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Meta-analysis is an increasingly popular and valuable tool for summarizing results across many neuroimaging studies. It can be
used to establish consensus on the locations of functional regions, test hypotheses developed from patient and animal studies
and develop new hypotheses on structure–function correspondence. It is particularly valuable in neuroimaging because most
studies do not adequately correct for multiple comparisons; based on statistical thresholds used, we estimate that roughly
10–20% of reported activations in published studies are false positives. In this article, we briefly summarize some of the most
popular meta-analytic approaches and their limitations, and we outline a revised multilevel approach with increased validity for
establishing consistency across studies. We also discuss multivariate methods by which meta-analysis can be used to develop
and test hypotheses about co-activity of brain regions. Finally, we argue that meta-analyses can make a uniquely valuable
contribution to predicting psychological states from patterns of brain activity, and we briefly discuss some methods for making
such predictions.

Keywords: PET; fMRI; meta-analysis; neuroimaging; analysis methods

INTRODUCTION
The number of human functional neuroimaging studies of

psychological processes has risen dramatically over the last

15 years, from around 124 publications in 1991 to over 1000

last year.1 This growing body of knowledge is accompanied

by a growing need to integrate research findings and

establish consistency across labs and widely varying scanning

procedures. Meta-analysis is a primary research tool for

accomplishing this goal; quantitative meta-analyses can be

used to localize the brain regions most consistently activated

by a particular type of task. In addition, meta-analysis can

help to develop new hypotheses about the neuroanatomy of

cognition, emotion and social processes, and it can be used

to test hypotheses derived from studies of brain-damaged

patients, electrophysiology or other methods. But perhaps

most importantly, it offers a unique opportunity to compare

results across diverse task conditions, getting a picture of the

psychological ‘forest’ as well as the trees.

This last point is crucial. Although patterns of brain

activity can serve as a common language for scientists in

diverse fields, without quantitative tools the problem of

interpreting patterns of activated regions is a bit like reading

tea leaves. There is a danger of interpreting results narrowly

in the context of a limited set of studies�in the eyes of the

hopeful imager, hippocampal activity may be taken as

evidence for declarative memory, ventromedial prefrontal

cortex (vmPFC) activity may imply self-reflection, and

amygdala activity may imply threat. Unfortunately, individ-

ual neuroimaging studies typically provide direct evidence

about brain activity, not mental states. The vmPFC may be

activated by processes related to self-reflection; but observing

vmPFC activity in a task does not necessarily imply that self-

reflection has occurred. In order to make claims about

psychological process, one would have to know that only

self-related tasks activate vmPFC activity. Knowing this

requires assessing the consistency of activation in all types

of non-self-related tasks.

As Figure 1 shows, the vmPFC turns out to be activated by

a range of different tasks, many of which do not obviously

involve the self. These include viewing pleasant stimuli,

perceiving tokens that symbolize reward, experiencing

physical pain and retrieving items from long-term

memory. Perhaps, self-related processes will turn out to be

a common denominator in these tasks; however, any

integrated theory about the psychological roles of this

region should take all of this evidence into account.
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No single study to date has investigated all of these processes;

across studies, however, meta-analysis can help to evaluate

whether particular types of mental processes are implied

by brain activation patterns.

In addition to providing comparisons across diverse tasks,

meta-analysis can help to separate the wheat from the chaff

in imaging studies, identifying consistent activations and

those that do not replicate. Because of the need to maintain

statistical power with small samples and often hundreds of

thousands of comparisons in each study, uncorrected or

inadequately corrected statistical thresholds are the rule, and

false positives are endemic in neuroimaging research. We

sampled 195 studies of long-term memory (Figure 1, right

panel) and noted the statistical thresholds used. The modal

threshold was P< 0.001 uncorrected for multiple compar-

isons, with a per-study average of 1.5 separate comparison

maps and on the order of 50 000–100 000 voxels tested per

map. Based on smoothness estimates for studies reviewed in

Nichols and Hayasaka (2003), at this threshold, we might

expect roughly one false positive for every two comparison

maps, or about 150 false positive activations.2 However,

many thresholds were more liberal, as shown in the inset of

Figure 1. Summing expected false positives across studies

based on the actual thresholds used, we estimate 663 false

positives, which is about 17% of the total number of

reported peaks. Furthermore, because voxels are not

independent [the studies reviewed by Nichols and

Hayasaka have an average smoothness of about 5mm full-

width-half-max (FWHM) each direction], imposing an

additional ‘cluster extent’ threshold�often cited as a guard

against false positives�will not help as much as it might seem

at first blush. With this smoothness, the average false-

positive cluster contains around 15 contiguous

2� 2� 2mm3 voxels. Additionally, many of studies that

cite ‘corrected’ thresholds use inadequate methods, such as

the commonly-used threshold of 0.005 with an eight-voxel

extent that was reported to achieve ‘corrected’ false-positive

control in simulations based on a single dataset (Forman

et al., 1995). Thus, the old adage that results are best believed

when replicated is particularly true in imaging. Meta-analysis

can provide a basis for identifying consistency.

