Chapter 6

Splines and Friends: Basis
Expansion and Regularization

Through-out this section, the regression functfowill depend on a single, real-
valued predictorX ranging over some possibly infinite interval of the real line,
I C R. Therefore, the (mean) dependencé&’acbn X is given by

flz)=EY|X =xz),x €l CR. (6.1)

For spline models, estimate definitions and their properties are more easily char-
acterized in the context of linear spaces.

6.1 Linear Spaces

In this chapter our approach to estimatifigwvolves the use of finite dimensional
linear spaces.

Remember what a linear space is? Remember definitions of dimension, linear
subspace, orthogonal projection, etc...
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Why use linear spaces?

e Makes estimation and statistical computations easy.
e Has nice geometrical interpretation.

¢ It actually can specify a broad range of models given we have discrete data.

Using linear spaces we can define many families of funcfistraight lines, poly-
nomials, splines, and many other spaces (these are examples for the case where
is a scalar). The point is: we have many options.

Notice that in most practical situation we will have observati¢Ks, Y;),: =
1,...,n. In some situations we are only interested in estimaffi¥;),: =
1,...,n. Infact, in many situations it is all that matters from a statistical point of
view. We will write f when referring to the this vector afidvhen referring to an
estimate. Think of how its different to knoyvand knowf.

Let’s say we are interested in estimatifigA common practice in statistics is to
assume thék lies in somdinear spaceor is well approximated by g that lies in
somelinear space

For example for simple linear regression we assumefthas in the linear space
of lines:

a+ Bx, (a, 3) € R

For linear regression in general we assume fHegs in the linear space of linear
combinations of the covariates or rows of the design matrix. How do we write it
out?

Note: Through out this chaptefis used to denote the true regression function
andg is used to denote an arbitrary function in a particular space of functions.
It isn’t necessarily true thaf lies in this space of function. Similarly we u$e

to denote the true function evaluated at the design points or observed covariates
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andg to denote an arbitrary function evaluated at the design points or observed
covariates.

Now we will see how and why it's useful to use linear models in a more general
setting.

Technical note A linear model of ordep for the regression function (6.1) con-
sists of gp-dimensional linear spagg having as a basis the function

Bij(x),j=1,...,p

defined forx € I. Each member € G can be written uniquely as a linear
combination

9(x) = g(x;0) = 01By(x) + ... + 0,B,(x)
for some value of the coefficient vect@r= (¢,,...,0,) € RP.

Notice thatf specifies the poinj € G.
How would you write this out for linear regression?

Given observationgX;, Y;),i = 1, ..., n the least squares estimate (LSEfafr
equivalentlyf(x) is defined byf (x) = g(x; ), where

n

A

0 = arg min Z{Y’ —9(X;,0)}%

Ocrr i

Define the vectog = {g(z1),...,g9(x,)}. Then the distribution of the observa-
tions of Y| X = z are in the family

{N(g,0’L);g = [g(x1), ..., 9(zn)], g € G} (6.2)
and if we assume the errogsare 11D normal and thaf € G we have thaf =
[9(x1;0),...,9(x,;0)]is the maximum likelihood estimate. The estimdrid an

n x 1 vector. But how many parameters are we really estimating?

Equivalently we can think of the distribution is in the family

{N(BO,5°);0 € R"} (6.3)
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and the maximum likelihood estimate féris §. HereB is a matrix of basis
elements defined soon...

Here we start seeing for the first time where the name parametricomes from.
How are the approaches (6.2) and (6.3) different?

Notice that obtaining is easy because of the linear model set-up. The ordinary
least square estimate is

(B'B)6 = B'Y
whereB is is then x p design matrix with element®];; = B;(X;). When

this solution is unique we refer t@(z; é) as the OLS projection oY into G (as
learned in the first term).

6.1.1 Parametric versus non-parametric

In some cases, we have reason to believe that the funti®actually a member

of some linear spacg. Traditionally, inference for regression models depends
on f being representable as some combination of known predictors. Under this
assumptionf can be written as a combination of basis elements for some value
of the coefficient vectof. This provides garametricspecification forf. No
matter how many observations we collect, there is no need to look outside the
fixed, finite-dimensional, linear spagewhen estimating.

