
Chapter 6

Splines and Friends: Basis
Expansion and Regularization

Through-out this section, the regression functionf will depend on a single, real-
valued predictorX ranging over some possibly infinite interval of the real line,
I ⊂ R. Therefore, the (mean) dependence ofY onX is given by

f(x) = E(Y |X = x), x ∈ I ⊂ R. (6.1)

For spline models, estimate definitions and their properties are more easily char-
acterized in the context of linear spaces.

6.1 Linear Spaces

In this chapter our approach to estimatingf involves the use of finite dimensional
linear spaces.

Remember what a linear space is? Remember definitions of dimension, linear
subspace, orthogonal projection, etc...
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Why use linear spaces?

• Makes estimation and statistical computations easy.

• Has nice geometrical interpretation.

• It actually can specify a broad range of models given we have discrete data.

Using linear spaces we can define many families of functionf ; straight lines, poly-
nomials, splines, and many other spaces (these are examples for the case wherex
is a scalar). The point is: we have many options.

Notice that in most practical situation we will have observations(Xi, Yi), i =
1, . . . , n. In some situations we are only interested in estimatingf(Xi), i =
1, . . . , n. In fact, in many situations it is all that matters from a statistical point of
view. We will write f when referring to the this vector andf̂ when referring to an
estimate. Think of how its different to knowf and knowf .

Let’s say we are interested in estimatingf . A common practice in statistics is to
assume thatf lies in somelinear space, or is well approximated by ag that lies in
somelinear space.

For example for simple linear regression we assume thatf lies in the linear space
of lines:

α + βx, (α, β)′ ∈ R2.

For linear regression in general we assume thatf lies in the linear space of linear
combinations of the covariates or rows of the design matrix. How do we write it
out?

Note: Through out this chapterf is used to denote the true regression function
andg is used to denote an arbitrary function in a particular space of functions.
It isn’t necessarily true thatf lies in this space of function. Similarly we usef
to denote the true function evaluated at the design points or observed covariates
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andg to denote an arbitrary function evaluated at the design points or observed
covariates.

Now we will see how and why it’s useful to use linear models in a more general
setting.

Technical note: A linear model of orderp for the regression function (6.1) con-
sists of ap-dimensional linear spaceG, having as a basis the function

Bj(x), j = 1, . . . , p

defined forx ∈ I. Each memberg ∈ G can be written uniquely as a linear
combination

g(x) = g(x; θ) = θ1B1(x) + . . . + θpBp(x)

for some value of the coefficient vectorθ = (θ1, . . . , θp)
′ ∈ Rp.

Notice thatθ specifies the pointg ∈ G.

How would you write this out for linear regression?

Given observations(Xi, Yi), i = 1, . . . , n the least squares estimate (LSE) off or
equivalentlyf(x) is defined byf̂(x) = g(x; θ̂), where

θ̂ = arg min
θ∈Rp

n∑
i=1

{Yi − g(Xi, θ)}2.

Define the vectorg = {g(x1), . . . , g(xn)}′. Then the distribution of the observa-
tions ofY |X = x are in the family

{N(g, σ2In);g = [g(x1), . . . , g(xn)]′, g ∈ G} (6.2)

and if we assume the errorsε are IID normal and thatf ∈ G we have that̂f =
[g(x1; θ̂), . . . , g(xn; θ̂)] is the maximum likelihood estimate. The estimandf is an
n× 1 vector. But how many parameters are we really estimating?

Equivalently we can think of the distribution is in the family

{N(Bθ, σ2); θ ∈ Rp} (6.3)
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and the maximum likelihood estimate forθ is θ̂. HereB is a matrix of basis
elements defined soon...

Here we start seeing for the first time where the namenon-parametriccomes from.
How are the approaches (6.2) and (6.3) different?

Notice that obtaininĝθ is easy because of the linear model set-up. The ordinary
least square estimate is

(B′B)θ̂ = B′Y

whereB is is then × p design matrix with elements[B]ij = Bj(Xi). When
this solution is unique we refer tog(x; θ̂) as the OLS projection ofY into G (as
learned in the first term).