Meta-analyses in other research areas often combine effect

sizes of a single effect to test for consistency (Rosenthal,

1991). However, in neuroimaging studies the question may

fruitfully be formulated in spatial terms: ‘Where is the

consistent activation?’ Individual studies sometimes use very

different analyses, making it difficult to combine effect sizes

in many cases, and effect sizes are only reported for a small

number of ‘activated’ locations, making combined effect-size

maps across the brain impossible to reconstruct from

published reports. (A promising approach may be to

obtain whole-brain statistic maps from the study authors).

Instead, meta-analysis is typically performed on the spatial

coordinates of peaks in activation reliability (‘peak coordi-

nates’), reported in the standard coordinate systems of the

Montreal Neurologic Institute (MNI) or Talairach and

Tourneaux (1988).3 In spite of these difficulties, a unique

positive feature of imaging meta-analyses is that many

studies report peak coordinates (but not effect sizes)

throughout the whole brain. Thus, if peak coordinates are

used in meta-analysis, the problem of unreported activation

coordinates (the ‘file drawer problem’) (Rosenthal, 1979) is

greatly reduced, though not completely eliminated.

Here, we briefly summarize several popular methods for

meta-analysis of neuroimaging data. We review three

methods for summarizing the consistency of peak

Fig. 1 (A) Medial activation peak coordinates within 10 mm of midline from four task domains. Coordinates from the same study comparison map within 12 mm were averaged
using a recursive algorithm. Imaging studies from 1993–2003 on self-related processes (n¼ 14 studies), physical pain (n¼ 24), emotion (n¼ 64) and long-term memory
(n¼ 195), all report peak activations in the vmPFC, shaded in gray in the left panel. Information from all types of studies is needed to determine how strongly vmPFC activity
implies self-related processing. (B) The most common thresholds in published long-term memory literature. x-axis: P-value threshold; y-axis: number of comparison maps (whole-
brain analyses of an effect of interest). Based on these thresholds and rough estimates of the number of independent comparisons per map, we estimate 663 false positives in
the data set, or 17% of reported activations.

2 Based on an average count of 464 RESELs (Resolution Elements), which actually substantially

underestimates the number of independent comparisons made (Nichols and Hayasaka, 2003).

3 A standard practice is to convert coordinates into one reference space (we prefer MNI). Matthew Brett has

developed useful tools for converting between Talairach and MNI space.
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coordinates: Kernel density analysis [KDA; (Wager et al.,

2003; Wager et al., 2004)], activation likelihood estimate

(ALE) analysis (Turkeltaub et al., 2002; Laird et al., 2005),

and a new multilevel variant of KDA designed to address

several important statistical shortcomings of the other two

models (Wager et al., 2007). We also briefly discuss

multivariate meta-analytic methods, including spatial dis-

criminant analysis, ‘co-activation’ maps, and classifier

systems that provide information on the likelihoods that

brain activity patterns are linked to particular psychological

states.

Methods for summarizing consistent activations

The goal of the analyses described subsequently is to localize

consistently activated regions (if any exist) in a set of studies

related to the same psychological state. The methods work

essentially by counting the number of activation peaks in

each local area of brain tissue and comparing the observed

number of peaks to a null-hypothesis distribution (usually

based on a uniform distribution over the brain) to establish a

criterion for significance. First, we present a side-by-side

comparison of two commonly used published methods,

KDA and ALE. Then, we describe a new, revised extension of

KDA that eliminates some of the assumptions and short-

comings of these earlier methods.

Counting the number of peaks in a local area amounts to

creating a 3D histogram of peak locations and smoothing it

with a kernel, as illustrated in Figure 2. Thus, the procedure

is similar to kernel-based methods of analyzing distributions

in many other applications. In the KDA method, the

smoothing kernel is a spherical indicator function with

radius r, giving the smoothed histogram an interpretation of

‘the number of peaks within r mm’. In the ALE method, the

kernel is Gaussian with a width specified by the FWHM

value. The kernel radius (r) or FWHM is selected by the

analyst; kernels that best match the natural spatial resolution

of the data are the most statistically powerful. Comparisons

across KDA kernels indicate that r¼ 10 or 15mm usually

gives the best results (Wager et al., 2004), providing some

evidence that this is the natural spread of peak locations

across studies. For ALE a FWHM of 10mm is common

(Turkeltaub et al., 2002).

Interpretation of meta-analysis statistic values. In the

KDA method, the smoothed histogram reflects the estimated

density of nearby reported peaks in each brain voxel.

A threshold for statistical significance is established using

Monte Carlo4 procedures described subsequently. Thus, the

interpretation of the KDA meta-analysis statistic with value

x is ‘x peaks lie within r mm of this voxel’. Typically, this

value is additionally divided by the volume of the kernel. In

this case, x can be interpreted as the density (in peaks/mm3)

within r mm�though dividing by this constant changes only

the scale, not the statistical significance.

In the ALE method, an additional step is performed.