In practical situations, however, we would rarely believe such relationship to be
exactly true. Model space&g are understood to provide (at best) approximations
to f; and as we collect more and more samples, we have the freedom to audition
richer and richer classes of models. In such cases, all we might be willing to say
aboutf is that it issmoothn some sense, a common assumption beingjtaive

two bounded derivatives. Far from the assumption fhia¢long to a fixed, finite-
dimensional linear space, we instead positamparametricspecification forf.

In this context, model spaces are employed mainly in our approach to inference;
first in the questions we pose about an estimate, and then in the tools we apply
to address them. For example, we are less interested in the actual values of the
coefficientd, e.g. whether or not an element @fis significantly different from
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zero to the 0.05 level. Instead we concern ourselves with functional properties of
g(x; @), the estimated curve or surface, e.g. whether or not a peak is real.

To ascertain the local behavior of OLS projections onto approximation spaces
define the pointwise, mean squared error (MSE)(af) = g(x; 0) as

E{f(x) — 4(x)}* = bias {3(x)} + var{g(x)}
where
bias{g(x)} = f(z) — E{9(x)} (6.4)
and
var{j(x)} = E{g(x) — E[g(x)]}’
When the input value§X,} are deterministic the expectations above are with

respect to the noisy observatidin In practice, MSE is defined in this way even
in the random design case, so we look at expectations condition®d on

When we do this, standard results in regression theory can be applied to derive an
expression for the variance term

var{§(x)} = o’B(x)(B'B) 'B(x)

whereB(x) = (B:(x), ..., B,(x))’, and the error variance is assumed constant.
Under the parametric specification thfat G, what is the bias?

This leads to classical t- and F-hypothesis tests and associated parametric confi-
dence intervals fof. Suppose on the other hand, tifas not a member of, but

rather can be reasonably approximated by an elemegit ithe bias (6.4) now
reflects the ability of functions i to capture the essential featuresfof

6.2 Local Polynomials

In practical situations, a statistician is rarely blessed with simple linear relation-
ship between the predictdf and the observed outpt That is, as a description
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of the regression functiofi, the model
g(x;0) =0, + O,z € 1

typically ignores obvious features in the data. This is certainly the case for the
values of*" Sr-.

The Strontium data set was collected to test several hypotheses about the catas-
trophic events that occurred approximately 65 million years ago. The data con-
tains Age in million of years and the ratios described here. There is a division
between two geological time periods, the Cretaceous (from 66.4 to 144 million
years ago) and the Tertiary (spanning from about 1.6 to 66.4 million years ago).
Earth scientist believe that the boundary between these periods is distinguished
by tremendous changes in climate that accompanied a mass extension of over half
of the species inhabiting the planet at the time. Recently, the compositions of
Strontium (Sr) isotopes in sea water has been used to evaluate several hypotheses
about the cause of these extreme events. The dependent variable of the data-set is
related to the isotopic make up of Sr measured for the shells of marine organisms.
The Cretaceous-Tertiary boundary is referred to as KTB. There data shows a peak
Is at this time and this is used as evidence that a meteor collided with earth.

The data presented in the Figit@represents standardized ratio of strontium-87
isotopes{’Sr) to strontium-86 isotope¥’Sr) contained in the shells of foraminifera
fossils taken form cores collected by deep sea drilling. For each sample its time
in history is computed and the standardized ratio is computed:

87Sr/%Sr sampl
/ P 1) « 108,
87Sr/86Sr sea water

875Sr = (

Earth scientist expect thdtsSr is a smooth-varying function of time and that
deviations from smoothness are mostly measurement error.

To overcome this deficiency, we might consider a more flexible polynomial model.
Let P, denote the linear space of polynomialsiinf order at most: defined as

g(2;0) =0, + box + ...+ 02" el

for the parameter vectd = (6;,...,0;) € R*. Note that the spac®,, consists
of polynomials having degree at madst- 1.
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Figure 6.1:37§Sr data.

In exceptional cases, we have reasons to believe that the regression fyhigtion
in fact a high-order polynomial. This parametric assumption could be based on
physical or physiological models describing how the data were generated.

For historical values 6t §.5r we consider polynomials simply because our scien-
tific intuition tells us thatf should be smooth.

Recall Taylor's theorem: polynomials are good at approximating well-behaved
functions in reasonably tight neighborhoods. If all we can say apaaithat it is
smooth in some sense, then either implicitly or explicitly we consider high-order
polynomials because of their favorable approximation properties.