6.1.1 Parametric versus non-parametric

In some cases, we have reason to believe that the functionf is actually a member
of some linear spaceG. Traditionally, inference for regression models depends
on f being representable as some combination of known predictors. Under this
assumption,f can be written as a combination of basis elements for some value
of the coefficient vectorθ. This provides aparametricspecification forf . No
matter how many observations we collect, there is no need to look outside the
fixed, finite-dimensional, linear spaceG when estimatingf .

In practical situations, however, we would rarely believe such relationship to be
exactly true. Model spacesG are understood to provide (at best) approximations
to f ; and as we collect more and more samples, we have the freedom to audition
richer and richer classes of models. In such cases, all we might be willing to say
aboutf is that it issmoothin some sense, a common assumption being thatf have
two bounded derivatives. Far from the assumption thatf belong to a fixed, finite-
dimensional linear space, we instead posit anonparametricspecification forf .
In this context, model spaces are employed mainly in our approach to inference;
first in the questions we pose about an estimate, and then in the tools we apply
to address them. For example, we are less interested in the actual values of the
coefficientθ, e.g. whether or not an element ofθ is significantly different from
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zero to the 0.05 level. Instead we concern ourselves with functional properties of
g(x; θ̂), the estimated curve or surface, e.g. whether or not a peak is real.

To ascertain the local behavior of OLS projections onto approximation spacesG,
define the pointwise, mean squared error (MSE) ofĝ(x) = g(x; θ̂) as

E{f(x)− ĝ(x)}2 = bias2{ĝ(x)}+ var{ĝ(x)}

where
bias{ĝ(x)} = f(x)− E{ĝ(x)} (6.4)

and
var{ĝ(x)} = E{ĝ(x)− E[ĝ(x)]}2

When the input values{Xi} are deterministic the expectations above are with
respect to the noisy observationYi. In practice, MSE is defined in this way even
in the random design case, so we look at expectations conditioned onX.

When we do this, standard results in regression theory can be applied to derive an
expression for the variance term

var{ĝ(x)} = σ2B(x)′(B′B)−1B(x)

whereB(x) = (B1(x), . . . , Bp(x))′, and the error variance is assumed constant.

Under the parametric specification thatf ∈ G, what is the bias?

This leads to classical t- and F-hypothesis tests and associated parametric confi-
dence intervals forθ. Suppose on the other hand, thatf is not a member ofG, but
rather can be reasonably approximated by an element inG. The bias (6.4) now
reflects the ability of functions inG to capture the essential features off .

6.2 Local Polynomials

In practical situations, a statistician is rarely blessed with simple linear relation-
ship between the predictorX and the observed outputY . That is, as a description
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of the regression functionf , the model

g(x; θ) = θ1 + θ2x, x ∈ I

typically ignores obvious features in the data. This is certainly the case for the
values of87Sr.

The Strontium data set was collected to test several hypotheses about the catas-
trophic events that occurred approximately 65 million years ago. The data con-
tains Age in million of years and the ratios described here. There is a division
between two geological time periods, the Cretaceous (from 66.4 to 144 million
years ago) and the Tertiary (spanning from about 1.6 to 66.4 million years ago).
Earth scientist believe that the boundary between these periods is distinguished
by tremendous changes in climate that accompanied a mass extension of over half
of the species inhabiting the planet at the time. Recently, the compositions of
Strontium (Sr) isotopes in sea water has been used to evaluate several hypotheses
about the cause of these extreme events. The dependent variable of the data-set is
related to the isotopic make up of Sr measured for the shells of marine organisms.
The Cretaceous-Tertiary boundary is referred to as KTB. There data shows a peak
is at this time and this is used as evidence that a meteor collided with earth.

The data presented in the Figure?? represents standardized ratio of strontium-87
isotopes (87Sr) to strontium-86 isotopes (86Sr) contained in the shells of foraminifera
fossils taken form cores collected by deep sea drilling. For each sample its time
in history is computed and the standardized ratio is computed:

87δSr =

(
87Sr/86Sr sample

87Sr/86Sr sea water
− 1

)
× 105.

Earth scientist expect that87δSr is a smooth-varying function of time and that
deviations from smoothness are mostly measurement error.