Rather than treating the smoothed peak coordinate histo-

grams as a measure of local activation frequency, the

smoothed peaks are treated as estimates of the probability

that each peak activated in that vicinity, and the union of

these ‘probabilities’ is computed. This can be accomplished

by assuming that the reported peaks are spatially indepen-

dent (the location of each peak is independent of the others),

though this assumption is questionable, because studies tend

to report multiple peaks from each significantly activated

region (we’ll refer to them here as ‘blobs’). (The KDA

method makes this problematic assumption as well, and we

return to this issue subsequently).

Though the mathematics of the ALE probabilities are

straightforward given the independence assumption,5 a clear

interpretation of the ALE statistic might be given through

Fig. 2 Example of meta-analysis using KDA or ALE analysis on three studies. The three small maps on the left show peaks reported in each study for a representative axial brain
slice. Peaks are combined across studies and the combined map is smoothed with a spherical kernel (KDA) or a Gaussian kernel (ALE). The resulting peak density map (middle)
or ALE map is thresholded, resulting in a map of significant results (right). In this illustration, regions with three or more peaks within 10 mm were considered ‘significant.’
In practice, the analyses use Monte Carlo resampling to determine an appropriate threshold, though the interpretation of significant results differs across KDA and ALE analyses
(see text). Because peaks are combined across studies and study is thus treated as a fixed effect, some individual studies may exert undue influence on the results.

4 Sometimes referred to as ‘non-parametric tests,’ though the Monte Carlo is actually a randomization test.

5 PðX1 [ X2 � � � [ XnÞ ¼ 1� Pð[XÞ ¼ 1� PðX1Þ�PðX2Þ � � � PðXnÞ, where P(Xi) is the probability

that peak Xi lies in a given voxel of interest, and �Xi refers to the complement of Xi.
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conceptual examples. By calculating the union of probabil-

ities, the ALE statistic reflects the probability that one or

more peaks truly lie in that voxel. As an example, imagine a

meta-analysis of three reported peaks (though most actual

meta-analyses include thousands). One peak activates in

voxel v, and the others are nowhere close. If the smoothing

FWHM approaches zero, then the meta-analytic ALE

statistic value would be 1, which is appropriate, because

we certainly know that at least one reported peak was truly in

that voxel.6 Thus, the meta-analytic map is simply a

restatement of the peak locations. If the smoothing

FWHM is non-zero, then the ALE statistic would equal the

maximum height of the smoothing kernel. This is concep-

tually different from the KDA statistic, which summarizes

the density of reported peaks without assuming they directly

reflect probabilities. In Table 1, we summarize the inter-

pretations of the ALE and KDA statistics and other relevant

points of comparison.

Meta-analytic significance and null hypotheses. Both

KDA and ALE methods use Monte Carlo simulations to

establish thresholds for statistical significance. In the KDA

method, the null hypothesis is that the n peak coordinates

reported in the set of studies to be analyzed are randomly and

uniformly distributed throughout gray matter.7 The null

hypothesis is rejected in voxels where the number of nearby

peaks is greater than expected by chance. Thus, in ‘significant’

regions one can be confident that a cluster of peaks is not due

to a spatially diffuse background of false positives.

In the ALE method, the null hypothesis is that the n peak

coordinates are distributed uniformly over the brain,

and�because the ALE statistic reflects the probability that

at least one peak truly falls in a region�the null hypothesis is

rejected in voxels where there are enough peaks to provide

sufficient evidence that at least one of them truly falls within

the voxel. In ‘significant’ regions, one can be confident that

at least one peak truly lies in that voxel.

In both methods, the Monte Carlo procedure generates n

peaks at random locations and performs the smoothing

operation, to generate a series of statistic maps under the

null hypothesis. We recommend generating at least 5000

such maps, and preferably more; as inferences are usually

made on the tails of the null-hypothesis distribution, many

iterations are necessary to achieve stability. Notably, the

larger the included null-hypothesis region, the more spread

out the peaks are under the null hypothesis, and the lower

the threshold for significance becomes; thus, the gray matter

mask is a more appropriate mask than a more inclusive brain

mask, unless white-matter peaks are of theoretical interest.

The two methods differ in the way they correct for

multiple comparisons across brain voxels. The KDA method

seeks to establish a threshold that controls the chances of

seeing any false positives anywhere in the brain at P< 0.05,

corrected (so-called ‘familywise error rate’ control, FWER).

FWER is the only type of correction that permits each

significant region to be interpreted as a likely true result.

In this case, the interpretation is that more peaks fall

within this region than one would expect under the null

hypothesis anywhere in the brain. To accomplish this, in

each Monte Carlo simulation, the maximum KDA statistic

over the whole brain is saved, and the critical threshold is

the value that exceeds the whole-brain maximum in 95% of

the Monte Carlo maps. The use of a distribution of

maxima is an established method for multiple-comparisons

correction using non-parametric approaches (Nichols and

Holmes, 2002).