If fis not inP, then our estimates will be biased by an amount that reflects the
approximation error incurred by a polynomial model.
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Computational Issue: The basis of monomials

Bj(x) =" forj=1,... k

is not well suited for numerical calculations®(can be VERY BIG compared to
x). While convenient for analytical manipulations (differentiation, integration),
this basis igll-conditionedfor k larger thar8 or 9. Most statistical packages use
the orthogonal Chebyshev polynomials (used by the R comrmalyq) ).

An alternative to polynomials is to consider the sp&de, (t) of piecewise poly-
nomials with break points = (t¢, ..., t,.1)". Given a sequence = t, < t; <
.. <ty < tme1 = b, constructn + 1 (disjoint) intervals

]l = [tl—htl)a 1 S [ S m and]m—H = [tm7tm+1}7
whose union id = [a, b]. Define the piecewise polynomials of order

g1 (QT) = 91,1 + 9172£E + ...+ 917k$k_1, z €l

g(x) = . :
Im+1 (J}) = 0m+1,1 + 9m+172$€ + ...+ 9m+1,k27k_1, T € [kJrl.

In homework 2, we saw or will see that piecewise polynomials are a linear space
that present an alternative to polynomials. However, itis hard to justify the breaks
in the functiong(z; ).

6.3 Splines

In many situations, breakpoints in the regression function do not make sense.
Would forcing the piecewise polynomials to be continuous suffice? What about
continuous first derivatives?

We start by consider the subspaces of the piecewise polynomial space. We will
denote it withPP(t) with t = (¢,...,t,,)" the break-points or interior knots.
Different break points define different spaces.
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We can put constrains on the behavior of the functipasthe break points. (We
can construct tests to see if these constrains are suggested by the data but, will not
go into this here)

Here is a trick for forcing the constrains and keeping the linear model set-up. We
can write any functiory € PP, (t) in the truncated basis power

g(:z:) = 60,1 + 90,237 + ...+ Go,kxk’l +
11z — tl)?,_ + 61 2(z — tl)}k + ... 401 (r — tl)’j__l +

Om1 (T — )% 4 Oma(® — )y + .o 4 Opp(z — tm)]_fl

where(-); = max(-,0). Written in this way the coefficient® i, ..., 6, record
the jumps in the different derivative from the first piece to the second.

Notice that the constrains reduce the number of parameters. This is in agreement
with the fact that we are forcing more smoothness.

Now we can force constrains, such as continuity, by putting constraing like-
0 etc...

We will concentrate on the cubic splines which are continuous and have continu-
ous first and second derivatives. In this case we can write:
g(Q?) = 6071 + (90,256 4+ ...+ 60}4%3 + 91&(37 — t1)3 4+ ...+ 9m7k(x — tm)3
How many “parameters” in this space?
Note: It is always possible to have less restrictions at knots where we believe the

behavior is “less smooth”, e.g for the Sr ratios, we may have “unsmoothness”
around KTB.

We can write this as a linear space. This setting is not computationally conve-
nient. In S-Plus there is a functidas() that makes a basis that is convenient for
computations.

There is asymptotic theory that goes along with all this but we will not go into the
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details. We will just notice that
E[f(z) — g(2)] = O(h{" + 1/m)

whereh, is the size of the interval whereis in andn; is the number of points in
it. What does this say?

6.3.1 Splines in terms of Spaces and sub-spaces

Thep-dimensional spaces described in Section 4.1 were defined through basis
function B;(x),j = 1,...,p. So in general we defined for a given range R*

G={g:9(x)= Zejﬁj(x),x el (6,...,6,) € RP}

In the previous section we concentratedsoa R.

In practice we have design points, ..., z, and a vector of responsgs =
(y1,--.,yn). We can think ofy as an element in the-dimensional vector space

R™. In fact we can go a step further and define a Hilbert space with the usual inner
product definition that gives us the norm

Iyl => v
=1

Now we can think of least squares estimation as the projection of thg’datthe
sub-spacé&x C R" defined byg in the following way

G={gecR":g=[g(x1),...,9(x,)],9 € G}

Because this space is spanned by the ve¢f®rse, ), . . ., B,(z,)] the projection
of y ontoG is

B(B'B) By
as learned in 751. Het®|,; = B, (x;).
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6.4 Natural Smoothing Splines

Natural splines add the constrain that the function must be linear after the knots
at the end points. This forces 2 more restrictions sifitenust be 0 at the end
points, i.e the space hast+ 4 — 2 parameters because of this extra 2 constrains.