To overcome this deficiency, we might consider a more flexible polynomial model.
LetPk denote the linear space of polynomials inx of order at mostk defined as

g(x; θ) = θ1 + θ2x + . . . + θkx
k−1, x ∈ I

for the parameter vectorθ = (θ1, . . . , θk) ∈ Rk. Note that the spacePk consists
of polynomials having degree at mostk − 1.
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Figure 6.1:87δSr data.

In exceptional cases, we have reasons to believe that the regression functionf is
in fact a high-order polynomial. This parametric assumption could be based on
physical or physiological models describing how the data were generated.

For historical values of87δSr we consider polynomials simply because our scien-
tific intuition tells us thatf should be smooth.

Recall Taylor’s theorem: polynomials are good at approximating well-behaved
functions in reasonably tight neighborhoods. If all we can say aboutf is that it is
smooth in some sense, then either implicitly or explicitly we consider high-order
polynomials because of their favorable approximation properties.

If f is not inPk then our estimates will be biased by an amount that reflects the
approximation error incurred by a polynomial model.
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Computational Issue: The basis of monomials

Bj(x) = xj−1 for j = 1, . . . , k

is not well suited for numerical calculations (x8 can be VERY BIG compared to
x). While convenient for analytical manipulations (differentiation, integration),
this basis isill-conditionedfor k larger than8 or 9. Most statistical packages use
the orthogonal Chebyshev polynomials (used by the R commandpoly() ).

An alternative to polynomials is to consider the spacePPk(t) of piecewise poly-
nomials with break pointst = (t0, . . . , tm+1)

′. Given a sequencea = t0 < t1 <
. . . < tm < tm+1 = b, constructm + 1 (disjoint) intervals

Il = [tl−1, tl), 1 ≤ l ≤ m andIm+1 = [tm, tm+1],

whose union isI = [a, b]. Define the piecewise polynomials of orderk

g(x) =


g1(x) = θ1,1 + θ1,2x + . . . + θ1,kx

k−1, x ∈ I1
...

...
gm+1(x) = θm+1,1 + θm+1,2x + . . . + θm+1,kx

k−1, x ∈ Ik+1.

In homework 2, we saw or will see that piecewise polynomials are a linear space
that present an alternative to polynomials. However, it is hard to justify the breaks
in the functiong(x; θ̂).

6.3 Splines

In many situations, breakpoints in the regression function do not make sense.
Would forcing the piecewise polynomials to be continuous suffice? What about
continuous first derivatives?

We start by consider the subspaces of the piecewise polynomial space. We will
denote it withPPk(t) with t = (t1, . . . , tm)′ the break-points or interior knots.
Different break points define different spaces.
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We can put constrains on the behavior of the functionsg at the break points. (We
can construct tests to see if these constrains are suggested by the data but, will not
go into this here)

Here is a trick for forcing the constrains and keeping the linear model set-up. We
can write any functiong ∈ PPk(t) in the truncated basis power:

g(x) = θ0,1 + θ0,2x + . . . + θ0,kx
k−1 +

θ1,1(x− t1)
0
+ + θ1,2(x− t1)

1
+ + . . . + θ1,k(x− t1)

k−1
+ +

...

θm,1(x− tm)0
+ + θm,2(x− tm)1

+ + . . . + θm,k(x− tm)k−1
+

where(·)+ = max(·, 0). Written in this way the coefficientsθ1,1, . . . , θ1,k record
the jumps in the different derivative from the first piece to the second.

Notice that the constrains reduce the number of parameters. This is in agreement
with the fact that we are forcing more smoothness.

Now we can force constrains, such as continuity, by putting constrains likeθ1,1 =
0 etc...

We will concentrate on the cubic splines which are continuous and have continu-
ous first and second derivatives. In this case we can write:

g(x) = θ0,1 + θ0,2x + . . . + θ0,4x
3 + θ1,k(x− t1)

3 + . . . + θm,k(x− tm)3

How many “parameters” in this space?

Note: It is always possible to have less restrictions at knots where we believe the
behavior is “less smooth”, e.g for the Sr ratios, we may have “unsmoothness”
around KTB.

We can write this as a linear space. This setting is not computationally conve-
nient. In S-Plus there is a functionbs() that makes a basis that is convenient for
computations.

