR(p) or ARMA(1,1)) in the likelihood function
shown in Eq. (1).

The spatial clustering algorithm can be extended by using an
inhomogeneous model that implies that some neighbor pairs have a
greater degree of spatial dependence than others. These types of
models are therefore useful in preserving edges between regions of
high contrast and are often used as priors in Bayesian image analysis
(Brezger et al., 2007; Aykroyd and Zimeras, 1999). In our application
we could also employ information from the time domain, or from
n in multi-subject fMRI studies, NeuroImage (2009), doi:10.1016/j.

http://dx.doi.org/10.1016/j.neuroimage.2009.08.061
http://dx.doi.org/10.1016/j.neuroimage.2009.08.061


11L.F. Robinson et al. / NeuroImage xxx (2009) xxx–xxx

ARTICLE IN PRESS
prior anatomical knowledge in specifying the degree of spatial
smoothness between voxels. If information on the degree of temporal
correlation or regions of grey/white matter is available, it can also be
incorporated into the image model.
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Appendix

A. EM algorithm for the MLE approach

E-step: Given the current estimates at the tth step, θ1t , θ2t , gωt (•)
and gτ

t (•), estimate theM×(N−ωmax+1)×(ωmax−ωmin+1)matrix
Z, whose elements zijk represent the probability that subject i has
change points τi= j and ωi=k, conditional on the data Y and the
current parameter estimates. Let

Wijk =
Xj−1

l=1

ðyil−μ t
1Þ2

2σ2ðtÞ +
Xj + k

l= j

ðyil−μ t
2Þ2

2σ2 tð Þ +
XN

l= j + k + 1

ðyil−μ t
1Þ2

2σ2 tð Þ ;

ð22Þ

Then the elements of Z are given by

zijk = P τi = j;ωi = k jY ; θt1; θt2; gtτ ·ð Þ; gtω ·ð Þ
n o

ð23Þ

=
exp −wijk

n o
gtτ jð Þgtω kð Þ

Pωmax
ω = ωmin

PN − ωmax + 1
τ = 1 exp −wiτωf ggtτ τð Þgtω ωð Þ

ð24Þ

M-step: Given zijk update the parameter estimates.

μ t + 1
1 =

PM
i = 1

PN
j = 1ð1− hijÞyijPM

i = 1
PN

j = 1ð1− hijÞ
ð25Þ

μ t + 1
2 =

PM
i = 1

PN
j = 1 hijyijPM

i = 1
PN

j = 1 hij
ð26Þ

σ2 =

PM
i = 1

PN
j = 1ð1− hijÞðyij−μ t + 1ð Þ

1 Þ2 + hijðyij−μ t + 1
2 Þ2PM

i = 1
PN

j = 1ð1− hijÞhij
ð27Þ

gt + 1
τ jð Þ =

PM
i = 1

P
τ zijk

M
ð28Þ

gt + 1
ω kð Þ =

PM
i = 1

P
ω zijk

M
ð29Þ

where

hij =
Xωmax

k=ωmin

Xmin j;N−k + 1ð Þ

l=max 1;j−k + 1ð Þ
zilk ð30Þ

B. EM-algorithm for the MPLE approach

In the penalized version of the EM-algorithm, a smoothness
penalty λJ (gτ, gω) is placed on the unknown population distributions
gτ and gω. Both the E-step and the M-Step estimates of μ and σ remain
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the same as in the EM-algorithm described in Appendix A. Computing
gτ
t +1 and gω

t +1(k) becomes more complicated, as there is no closed-
form solution to the M-step update equation after the addition of
the penalty term. The (N−ωmin)-dimensional system of equations
for updating the parameters ητ=(ητ(1), ητ(2),…, ητ(τmax))' from
Eq. (5) is

η t + 1ð Þ
τ =

X
= 2λð Þ

XM
i=1

Xωmax

k=ωmin

zijk 1 − g ητ
� �� �

= 0; ð31Þ

where 0 and 1 are vectors of zeros and ones, respectively, Σ is as given
in Eq. (7), and g(ητ) = (g(1|ητ), g(2|ητ),…, g(τmax|ητ))' as in Eq. (5).
As the M-step estimates cannot be computed directly, we employ a
variation of the EM-algorithm, called the Generalized EM-algorithm
(McLachlan and Krishnan, 2007). Here an optimization algorithm is
used to iteratively compute ητ(t + 1) in the M-step. To ensure that the
algorithmmoves closer to the MLE it is not necessarily to find the root
of (31) in each M-step, but simply move towards it. Thus, we can
implement a pre-specified number of steps of a numerical optimiza-
tion algorithm such as Newton–Raphson, and even if we do not reach
convergence within the M-step, the generalized EM-algorithm should
converge to the MLE.
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