So where do we put the knots? How many do we use? There are some data-driven
procedures for doing this. Natural Smoothing Splines provide another approach.

What happens if the knots coincide with the dependent variapie$. Then
there is a functiory € G, the space of cubic splines with knots(at, . .., z,),
with g(x;) = s, 1, ..., n, i.e. we haven’t smoothed at all.

Consider the following problem: among all functionsvith two continuous first
two derivatives, find one that minimizes the penalized residual sum of squares

S - gl 4 [ {0} d

where) is a fixed constant, and< z; < ... < z,, < b. It can be shown (Reinsch
1967) that the solution to this problem is a natural cubic spline with knots at the
values ofz; (so there are — 2 interior knots andh — 1 intervals). Here: andb

are arbitrary as long as they contain the data.

It seems that this procedure is over-parameterized since a natural cubic spline as
this one will haven degrees of freedom. However we will see that the penalty
makes this go down.

6.4.1 Computational Aspects

We use the fact that the solution is a natural cubic spline and write the possible
answers as

o) = 0,B,(x)
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whered; are the coefficients anél;(x) are the basis functions. Notice that if these
were cubic splines the functions lie imat 2 dimensional space, but the natural
splines are an dimensional subspace.

Let B be then x n matrix defined by

B.

ij

= Bj(zi)

and a penalty matri2 by
b
Qi = / B/ (t)Bj(t) dt
now we can write the penalized criterion as
(y — BO)'(y — BO) + \0'Q0

It seems there are no boundary derivatives constraints but they are implicitly im-
posed by the penalty term.

Setting derivatives with respect bequal to 0 gives the estimating equation:
(B'B+ \Q2)6 = By.

The 6 that solves this equation will give us the estimgte B6.
Is this a linear smoother?

Write:
g =B0=B(B'B+ )\Q)*lB’y =T+ MK)ly

whereK = B — 1’QB~!. Notice we can write the criterion as

(y —8)(y —8) + \g'Kg

If we look at the “kernel” of this linear smoother we will see that it is similar to
the other smoothers presented in this class.
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Figure 6.2: Smoothing spline fitted using different penalties.

6.5 Linear Smoothers: Influence, Variance, and De-
grees of Freedom

All the smoothers we have discussed in this class are linear smoothers. The esti-
mates of the regression function can be written as

f':Sy.

For some of the smoothers we have defined we can define a weight sequence for
anyx and define

flz) = ZM/i(x)yi-
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How can we characterize the amount of smoothing being performed? The smooth-
ing parameters provide a characterization, but it is not ideal because it does not
permit us to compare between different smoothers and for smoothers like loess it
does not take into account the shape of the weight function nor the degree of the
polynomial being fit.

We now use the connections between smoothing and multivariate linear regression
(they are both linear smoothers) to characterize pointwise criteria that characterize
the amount of smoothing at a single point and global criteria that characterize the

global amount of smoothing.

We will define variance reduction, influence, and degrees of freedom for linear
smoothers.

The variance of the interpolation estimate is[ydr= o2. The variance of our
smooth estimate is

varf (@) = o* 3" W(a)

so we definéy """ , W?(x) as the variance reduction. Under mild conditions one
can show that this is less than 1.

Because

> varlf(a;)] = tr(SS')o”,
1=1
the total variance reduction frofn;_, var{y;] is tr(SS’) /n.

In linear regression the variance reduction is related to the degrees of freedom, or
number of parameters. For linear regressioiy, , var f(z;)] = po?. One widely
used definition of degrees of freedoms for smoothed$ is tr(SS’).

The sensitivity of the fitted value, szf){xi), to the data poing; can be measured
by W;(z;)/ >, Wy(x;) or S;; (remember the denominator is usually 1).

The total influence or sensitivity is., | W;(z;) = tr(S).
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Figure 6.3: Degrees of freedom for loess and smoothing splines as functions of
the smoothing parameter
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In linear regression (6) = p is also equivalent to the degrees of freedom. This is
also used as a definition of degrees of freedom.