There is asymptotic theory that goes along with all this but we will not go into the
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details. We will just notice that

E[f(x)− g(x)] = O(h2k
l + 1/nl)

wherehl is the size of the interval wherex is in andnl is the number of points in
it. What does this say?

6.3.1 Splines in terms of Spaces and sub-spaces

Thep-dimensional spaces described in Section 4.1 were defined through basis
functionBj(x), j = 1, . . . , p. So in general we defined for a given rangeI ⊂ Rk

G = {g : g(x) =

p∑
j=1

θjβj(x),x ∈ I, (θ1, . . . , θp) ∈ Rp}

In the previous section we concentrated onx ∈ R.

In practice we have design pointsx1, . . . , xn and a vector of responsesy =
(y1, . . . , yn). We can think ofy as an element in then-dimensional vector space
Rn. In fact we can go a step further and define a Hilbert space with the usual inner
product definition that gives us the norm

||y|| =
n∑

i=1

y2
i

Now we can think of least squares estimation as the projection of the datay to the
sub-spaceG ⊂ Rn defined byG in the following way

G = {g ∈ Rn : g = [g(x1), . . . , g(xn)]′, g ∈ G}

Because this space is spanned by the vectors[B1(x1), . . . , Bp(xn)] the projection
of y ontoG is

B(B′B)−B′y

as learned in 751. Here[B]ij = Bj(xi).
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6.4 Natural Smoothing Splines

Natural splines add the constrain that the function must be linear after the knots
at the end points. This forces 2 more restrictions sincef ′′ must be 0 at the end
points, i.e the space hask + 4− 2 parameters because of this extra 2 constrains.

So where do we put the knots? How many do we use? There are some data-driven
procedures for doing this. Natural Smoothing Splines provide another approach.

What happens if the knots coincide with the dependent variables{Xi}. Then
there is a functiong ∈ G, the space of cubic splines with knots at(x1, . . . , xn),
with g(xi) = yi, i, . . . , n, i.e. we haven’t smoothed at all.

Consider the following problem: among all functionsg with two continuous first
two derivatives, find one that minimizes the penalized residual sum of squares

n∑
i=1

{yi − g(xi)}2 + λ

∫ b

a

{g′′(t)}2 dt

whereλ is a fixed constant, anda ≤ x1 ≤ . . . ≤ xn ≤ b. It can be shown (Reinsch
1967) that the solution to this problem is a natural cubic spline with knots at the
values ofxi (so there aren − 2 interior knots andn − 1 intervals). Herea andb
are arbitrary as long as they contain the data.

It seems that this procedure is over-parameterized since a natural cubic spline as
this one will haven degrees of freedom. However we will see that the penalty
makes this go down.

6.4.1 Computational Aspects

We use the fact that the solution is a natural cubic spline and write the possible
answers as

g(x) =
n∑

j=1

θjBj(x)
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whereθj are the coefficients andBj(x) are the basis functions. Notice that if these
were cubic splines the functions lie in an + 2 dimensional space, but the natural
splines are ann dimensional subspace.

Let B be then× n matrix defined by

Bij = Bj(xi)

and a penalty matrixΩ by

Ωij =

∫ b

a

B′′
i (t)B′′

j (t) dt

now we can write the penalized criterion as

(y −Bθ)′(y −Bθ) + λθ′Ωθ

It seems there are no boundary derivatives constraints but they are implicitly im-
posed by the penalty term.

Setting derivatives with respect toθ equal to 0 gives the estimating equation:

(B′B + λΩ)θ = B′y.

Theθ̂ that solves this equation will give us the estimateĝ = Bθ̂.

Is this a linear smoother?

Write:
ĝ = Bθ = B(B′B + λΩ)−1B′y = (I + λK)−1y

whereK = B− 1′ΩB−1. Notice we can write the criterion as

(y − g)′(y − g) + λg′Kg

If we look at the “kernel” of this linear smoother we will see that it is similar to
the other smoothers presented in this class.
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Figure 6.2: Smoothing spline fitted using different penalties.

6.5 Linear Smoothers: Influence, Variance, and De-
grees of Freedom

All the smoothers we have discussed in this class are linear smoothers. The esti-
mates of the regression function can be written as

f̂ = Sy.