The ALE method, by contrast, seeks to identify voxels

where the union of peak probabilities exceeds that

expected by chance. The interpretation of a significant

Table 1 Meta-analysis method

Property KDA ALE Multilevel KDA

Kernel Spherical Gaussian Spherical
Interpretation of statistic Number of peaks near voxel Probability that at least one peak lies

in voxel
Number of study comparison maps activating
near voxel

Null hypothesis Peaks are not spatially consistent No peaks truly activate at this voxel Activations across studies are not spatially
consistent

Interpretation of significant
result

More peaks lie near voxel than expected
by chance

One or more peaks lies at this voxel A higher proportion of studies activate near
voxel than expected by chance

Multiple comparisons FWER FDR FWER (recommended) or FDR
Weighting None, or weight peaks by z-score None Weight studies by sample size and fixed/random

effects analysis
Generalize to . . . New peaks from same studies New peaks from same studies New studies
Assumptions Study is fixed effect: true between-studies

differences are null
Study is fixed effect: true between-studies
differences are null

Activation ‘blobs’ are spatially independent under
the null hypothesis

Peaks are spatially independent under the null
hypothesis

Peaks are spatially independent under
the null hypothesis

Analyze differences
across task types

Yes Yes Yes

6 If P(X1)¼ 1, P(X2)¼ 0, P(X3)¼ 0, then the ALE statistic 1� Prð[XÞ ¼ 1� ð0Þ�ð1Þ�ð1Þ ¼ 1.
7 The gray-matter mask we use is smoothed to add an 8 mm border, because many studies report

coordinates near the edges of gray matter.
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result is, ‘at least one reported peak truly falls in this region’.

In recent implementations of the ALE approach (Laird et al.,

2005), ALE statistics are subjected to false discovery rate

(FDR) correction (Genovese et al., 2002), which ensures that

at P< 0.05 corrected, on average, 5% of the reported voxels

are false positives (i.e. no peak truly falls within that voxel).

This procedure is typically more sensitive than FWER

control, but it is not possible to say for sure which of the

reported results are false positives�one can say with

confidence that most of them are true results, but one

cannot be confident about any single result.

Assumptions. Both of the methods described earlier

are limited in that they make several assumptions that

seriously limit the inferential power of the meta-analysis.

First, the analyst assumes that peak reported coordinates are

representative of the activation maps from which they come.

Second, because the procedures lump peak coordinates

across studies, study identity is treated as a fixed effect.

Thus, the analyst assumes that true inter-study differences in

number and location of peaks, smoothness, false positive

rates and statistical power are zero. This assumption is

critical because (i) it allows the possibility that a significant

‘meta-analytic’ result is due to only one study, and (ii) it is

patently violated in every neuroimaging meta-analysis.

The pitfalls of treating random effects as fixed effects

have been widely discussed in statistics (Neter et al., 1996;

Shayle et al., 2006) and in psychology (Clark, 1973). Treating

study as a fixed effect implies that the meta-analysis cannot

be used to generalize across a population of studies�perhaps
one of the most appealing potential features of a meta-

analysis�and inferences are restricted to the set of peaks

reported. It also means that one study alone can dominate

the meta-analysis and create significant meta-analytic results,

which obviates one of the purposes of doing a meta-analysis

in the first place. For example, examine the peaks in Figure 2

that go into the example ‘toy’ meta-analysis. They come

from three studies, shown by the three small maps at the far

left. Because study is treated as a fixed effect, information

about which study contributed each of the peaks is not

preserved, and all the peaks are ‘lumped together’ in the

analysis. Study 1 (top) contributes 26 peaks to the meta-

analysis, many of them very close together, whereas Study 2

(middle) contributes only two. When the KDA map is

generated (middle) and thresholded (right), three peaks

within 10mm are required to achieve significance in the

meta-analysis. Study 1 has enough peaks near the amygdala

to generate significant results in some regions by itself. The

problematic conditions illustrated here of (i) unequal

numbers of reported peaks, and (ii) clustering of reported

peaks within single studies are the rule rather than the

exception in meta-analysis of neuroimaging studies. In fact,

the three maps shown here are from three published

studies (Damasio et al., 2000; Liberzon et al., 2000; Wicker

et al., 2003) included in recent meta-analyses of emotion

(Wager et al., 2003; Wager et al., 2007).

These aspects of reported neuroimaging data notwith-

standing, a third assumption of KDA and ALE analyses is

that peaks are spatially independent within and across

studies under the null hypothesis. Thus, any clustering of

peaks tends to be interpreted as meaningful correspondence

(even if the cluster comes from a single study). This

assumption is required for the ALE probability computation

to be valid and for the null hypothesis distribution in Monte

Carlo simulations for both methods to be a meaningful

baseline. However, inspection of the individual study maps

in Figure 2 shows that studies tend to report multiple nearby

peaks associated with the same activation ‘blob’ spread over

the brain. Thus, this assumption is also often violated, and

the implications are that single studies can have undue

influence on the meta-analytic results if they report many

nearby peaks. This is problematic because procedures for

how many peaks to report and how close they should be has

not been rigorously evaluated and standardized, and, as

Turkeltaub et al. (2002) point out, often the most poorly

controlled studies, the ones that use the most liberal

statistical thresholds, or the ones that impose less arbitrary

smoothing of the data are the ones that report many peaks.