Finally we notice that

~

El(y — £)(y — £)] = {n — 2tr(S) + tr(SS")}o?

In the linear regression case thigis— p)o?. We therefore denote — 2tr(S) +
tr(SS’) as the residual degrees of freedom. A third definition of degrees of free-
dom of a smoother is their(S) — tr(SS’).

Under relatively mild assumptions we can show that

1 <tr(SS') <tr(S) < 2tr(S) —tr(SS) <n
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Figure 6.4: Comparison of three definition of degrees of freedom
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6.6 Smoothing and Penalized Least Squares

In Section 4.4.1 we saw that the smoothing spline solution to a penalized least
squares is a linear smoother.

Using the notation of Section 4.4.1, we can write the penalized criterion as

(y — B8) (y — BO) + \0'Q20

Setting derivatives with respect ébequal to O gives the estimating equation:
(B'B+ Q)0 = By

the § that solves this equation will give us the estimgte B6.

Write:
g =B6=B(B'B+ AQ)_IB’y =TI+ )\K)‘ly

whereK = B~ QB~.



6.6. SMOOTHING AND PENALIZED LEAST SQUARES 97

Notice we can write the penalized criterion as

(y—g)(y—g)+\g'Kg

If we plot the rows of this linear smoother we will see that it is like a kernel
smoother.

Figure 6.5: Kernels of a smoothing spline.
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Notice that for any linear smoother with a symmetric and nonnegative definite
S, i.e. thereS~ exists, then we can argue in reverde= Sy is the value that
minimizes the penalized least squares criteria of the form

(y =) (y —f)+f(S™ - I)f.

Some of the smoothers presented in this class are not symmetrical but are close.
In fact for many of them one can show that asymptotically they are symmetric.
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6.7 Eigen analysis and spectral smoothing

For a smoother with symmetric smoother ma8ixthe eigendecomposition &f
can be used to describe its behavior.

Let {uy,...,u,} be an orthonormal basis of eigenvectorsSofith eigenvalues
61 292 ZQn

Suj:9juj,j:1,...,n
or

S=UDU =) 6u;u,.
j=1
HereD is a diagonal matrix with the eigenvalues as the entries.

For simple linear regression we only have two nonzero eigenvalues. Their eigen-
vectors are an orthonormal basis for lines.

Figure 6.6: Eigenvalues and eigenvectors of the hat matrix for linear regression.
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It is easy to show that the first two eigenvalues are unity, with eigenvectors which
correspond to linear functions of the predictor on which the smoother is based.
One can also show that the other eigenvalues are all strictly between zero and one.

The action of the smoother is now transparent: if presented with a respoase
u;, it shrinks it by an amourtt; as above.

Figure 6.7: Eigenvalues and eigenvectors 1 through 18 &dr a smoothing
spline.
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Cubic smoothing splines, regression splines, linear regression, polynomial regres-
sion are all symmetric smoothers. However, loess and other “nearest neighbor”
smoothers are not.

Figure 6.8: Eigen vectors 11 through 30 for a smoothing spline ter30.
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If S is not symmetric we have complex eigenvalues and the above decomposition
is not as easy to interpret. However we can use the singular value decomposition

S =UDV’
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On can think of smoothing as performing a basis transformatienV'y, shrink-
ing with z = Dz the components that are related to “unsmooth components” and
then transforming back to the bagis= Uz we started out with... sort of.

In signal processing signals are “filtered” using linear transformations. The trans-
fer function describes how the power of certain frequency components are re-
duced. A low-pass filter will reduce the power of the higher frequency compo-
nents. We can view the eigen values of our smoother matrices as transfer func-
tions.

Notice that the smoothing spline can be considered a low-pass filter. If we look at
the eigenvectors of the smoothing spline we notice they are similar to sinusoidal
components of increasing frequency. Figure 6.7 shows the “transfer function”
defined by the smoothing splines.

The change of basis idea described above has been explored by Donoho and John-
ston 1994, 1995) and Beran (2000). In the following section we give a short in-
troduction to these ideas.

6.8 Smoothing and Penalized Least Squares

In Section 4.4.1 we saw that the smoothing spline solution to a penalized least
squares is a linear smoother.

