
Chapter 2

Introduction

A common situation in applied sciences is that one has an independent variable
or outcome Y and one or more dependent variable or covariates X1, . . . , Xp. One
usually observes these variables for various “subjects”.

One may be interested in various things: What effects do the covariates have
on the outcome? How well can we describe these effects? Can we predict the
outcome using the covariates?, etc..

2.1 Linear Regression

Let’s start with a simple example. Lets say we have a random sample of US males
and we record their heights (X) and weights (Y ).
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Say we pick a random subject. How would you predict their weight?

What if I told you their height? Would your strategy for predicting change?

We can show mathematically that for a particular definition of “best”, described
below, the average is the best predictor of a value picked from that population.
However, if we have information about a related variable then the conditional
average is best.

One can think of the conditional average as the average weights for all men of a
particular height.

In the case of weight and height, the data actually look bivariate normal (football
shaped) and one can show that the best predictor (the conditional average) of
weight given height is

E[Y |X = x] = µY + ρ
σY

σX

(x− µX) (2.1)

with µX = E[X] (average height), µY = E[Y ] (average weight), and where ρ is
the correlation coefficient of height and weight.

If we obtain a random sample of the data then each of the above parameters is
subsituted by the sample estimates and we get a familiar expression:

Ŷ (x) = X̄ + r
SDY

SDX

(x− X̄).

Technical note: Because in practice it is useful to describe distributions of popula-
tions with continuous distribution we will start using the word expectation or the
phrase expected value instead of average. We use the notation E[·]. If you think of
integrals as sums then you can think of expectations as averages.

Notice that equation (2.1) can be written in this, more familiar, notation:

E[Y |X = x] = β0 + β1x
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Because the conditional distribution of Y given X is normal we can write the even
more familiar version:

Y = β0 + β1X + ε

with ε a mean 0 normally distributed random variable that is independent of X .
This notation is popular in many fields because β1 has a nice interpretation and its
typical (least squares) estimate has nice properties.

When more than one predictor exists it is quite common to extend this linear
regression model to the multiple linear regression model:

Y = β0 + β1X1 + . . . + βpXp + εi

with the εis unbiased (0 mean) errors independent of the Xj as before.

A drawback of these models is that they are quite restrictive. Linearity and ad-
ditivity are two very strong assumptions. This may have practical consequences.
For example, by assuming linearity one may never notice that a covariate has an
effect that increases and then decreases. We will see various example of this in
class.

Linear regression is popular mainly because of the interpret-ability of the param-
eters. However, the interpretation only makes sense if the model is an appropriate
approximation of the natural data generating process. It is likely that the linear re-
gression model from a randomly seclectd publication will do a terrible job at pre-
dicting results in data where the model was not trained on. Prediction is not really
given much importance in many scientific fields, e.g. Economics, Epidemiology,
and Social Sciences. In others fields, e.g. Surveillance and Finance, prediction
is everything. Notice that in the fields where prediction is important regression is
not as popular.

2.2 Prediction

So, what does it mean to predict well?
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Say I observe the predictors X1, . . . , Xp and I want to predict Y .

Note: I will use X to denote the vector of all predictors.

If I have a prediction f(X) based on the predictors X how do I define a “good pre-
diction” mathematically. A common way of defining closeness is with Euclidean
distance:

L{Y, f(X)} = {Y − f(X)}2. (2.2)

We sometime call this the loss function. Notice that because both Y and f(X)
are random variables so is (2.2). Minimizing a random variable is meaningless
because its not a number. A common thing to do is minimize the average loss or
the expected prediction error:

EXEY |X [{Y − f(X)}2|X]

For all x the expected loss is minimized by the conditional expectation:

f(x) = E[Y |X = x]

We usually call f(x) the regression function.

Notice that if the linear regression model holds then

f(X) = E[Y |X1 = x1, . . . , Xp = xp] = β0 +

p
∑

j=1

xjβj.

It should be noted that for some designed experiments it does not make sense
to assume the X are random variables. In this case we usually assume we have
“design points” x1i, . . . , xpi, i = 1, . . . , n and non-IID observations Y1, . . . , Yn for
each design point. In most cases, the theory for both these cases is very similar if
not the same. These are called the random design model and fixed design model
respectively.
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2.3 Scatterplot Smoothers

We will begin with a simple example were the regression function f will depend
on a single predictor X but not necesarily linear.

Sometimes, the need to estimate f arises when investigators have to decide among
various explanations for a physical phenomenon, and existing subject-knowledge
or scientific theory says nothing about f . In this case we collect data to see what
it says. Exhibiting some aspect of f may then imply the confirmation or revision
of a given theory.

A scatter plot smoother is a tool for finding structure in a scatter plot: (x1, y1), . . . , (xn, yn)

Figure 2.1: CD4 cell count since seroconversion for HIV infected men.
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• Suppose that we consider y = (y1, . . . , yn)′ as the response measurements
and x = (x1, . . . , xn)′ as the design points.

• We can think of x and y as outcomes of random variable X and Y . How-
ever, for scatter plot smoothers we don’t really need stochastic assumptions,
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it can be viewed as a descriptive tool.