For some of the smoothers we have defined we can define a weight sequence for
anyx and define

f̂(x) =
n∑

i=1

Wi(x)yi.
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How can we characterize the amount of smoothing being performed? The smooth-
ing parameters provide a characterization, but it is not ideal because it does not
permit us to compare between different smoothers and for smoothers like loess it
does not take into account the shape of the weight function nor the degree of the
polynomial being fit.

We now use the connections between smoothing and multivariate linear regression
(they are both linear smoothers) to characterize pointwise criteria that characterize
the amount of smoothing at a single point and global criteria that characterize the
global amount of smoothing.

We will define variance reduction, influence, and degrees of freedom for linear
smoothers.

The variance of the interpolation estimate is var[y1] = σ2. The variance of our
smooth estimate is

var[f̂(x)] = σ2

n∑
i=1

W 2
i (x)

so we define
∑n

i=1 W 2
i (x) as the variance reduction. Under mild conditions one

can show that this is less than 1.

Because
n∑

i=1

var[f̂(xi)] = tr(SS′)σ2,

the total variance reduction from
∑n

i=1 var[yi] is tr(SS′)/n.

In linear regression the variance reduction is related to the degrees of freedom, or
number of parameters. For linear regression,

∑n
i=1 var[f̂(xi)] = pσ2. One widely

used definition of degrees of freedoms for smoothers isdf = tr(SS′).

The sensitivity of the fitted value, saŷf(xi), to the data pointyi can be measured
by Wi(xi)/

∑n
i=1 Wn(xi) or Sii (remember the denominator is usually 1).

The total influence or sensitivity is
∑n

i=1 Wi(xi) = tr(S).
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Figure 6.3: Degrees of freedom for loess and smoothing splines as functions of
the smoothing parameter

In linear regression tr(S) = p is also equivalent to the degrees of freedom. This is
also used as a definition of degrees of freedom.

Finally we notice that

E[(y − f̂)′(y − f̂)] = {n− 2tr(S) + tr(SS′)}σ2

In the linear regression case this is(n − p)σ2. We therefore denoten − 2tr(S) +
tr(SS′) as the residual degrees of freedom. A third definition of degrees of free-
dom of a smoother is then2tr(S)− tr(SS′).

Under relatively mild assumptions we can show that

1 ≤ tr(SS′) ≤ tr(S) ≤ 2tr(S)− tr(SS′) ≤ n
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Figure 6.4: Comparison of three definition of degrees of freedom

6.6 Smoothing and Penalized Least Squares

In Section 4.4.1 we saw that the smoothing spline solution to a penalized least
squares is a linear smoother.

Using the notation of Section 4.4.1, we can write the penalized criterion as

(y −Bθ)′(y −Bθ) + λθ′Ωθ

Setting derivatives with respect toθ equal to 0 gives the estimating equation:

(B′B + λΩ)θ = B′y

theθ̂ that solves this equation will give us the estimateĝ = Bθ̂.

Write:
ĝ = Bθ = B(B′B + λΩ)−1B′y = (I + λK)−1y

whereK = B′−ΩB−.
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Notice we can write the penalized criterion as

(y − g)′(y − g) + λg′Kg

If we plot the rows of this linear smoother we will see that it is like a kernel
smoother.

Figure 6.5: Kernels of a smoothing spline.

Notice that for any linear smoother with a symmetric and nonnegative definite
S, i.e. thereS− exists, then we can argue in reverse:f̂ = Sy is the value that
minimizes the penalized least squares criteria of the form

(y − f)′(y − f) + f ′(S− − I)f .

Some of the smoothers presented in this class are not symmetrical but are close.
In fact for many of them one can show that asymptotically they are symmetric.
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6.7 Eigen analysis and spectral smoothing

For a smoother with symmetric smoother matrixS, the eigendecomposition ofS
can be used to describe its behavior.

Let {u1, . . . ,un} be an orthonormal basis of eigenvectors ofS with eigenvalues
θ1 ≥ θ2 . . . ≥ θn:

Suj = θjuj, j = 1, . . . , n

or

S = UDU′ =
n∑

j=1

θjuju
′
j.

HereD is a diagonal matrix with the eigenvalues as the entries.