Using the notation of Section 4.4.1, we can write the penalized criterion as

(y — BO) (y — BO) + A\0'Q20

Setting derivatives with respect ébequal to 0 gives the estimating equation:
(BB+\Q2)0 =By

the § that solves this equation will give us the estimgte B6.
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Write:
g =B0=B(B'B+ )\Q)”B’y =(I+ )\K)*ly

whereK = B~ QB
Notice we can write the penalized criterion as

(y—g)(y—g)+g'Kg

If we plot the rows of this linear smoother we will see that it is like a kernel
smoother.

Figure 6.9: Kernels of a smoothing spline.

Notice that for any linear smoother with a symmetric and nonnegative definite
S, i.e. thereS~ exists, then we can argue in reverde= Sy is the value that
minimizes the penalized least squares criteria of the form

(y—f)(y—f)+f(S™ —If.

Some of the smoothers presented in this class are not symmetrical but are close.
In fact for many of them one can show that asymptotically they are symmetric.
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6.9 Economical Bases: Wavelets and REACT esti-
mators

If one consider the “equally spaced” Gaussian regression:
t; = (i — 1)/n and thez;s 1ID N(0, 0?), many things simplify.

We can write this in matrix notation: the response vegtds N, (f,o*I) with

f= {f(tl)a T f(tn)}/

As usual we want to find an estimation procedure that minimizes risk:

n'El[f —f|? =n"'E [Z{f(tz) - f(tz‘)}Ql :

We have seen that the MLEfs = y; which intuitively does not seem very useful.
There is actually an important result in statistics that makes this more precise.

Stein (1956) noticed that the MLE is inadmissible: There is an estimation proce-
dure producing estimates with smaller risk that the MLE for finy

To develop a non-trivial theory MLE won't do. A popular procedure is to specify
some fixed classF of functions wheref lies and seek an estimatgrattaining
minimax risk

inf sup R(f, f)
f fer

By restrictingf € F we make assumptions on the smoothnesg. dfFor exam-
ple, theL? Sobolev family makes an assumption on the numbef continuous
derivatives and a limits the size of theh derivative.
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6.9.1 Useful transformations

Remembef € R™ and that there are many orthogonal bases for this space. Any
orthogonal basis can be represented with an orthogonal trandfothat gives

us the coefficients for anff by multiplying & = U’f. This means that we can
represent any vector &s= U€.

Remember that the eigen analysis of smoothing splines we can view the eigenvec-
tors a such a transformation.

If we are smart, we can choose a transformalibsuch thatt has some useful
interpretation. Furthermore, certain transformation may be more “economical” as
we will see.

For equally spaced dataa widely used transformation is the Discrete Fourier
Transform (DFT). Fourier’s theorem says that dny R” can be re-written as

n/2—1

21k . . 27k . .
fi = ao + ; {ak COS (T 2) + by, sin (T z) } + @y /2 cOS(T0)
fori =1,...,n. This defines a basis and the coefficients (ag, a1,b1,...,...,a,/2)
can be obtained via = U’f with U having columns of sines and cosines:
U, = [n_1/2:1§i§n}
Uy = [(2/n)Y?sin{2rki/n} 1 <i<n]k=1,...,n/2
Usp1 = [(2/n)Y?cos{2nki/n} :1<i<n],k=1,...,n/2—1.

Note: This can easily be changed to the case whedseodd by substituting. /2
by |n/2] and taking out the last term last terrp, /2.

If a signal is close to a sine wayét) = cos(2mjt/n + ¢) for some integet <
j < n, only two of the coefficients im will be big, namely the ones associated
with the column; — 1 and27, the rest will be close to 0.

This makes the basis associated with the DFT very economical (angetie
odogram a good detector of hidden periodicitie§)onsider that if we where to
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transmit the signal, say using modems and a telephone line, it would be more “eco-
nomical” to sench instead of thef. Oncea is receivedf = Ua is reconstructed.
This is basically what data compression is all about.

Because we are dealing with equally spaced data, the coefficients of the DFT are
also related to smoothness. Notice that the columns afe increasing in fre-
guency and thus decreasing in smoothness. This means that a “srficbibtild

have only the firsh = U’f relatively different from O.

ET row
1eh FET row
00102

ZhFFT row
é ]
2k FFT row
00 01 o
g |

A close relative of the DFT is the Discrete Cosine Transform (DCT).