A new and improved KDA method. Many of these

problematic assumptions need not be made if study, rather

than peak location, is the unit of analysis. We have

developed new procedures in which the proportion of studies

that activate in a region, rather than the number of peaks, is

the test statistic (Wager et al., 2007). We refer to this analysis

as multilevel KDA (MKDA) because it treats peaks as nested

within studies. Because study is the unit of analysis and the

error terms in the analysis depend on inconsistencies across

studies, no one study can contribute disproportionately, and

the method is appropriate for generalizing to a population of

studies. In practice, the analyst may choose to include peaks

from several nominally independent comparison maps

within a study (e.g. a single study may include coordinates

for fear�baseline activations separately for males and

females). As it is often practically valuable to include data

from several comparisons, one often analyzes across

‘comparison maps’, with the additional assumption that

comparison maps within a study are independent.8

The method is diagrammed in Figure 3. The peak

locations for the three sample studies discussed earlier are

shown in the upper left; however, in this example, meta-

analytic results shown in the lower right are based on a total

of 437 comparison maps from studies of emotion (Wager

et al., 2007). In this analysis, peaks from each comparison

map are separately convolved with the kernel to generate

comparison indicator maps (CIMs). The CIMS are limited

to a maximum value of 1 (black regions in Figure 3) so that

the values across brain voxels are either 1 (‘this study

activated near this voxel’) or 0 (‘this study did not activate

near this voxel’). The CIMs are averaged to yield the

8 This assumption does not strictly hold, and care must be taken to ensure that multiple highly dependent

comparison maps within a single study are not entered.
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proportion of study comparison maps that activated near

each voxel. The individual CIMs are weighted by the product

of the square root of the sample size for that study and a

discounting factor for the analysis type�neuroimaging

studies treating subjects as fixed effects (mostly older

studies) are given lower weight than those treating subjects

as random effects, because the latter procedure is more

rigorous and is statistically valid. These weights allow the

larger and more rigorously performed studies to carry more

weight in the meta-analysis.9 Though it is difficult to

precisely determine what the discounting factor for fixed-

effects studies should be, in our recent work we have used

0.75 because it down-weights these studies to a modest

degree (four fixed-effects activations are required to equal

three random-effects ones).

The map of the proportion of activated comparisons is

subjected to statistical thresholding via a Monte Carlo

procedure similar to the one described earlier, but with

several key differences. Before the Monte Carlo simulation,

CIMs for each comparison are first generated and then

segmented into contiguous ‘blobs’. In each Monte Carlo

iteration, the locations of the centers of each blob are

selected at random based on the uniform distribution over

gray matter, and the CIMs and null-hypothesis proportion

of activated comparisons map is created. This procedure

preserves the spatial clustering of nearby peaks within

each study, and thus avoids the assumption of independent

peak locations within studies. It has the considerable

advantage of being relatively insensitive to the conventions

used for peak reporting�for example, if study authors

decided to report the coordinates of every activated voxel

rather than just a few peaks, the CIM for that study would

be relatively unaffected, and the null-hypothesis distribution

would also look much the same. This is not true of

other methods.

This method also incorporates advances in statistical

thresholding. FWER control is provided, as before, by

calculating the 95th percentile of the maximum proportion

of activated contrasts anywhere in the brain. However, it is

also possible to establish an arbitrary, uncorrected threshold

and then ask which voxels are part of regions that are

extensive enough to be statistically significant. This is the

concept behind ‘cluster extent-based’ multiple comparisons

Fig. 3 Example procedures for multilevel kernel density analysis (MKDA) of neuroimaging studies of emotion. (A) shows the peak coordinates of three of the 437 comparison
maps included in this meta-analysis. Peak coordinates of each map are separately convolved with the kernel, generating comparison indicator maps (CIMs), as seen in (B).
The weighted average of the CIMs (C) is thresholded based on the distribution of the maximum proportion of activated comparison maps expected under the null hypothesis (D)
to produce significant results (E). Yellow voxels are FWER corrected at P< 0.05. Other colored regions are FWER corrected for spatial extent at P< 0.05 with primary alpha levels
of 0.001 (orange), 0.01(pink) and 0.05 (purple).

9 P ¼
P

c CIMcð�c
ffiffiffiffiffi
Nc

p
=
P

c �c
ffiffiffiffiffi
Nc

p
Þ, where P is the weighted proportion of activated comparisons,

c indexes comparison maps, � is the fixed-effect discounting factor and N is the sample size that contributed

to each comparison map.
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correction in SPM software (Friston et al., 1994). This can be

accomplished in the Monte Carlo simulation by saving the

largest cluster of contiguous voxels above a specified threshold

for each iteration, and then setting a cluster extent threshold

equal to the 95th percentile of these values across iterations.

Significant regions are extensive enough so that one would

expect a cluster this large anywhere in the brain by chance

only 5% of the time. The bottom right panel of Figure 3 shows

an example of applying this analysis the 437 comparison maps

from emotion tasks. Yellow voxels are FWER corrected at

P<0.05, so that one voxel is enough to exceed expectations

under the null hypothesis anywhere in the brain, and other

colored regions have a large enough cluster extent�at primary

alpha levels of 0.001 (orange), 0.01 (pink) and 0.05

(purple)�to achieve FWER corrected signifiance at P<0.05.

These regions correspond well with those identified as

important for affect in animals and humans.