For simple linear regression we only have two nonzero eigenvalues. Their eigen-
vectors are an orthonormal basis for lines.

Figure 6.6: Eigenvalues and eigenvectors of the hat matrix for linear regression.

The cubic spline is an important example of a symmetric smoother, and its eigen-
vectors resemble polynomials of increasing degree.
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It is easy to show that the first two eigenvalues are unity, with eigenvectors which
correspond to linear functions of the predictor on which the smoother is based.
One can also show that the other eigenvalues are all strictly between zero and one.

The action of the smoother is now transparent: if presented with a responsey =
uj, it shrinks it by an amountθj as above.

Figure 6.7: Eigenvalues and eigenvectors 1 through 10 ofS for a smoothing
spline.

Cubic smoothing splines, regression splines, linear regression, polynomial regres-
sion are all symmetric smoothers. However, loess and other “nearest neighbor”
smoothers are not.

Figure 6.8: Eigen vectors 11 through 30 for a smoothing spline forn = 30.

If S is not symmetric we have complex eigenvalues and the above decomposition
is not as easy to interpret. However we can use the singular value decomposition

S = UDV′
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On can think of smoothing as performing a basis transformationz = V′y, shrink-
ing with ẑ = Dz the components that are related to “unsmooth components” and
then transforming back to the basisŷ = Uẑ we started out with... sort of.

In signal processing signals are “filtered” using linear transformations. The trans-
fer function describes how the power of certain frequency components are re-
duced. A low-pass filter will reduce the power of the higher frequency compo-
nents. We can view the eigen values of our smoother matrices as transfer func-
tions.

Notice that the smoothing spline can be considered a low-pass filter. If we look at
the eigenvectors of the smoothing spline we notice they are similar to sinusoidal
components of increasing frequency. Figure 6.7 shows the “transfer function”
defined by the smoothing splines.

The change of basis idea described above has been explored by Donoho and John-
ston 1994, 1995) and Beran (2000). In the following section we give a short in-
troduction to these ideas.

6.8 Smoothing and Penalized Least Squares

In Section 4.4.1 we saw that the smoothing spline solution to a penalized least
squares is a linear smoother.

Using the notation of Section 4.4.1, we can write the penalized criterion as

(y −Bθ)′(y −Bθ) + λθ′Ωθ

Setting derivatives with respect toθ equal to 0 gives the estimating equation:

(B′B + λΩ)θ = B′y

theθ̂ that solves this equation will give us the estimateĝ = Bθ̂.
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Write:
ĝ = Bθ = B(B′B + λΩ)−1B′y = (I + λK)−1y

whereK = B′−ΩB−.

Notice we can write the penalized criterion as

(y − g)′(y − g) + λg′Kg

If we plot the rows of this linear smoother we will see that it is like a kernel
smoother.

Figure 6.9: Kernels of a smoothing spline.

Notice that for any linear smoother with a symmetric and nonnegative definite
S, i.e. thereS− exists, then we can argue in reverse:f̂ = Sy is the value that
minimizes the penalized least squares criteria of the form

(y − f)′(y − f) + f ′(S− − I)f .

Some of the smoothers presented in this class are not symmetrical but are close.
In fact for many of them one can show that asymptotically they are symmetric.
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6.9 Economical Bases: Wavelets and REACT esti-
mators

If one consider the “equally spaced” Gaussian regression:

yi = f(ti) + εi, i = 1, . . . , n (6.5)

ti = (i− 1)/n and theεis IID N(0, σ2), many things simplify.

We can write this in matrix notation: the response vectory is Nn(f , σ2I) with
f = {f(t1), . . . , f(tn)}′.

As usual we want to find an estimation procedure that minimizes risk:

n−1E||f̂ − f ||2 = n−1E

[
m∑

i=1

{f̂(ti)− f(ti)}2

]
.

We have seen that the MLE iŝfi = yi which intuitively does not seem very useful.
There is actually an important result in statistics that makes this more precise.

Stein (1956) noticed that the MLE is inadmissible: There is an estimation proce-
dure producing estimates with smaller risk that the MLE for anyf .