U, = [n_1/2:1§7j§n]
U = [(2/n)Y?cos{m(2i — )k/(2/n)}:1 <i<n]k=2,...,n

Economical bases together with “shrinkage” ideas can be used to reduce risk and
even to obtain estimates with minimax properties. We will see this through an
example
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6.9.2 Anexample

We consider body temperature data taken from a mouse every 30 minutes for a
day, so we have = 48. We believe measurements will have measurement error
and maybe environmental variability so we use a stochastic model like (6.5). We
expect body temperature to change “smoothly” through-out the day so we believe
f(z) is smooth. Under this assumptign= U’f, with U the DCT, should have

only a few coefficients that are “big”.

Because the transformation is orthogonal we have zhat U’y is N (&, o—fI).
An idea we learn from Stein (1956) is to consider linear shrunken estirgates
{wz;w € [0,1]"}. Here the productz is taken component-wise like in S-plus.

We can then choose the shrinkage coefficients that minimize the risk
E||& - &|I” = E||UE - £|.

Remember thal¢ = UU'f = f.

Relatively simple calculations show thét = £2/(£* 4 %) minimizes the risk
over all possiblew € R". The MLE obtained, withw = (1,...,1)’, minimizes
the risk only ifw = (1,...,1)" which only happens when there is no variance!

Notice thatw makes sense because it shrinks coefficients with small signal to
noise ratio. By shrinking small coefficients closer to O we reduce variance and
the bias we add is not very large, thus reducing risk. However, we don’t know
noro? so in practice we can't produse. Here is where having economical bases
are helpful: we construct estimation procedures that shrink more aggressively the
coefficients for which we have a-priori knowledge that they are “close to 0” i.e.
have small signal to noise ratio. Two examples of such procedure are:

In Figure 6.10, we show for the body temperature data the the fitted curves ob-
tained when using shrinkage coefficients of the frem= (1,1,...,1,0,...,0).

If Figure 6.11 we show the fitted curve obtained with= (1,1,...,1,0,...,0)
and using REACT. In the first plot we show the coefficients shrunken to 0 with
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Figure 6.10: Fitted curves obtained when using shrinkage coefficients of the from
w=(1,1,...,1,0,...,0), with 2m + 1 the number of 1s used.
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crosses. In the secomdplot we showwz with crosses. Notice that only the first
few coefficients of the transformation are “big”. Here are the same pictures for
data obtained for 6 consecutive weekends.

Finally in Figure 6.12 we show the two fitted curves and compare them to the
average obtained from observing many days of data.

Notice that usingw = (1,1,1,1,0,...,0) reduces to a parametric model that
assumegy is a sum of 4 cosine functions.

Any smoother with a smoothing matrithat is a projection, e.g. linear regres-
sion, splines, can be consider a special case of what we have described here.

Choosing the transformatidd is an important step in these procedure. The theory
developed for Wavelets motivate a choicdbthat is especially good at handling
functionsf that have “discontinuities”.
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Figure 6.11: Estimates obtained with harmonic model and with REACT. We also
show thez and how they have been shrunken.
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6.9.3 Wavelets

The following plot show a nuclear magnetic resonance (NMR) signal.

The signal does appear to have some added noise so we could use (6.5) to model
the process. Howevef,(z) appears to have a peak at aroune- 500 making it
not very smooth at that point.

Situations like these are where wavelets analyses is especially useful for “smooth-
ing”. Now a more appropriate word is “de-noising”.

The Discrete Wavelet Transform defines an orthogonal basis just like the DFT
and DCT. However the columns of DWT are locally smooth. This means that

the coefficients can be interpreted as local smoothness of the signal for different
locations.

Here are the columns of the Haar DWT, the simplest wavelet.
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Figure 6.12: Comparison of two fitted curves to the average obtained from ob-
serving many days of data.
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Notice that these are step function. However, there are ways (they involve com-
plicated math and no closed forms) to create “smoother” wavelets. The following
are the columns of DWT using the Daubechies wavelets

The following plot shows the coefficients of the DWT by smoothness level and by
location:

Using wavelet with shrinkage seems to perform better at de-noising than smooth-
ing splines and loess as shown by the following figure.

The last plot is what the wavelet estimate looks like for the temperature data
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