In summary, by treating studies (or independent compar-

ison maps within studies) as units of analysis, a method can

be devised that weights studies by the quality of their

information and allows the reliability of activation to be

summarized across studies without allowing studies

that report more peaks to contribute disproportionately.

In Table 1, we present a summary of the main features of

each of the three meta-analysis types discussed earlier.

Methods for analyzing differences across task types
Any of the earlier mentioned methods can be used for testing

for differences across two types of task�for example, for

locating regions significantly more responsive in one type of

emotion or one type of working memory than another.

The logic and the same caveats about interpretation apply.

During each Monte Carlo iteration, the maximum whole-

brain values for the difference between the test statistic for

Task A and Task B is saved (for KDA analysis) or the

uncorrected difference between the union of probabilities is

saved (for ALE analysis), and thresholding on these

differences proceeds as described earlier. Thus, statistics are

calculated over the brain for the difference in density values

or ALE values between two conditions.

These methods are essentially multivariate because

they provide information about the relative probabilities of

activation across tasks in a region, compared with the rest of

the brain. Imagine two tasks�Task A activates more across

the whole brain than Task B, but in a particular region, Task

A and B activate equally frequently. The KDA/MKDA or

ALE ‘difference’ analyses will simulate a null hypothesis with

many more activations in Task A than B, so the expectation

will be that A>B in each brain region. Some areas may show

greater A>B effects than expected by chance and so reach

significance. With enough power, the region with equal

absolute activation frequencies in Task A and Task B will

show a significant B >A effect, because the frequencies in

this region relative to the rest of the brain (and thus the null

hypothesis) favor Task B. Thus, the density method may be

sensitive in localizing the regions most strongly associated

with each task, even if one task dominates the other in

absolute number of activations.

However, the analyst may often wish to test the absolute

difference in activation frequencies for a given region, or for

each voxel over the brain. The question now is, does one task

show a higher proportion of peaks (KDA), proportion of

activated study comparison maps (MKDA), or likelihood

that one peak lies in the voxel (ALE)? This question may be

answered with the �2 (chi-square) test, a common statistical

procedure for comparing frequencies in two-way tables. In

this case, the analysis is performed on each voxel or region of

interest separately, so the analysis is univariate. One may

code each study as either activating (‘yes’) or not (‘no’) near

a voxel of interest and count frequencies of activations by

task type. Maps over all voxels can be constructed as in

the MKDA method described earlier; CIM maps describe

the yes/no activation status in each voxel for each study, and

each map is coded as belonging to one of two or more task

types. The �2 test for independence compares observed

activation frequencies with the null hypothesis of equal

expected frequencies across all task types. The�2 test can also

be used to count frequencies of peaks rather than studies,

although the problems associated with treating study as a

fixed effect above apply.

One problem with the use of the �2 test in neuroimaging

applications, however, is that because of the low frequencies

of activations, the expected activation frequencies are often

low�a rule of thumb is that any cell with expected counts

< 5 is problematic�and the P-values associated with the test

become substantially too liberal. Fisher’s exact test may be

used instead for the 2-task case, although non-parametric

simulation provides a general alternative for comparing two

or more tasks. In this test, the task condition assignments are

randomly permuted many times (�5000 or more), and the

resulting �2 values are used to estimate the null hypothesis

�2 distribution for that voxel. The P-value for the test is the

proportion of �2 values that lie below the observed �2 value.
The test approximates exact methods for multinomial

frequency analysis that are extremely computationally

expensive. Study weighting may be easily incorporated

into the �2 analysis by calculating weighted frequencies

(with weights normalized to be positive and with a

mean of 1). However, weighting reduces the effective degrees

of freedom, and without correction, the false-positive rate

will be inflated. Using the non-parametric test described here

this problem and is recommended.

Each of these methods�the density or ALE based ones and

the non-parametric �2 analysis�provides complementary

information. As discussed, the density/ALE based methods

locate regions of relative peak concentration for each task

based on a null hypothesis of uniform distribution across the

search volume (brain) for both tasks. The �2 analysis, in

contrast, is univariate and provides information about the

absolute differences in activation frequencies across tasks.
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A limitation of both voxel-based and �2 mehods is that

they do not control for other potentially confounding

variables. In working memory studies, for example,

many more studies of spatial working memory frequently

require manipulation of information held in memory,

whereas studies of object working memory very rarely do

(Wager and Smith, 2003). A spatial vs object comparison in

the meta-analysis thus also likely reflects a manipulation

vs no-manipulation difference. Such confounding variables

can be controlled for via logistic regression, treating

activation in a study comparison (‘yes’ or ‘no’) as the

outcome and study-level variables as predictors. Kosslyn and

Thompson (2003) used logistic regression to examine the

factors that influence whether studies find early visual

activation in mental imagery, and Nee et al. (2007) used it to

examine the stages of response conflict associated with

activation in several regions during ‘conflict’ tasks. Because

analyses were carried out across study comparison maps in

these studies, the problems associated with treating study as

a fixed effect are avoided. This approach works best when

analyses are focused on regions of interest activated by a

high proportion of studies; low proportions violate the

assumptions and result in high false-positive rates. A non-

parametric test that would avoid these issues in voxel-wise

analysis has not yet been developed.