• A scatter plot smoother can be defined as a function (remember the general
definition of function) of x and y with domain at least containing the values
in x: s = S[y|x].

• There is usually a “recipe” that gives s(x0), which is the function S[y|x]
evaluated at x0, for all x0. We will be calling x0 the target value when we
giving the recipe. Note: Some recipes don’t give an s(x0) for all x0, but
only for the x’s included in x.

Note we will call the vector {s(x1), . . . , s(xn)}′ as the smooth and gives us esim-
tates of f at x.

Here is a simplistic example: For each x ∈ x define

s(x) = ave{yi; xi = x}.

What happens if the xi are unique?

Since Y and X are, in general, non-categorical we don’t expect to find many
replicates at any given value of X . This means that we could end up with the data
again, s(x) = y for all x. Not very smooth!

Note: For convenience, through out this chapter, we assume that the data are
sorted by X .

Many smoothers force s(x) to be a smooth function of x. This is a fancy way
of saying we think data points that are close (in x) should have roughly the same
expectation.
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2.3.1 Parametric smoother

These are what you have seen already. We force a function defined by a few pa-
rameters on the data and use something like least squares to find the best estimates
for the parameters.

For example, a regression line computed with least squares can be thought of as
a smoother. In this case S[y|x](x) = (1 x) (X′X)−1X′y with X a design matrix
containing a column of 1’s and x.

The lack of flexibility of these types of smoother can make them provide mislead-
ing results.

Figure 2.2: CD4 cell count since seroconversion for HIV infected men.
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2.3.2 Bin smoothers

A bin smoother, also known as a regressogram, mimics a categorical smoother by
partitioning the predicted value into disjoint and exhaustive regions, then averag-
ing the response in each region. Formally, we choose cut-points c0 < . . . < cK

where c0 = −∞ and cK = ∞, and define

Rk = {i; ck ≤ xi < ck+1}; k = 0, . . . , K

the indexes of the data points in each region. Then S[y|x] is given by

s(x) = avei∈Rk
{yi} if x ∈ Rk

Notice that the bin smoother will have discontinuities.

Figure 2.3: CD4 cell count since seroconversion for HIV infected men.
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2.3.3 Running-mean/moving average

Since we have no replicates and we want to force s(x) to be smooth we can use the
motivation that under some stastical model, for any x0 values of f(x) = E[Y |X =
x] for x close to x0 are similar.

How do we define close? A formal definition is the symmetric nearest neighbor-
hood

NS(xi) = {max(i− k, 1), . . . , i− 1, i, i + 1, min(i + k, n)}

We may now define running mean as:

s(xi) = avej∈NS(xi){yj}

We can also forget about the symmetric part and simply define the nearest k neigh-
bors.

Figure 2.4: CD4 cell count since seroconversion for HIV infected men.
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This usually too wiggly to be considered useful. Why do you think?



2.3. SCATTERPLOT SMOOTHERS 15

Notice we can also fit a line instead of a constant. This procedure is called
running-line.

Can you write out the recipe for s(xi) for the running-line smoother?

2.3.4 Kernel smoothers

One of the reasons why the previous smoothers is wiggly is because when we
move from xi to xi+1 two points are usually changed in the group we average. If
the new two points are very different then s(xi) and s(xi+1) may be quite different.
One way to try and fix this is by making the transition smoother. That’s the idea
behind kernel smoothers.

Generally speaking a kernel smoother defines a set of weights {Wi(x)}n
i=1 for

each x and defines

s(x) =
n

∑

i=1

Wi(x)yi.

We will see that most scatter plot smoothers can be considered to be kernel smoothers
in this very general definition.

What is called a kernel smoother in practice has a simple approach to represent
the weight sequence {Wi(x)}n

i=1 by describing the shape of the weight function
Wi(x) by a density function with a scale parameter that adjusts the size and the
form of the weights near x. It is common to refer to this shape function as a kernel
K. The kernel is a continuous, bounded, and symmetric real function K which
integrates to one,

∫

K(u) du = 1.
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For a given scale parameter h, the weight sequence is then defined by

Whi(x) =
K

(

x−xi

h

)

∑n

i=1 K
(

x−xi

h

)

Notice:
∑n

i=1 Whi(xi) = 1

The kernel smoother is then defined for any x as before by

s(x) =
n

∑

i=1

Whi(x)Yi.

Notice: if we consider x and y to be observations of random variables X and Y
then one can get an intuition for why this would work because

E[Y |X] =

∫

yfX,Y (x, y) dy/fX(x),

with fX(x) the marginal distribution of X and fX,Y (x, y) the joint distribution of
(X,Y ), and

s(x) =
n−1

∑n

i=1 K
(

x−xi

h

)

yi

n−1
∑n

i=1 K
(

x−xi

h

)

Because we think points that are close together are similar, a kernel smoother
usually defines weights that decrease in a smooth fashion as one moves away
from the target point.

Running mean smoothers are kernel smoothers that use a “box” kernel. A natural
candidate for K is the standard Gaussian density. (This is very inconvenient com-
putationally because its never 0). This smooth is shown in Figure 2.5 for h = 1
year.

In Figure 2.6 we can see the weight sequence for the box and Gaussian kernels for
three values of x.