Other approaches to neuroimaging meta-analysis
The discussion earlier has by no means presented an

exhaustive review of neuroimaging meta-analysis methods,

but for space reasons we can only mention a few others here.

Some authors have used measures of effect size directly and

performed a traditional meta-analysis comparing effect sizes

across studies (Davidson and Heinrichs, 2003; Zakzanis

et al., 2003; Thornton et al., 2006). This approach is

promising, but requires careful analysis choices about how to

deal with effect sizes that may be incommensurate because of

differences in analysis method�the subject-as-fixed-effect vs
random-effect distinction being foremost among them.

In addition, the analyst must carefully define regions of

interest within which effect sizes may be treated as

comparable, and the analyst must apply methods for

imputing effect sizes for studies that do not report them in

the region of interest.

Other approaches have used ‘data-driven’ algorithms to

define regions with homogeneous activation patterns. In a

creative application, Nielsen and Hansen (2004) used a

matrix factorization algorithm similar to principal compo-

nents analysis to decompose a matrix of both activation

indicators across voxels and semantic study labels derived

from publications. They identified distributed patterns of

voxels across the brain that were associated with particular

labels (e.g. ‘language’ or ‘spatial’). Such analyses are

promising ways to identify distributed patterns for testing

in new neuroimaging or lesion studies. Similar methods

are now being developed to analyze ‘connectivity’ in

meta-analytic databases, which will provide information

about whether studies that activate one region of interest

tend to also activate other regions. Identifying distributed

patterns of co-activation across studies may be useful in

defining multiple modes of brain function associated with

different task types.

In another approach, Wager and Smith (2003) used

cluster analysis to segregate reported peaks from working

memory studies into spatial groupings. The clusters were

defined without any knowledge of task type, and the

authors subsequently examined each cluster for evidence of

specialization for different types of working memory using

�2 analysis. This approach provides an alternative to

specifying a priori anatomical regions of interest with

arbitrary boundaries and a natural way to group peaks for

subsequent analysis of differences across task types without

introducing bias in these analyses.

A third multivariate application can be used to test

for differences in spatial location of activation among two

or more task types. Wager et al., 2004) identified

parietal regions of interest using KDA analysis on atten-

tion-switching tasks. They then performed multivariate

analysis of variance (MANOVA) analysis on the distribution

of peak locations across task type. The x, y and z mm

coordinates were dependent measures, and the procedure

calculated the best linear combination for separating peaks

from different types of switching, providing preliminary

evidence for differential localization of different switch types

in parietal cortex. This type of analysis makes the most sense

when hypotheses are about spatial location�i.e. that one task
activates anterior to another within the same broad region.

In another approach, Murphy et al. used a 3D

Kolmorogov–Smirnov test to test the global null hypothesis

of equal distributions of peaks across the whole brain for

multiple conditions. A rejection of the null in this test

implies that two (or more) conditions differed in peak

density somewhere in the brain. The limitations of treating

study as a fixed effect apply in these cases as well, though this

problem could be avoided in future work.

Finally, classifier analysis can be used to find distributed

patterns of regions that reliably dissociate activations

related to one type of task from those related to another.

For example, there may be no single region of the brain

reliably and uniquely associated with a particular type of

emotion (e.g. fear, sadness or disgust), but distributed

patterns may accurately discriminate the basic emotions.

A host of methods for predicting task status given multi-

variate brain activity patterns may be productively applied

to meta-analytic data to achieve these ends, including

Fisher’s linear and quadratic discriminant analysis,

support-vector machines (LaConte et al., 2005; Pessoa and

Padmala, 2007), and Bayesian classifiers. The goal of these

analyses is to find patterns that can correctly predict the task

type in a new sample, and a complex set of weights on voxels

or rules is developed that gives the best predictions.
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Because these weights are developed using data (a ‘training

set’), it is critical that the data used to test the performance is

independent of the training set. It is easy to develop

classifiers that predict task categories in a data set perfectly,

but perform very poorly on new, independent data. Another

important point is that the generalizability of a classifier

analysis is only as broad as the task categories included in the

analysis�a 99% correct classifiation rate in predicting Task A

vs Task B does not imply good performance on classifying A

vs B vs C. Meta-analysis offers a unique opportunity to assess

predictive power across a wide range of different task

conditions. While we are not aware of published analyses

that use these techniques on meta-analytic data, they offer a

rich new avenue for utilizing the wealth of data in the

neuroimaging literature to make inferences on psychological

processes.

Conflict of Interest

None declared.

REFERENCES

Clark, H.H. (1973). The language-as-fixed-effect fallacy: a critique of

language statistics in psychological research. Journal of Verbal Learning

and Verbal Behavior, 12(4), 335–59.

Damasio, A.R., Grabowski, T.J., Bechara, A., et al. (2000). Subcortical and

cortical brain activity during the feeling of self-generated emotions.

Nature Neuroscience, 3(10), 1049–56.

Davidson, L.L., Heinrichs, R.W. (2003). Quantification of frontal and

temporal lobe brain-imaging findings in schizophrenia: a meta-analysis.

Psychiatry Research, 122(2), 69–87.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A.,

Noll, D.C. (1995). Improved assessment of significant activation in

functional magnetic resonance imaging (fMRI): use of a cluster-size

threshold. Magnetic Resonance in Medicine, 33(5), 636–47.

Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., Evans, A.C.

(1994). Assessing the significance of focal activations using their spatial

extent. Human Brain Mapping, 1, 210–20.

Genovese, C.R., Lazar, N.A., Nichols, T. (2002). Thresholding of statistical

maps in functional neuroimaging using the false discovery rate.

Neuroimage, 15(4), 870–8.

Kosslyn, S.M., Thompson, W.L. (2003). When is early visual cortex

activated during visual mental imagery. Psychological Bulletin, 129(5),

723–46.

LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X. (2005).

Support vector machines for temporal classification of block design fMRI

data. Neuroimage, 26(2), 317–29.

Laird, A.R., Fox, P.M., Price, C.J., et al. (2005). ALE meta-analysis:

controlling the false discovery rate and performing statistical contrasts.

Human Brain Mapping, 25(1), 155–64.

Liberzon, I., Taylor, S.F., Fig, L.M., Decker, L.R., Koeppe, R.A.,

Minoshima, S. (2000). Limbic activation and psychophysiologic

responses to aversive visual stimuli. Interaction with cognitive task.

Neuropsychopharmacology, 23(5), 508–16.

Murphy, F.C., Nimmo-Smith, I., Lawrence, A.D. (2003). Functional

neuroanatomy of emotion: a meta-analysis. Cognitive, Affective and

Behavioral Neuroscience, 3, 207–33.

Nee, D.E., Wager, T.D., Jonides, J. (2007). A meta-analysis of neuroimaging

studies of interference resolution. Cognitive Affective and Behavioral

Neuroscience (In Press).

Neter, J., Kutner, M.H., Wasserman, W., Nachtsheim, C.J. (1996). Applied

Linear Statistical Models. New York: McGraw-Hill.

Nichols, T., Hayasaka, S. (2003). Controlling the familywise error rate

in functional neuroimaging: a comparative review. Statistical Methods

in Medical Research, 12(5), 419–46.

Nichols, T.E., Holmes, A.P. (2002). Nonparametric permutation tests for

functional neuroimaging: a primer with examples. Human Brain

Mapping, 15(1), 1–25.

Nielsen, F.A., Hansen, L.K., Balslev, D. (2004). Mining for associations

between text and brain activation in a functional neuroimaging database.

Neuroinformatics, 2(4), 369–80.

Pessoa, L., Padmala, S. (2007). Decoding near-threshold perception of fear

from distributed single-trial brain activation. Cerebral Cortex, 17(3),

691–701.

Rosenthal, R. (1979). The ‘file-drawer’ problem and tolerance for null

results. Psychological Bulletin, 86, 638–41.

Rosenthal, R. (1991). Meta-Analytic Procedures for Social Research.

Beverly Hills, CA: Sage.

Shayle, R., Searle, G.C., McCulloch, C.E. (2006). Variance Components.

Hoboken, NJ: Wiley-Interscience.

Talairach, J., Tournoux, P. (1988). Co-planar Stereotaxic Atlas of the Human

Brain: 3-Dimensional Proportional System - an Approach to Cerebral

Imaging. New York, NY: Thieme Medical Publishers.

Thornton, A.E., Van Snellenberg, J.X., Sepehry, A.A., Honer, W. (2006).

The impact of atypical antipsychotic medications on long-term memory

dysfunction in schizophrenia spectrum disorder: a quantitative review.

Journal of Psychopharmacology, 20(3), 335–46.

Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A. (2002).

Meta-analysis of the functional neuroanatomy of single-word reading:

method and validation. Neuroimage, 16(3 Pt 1), 765–80.

Wager, T.D., Barrett, L.F., Bliss-Moreau, E., et al. (2007). The neuroimaging

of emotion. In: Lewis, M., editor. Handbook of Emotion (In Press).

Wager, T.D., Jonides, J., Reading, S. (2004). Neuroimaging studies of

shifting attention: a meta-analysis. Neuroimage, 22(4), 1679–93.

Wager, T.D., Phan, K.L., Liberzon, I., Taylor, S.F. (2003). Valence,

gender, and lateralization of functional brain anatomy in emotion:

a meta-analysis of findings from neuroimaging. Neuroimage, 19(3),

513–31.

Wager, T.D., Smith, E.E. (2003). Neuroimaging studies of working memory:

a meta-analysis. Cognitive Affective and Behavioral Neuroscience, 3(4),

255–74.

Wicker, B., Keysers, C., Plailly, J., Royet, J.P., Gallese, V., Rizzolatti, G.

(2003). Both of us disgusted in my insula: the common neural basis of

seeing and feeling disgust. Neuron, 40(3), 655–64.

Zakzanis, K.K., Graham, S.J., Campbell, Z. (2003). A meta-analysis of

structural and functional brain imaging in dementia of the Alzheimer’s

type: a neuroimaging profile. Neuropsychology Review, 13(1), 1–18.

158 SCAN (2007) T.D.Wager et al.