To develop a non-trivial theory MLE won’t do. A popular procedure is to specify
some fixed classF of functions wheref lies and seek an estimator̂f attaining
minimax risk

inf
f̂

sup
f∈F

R(f̂ , f)

By restrictingf ∈ F we make assumptions on the smoothness off . For exam-
ple, theL2 Sobolev family makes an assumption on the numberm of continuous
derivatives and a limits the size of themth derivative.
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6.9.1 Useful transformations

Rememberf ∈ Rn and that there are many orthogonal bases for this space. Any
orthogonal basis can be represented with an orthogonal transformU that gives
us the coefficients for anyf by multiplying ξ = U′f . This means that we can
represent any vector asf = Uξ.

Remember that the eigen analysis of smoothing splines we can view the eigenvec-
tors a such a transformation.

If we are smart, we can choose a transformationU such thatξ has some useful
interpretation. Furthermore, certain transformation may be more “economical” as
we will see.

For equally spaced dataa widely used transformation is the Discrete Fourier
Transform (DFT). Fourier’s theorem says that anyf ∈ Rn can be re-written as

fi = a0 +

n/2−1∑
k=1

{
ak cos

(
2πk

n
i

)
+ bk sin

(
2πk

n
i

)}
+ an/2 cos(πi)

for i = 1, . . . , n. This defines a basis and the coefficientsa = (a0, a1, b1, . . . , . . . , an/2)
′

can be obtained viaa = U′f with U having columns of sines and cosines:

U1 = [n−1/2 : 1 ≤ i ≤ n]

U2k = [(2/n)1/2 sin{2πki/n} : 1 ≤ i ≤ n], k = 1, . . . , n/2

U2k+1 = [(2/n)1/2 cos{2πki/n} : 1 ≤ i ≤ n], k = 1, . . . , n/2− 1.

Note: This can easily be changed to the case wheren is odd by substitutingn/2
by bn/2c and taking out the last term last termadn/2e.

If a signal is close to a sine wavef(t) = cos(2πjt/n + φ) for some integer1 ≤
j ≤ n, only two of the coefficients ina will be big, namely the ones associated
with the columns2j − 1 and2j, the rest will be close to 0.

This makes the basis associated with the DFT very economical (and theperi-
odogram a good detector of hidden periodicities). Consider that if we where to
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transmit the signal, say using modems and a telephone line, it would be more “eco-
nomical” to senda instead of thef . Oncea is received,f = Ua is reconstructed.
This is basically what data compression is all about.

Because we are dealing with equally spaced data, the coefficients of the DFT are
also related to smoothness. Notice that the columns ofU are increasing in fre-
quency and thus decreasing in smoothness. This means that a “smooth”f should
have only the firsta = U′f relatively different from 0.

A close relative of the DFT is the Discrete Cosine Transform (DCT).

U1 = [n−1/2 : 1 ≤ i ≤ n]

Uk = [(2/n)1/2 cos{π(2i− 1)k/(2/n)} : 1 ≤ i ≤ n], k = 2, . . . , n

Economical bases together with “shrinkage” ideas can be used to reduce risk and
even to obtain estimates with minimax properties. We will see this through an
example
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6.9.2 An example

We consider body temperature data taken from a mouse every 30 minutes for a
day, so we haven = 48. We believe measurements will have measurement error
and maybe environmental variability so we use a stochastic model like (6.5). We
expect body temperature to change “smoothly” through-out the day so we believe
f(x) is smooth. Under this assumptionξ = U′f , with U the DCT, should have
only a few coefficients that are “big”.

Because the transformation is orthogonal we have thatz = U′y is N(ξ, σ2I).
An idea we learn from Stein (1956) is to consider linear shrunken estimatesξ̂ =
{wz;w ∈ [0, 1]n}. Here the productwz is taken component-wise like in S-plus.

We can then choose the shrinkage coefficients that minimize the risk

E||ξ̂ − ξ||2 = E||Uξ̂ − f ||2.

Remember thatUξ = UU′f = f .

Relatively simple calculations show thatw̃ = ξ2/(ξ2 + σ2) minimizes the risk
over all possiblew ∈ Rn. The MLE obtained, withw = (1, . . . , 1)′, minimizes
the risk only ifw̃ = (1, . . . , 1)′ which only happens when there is no variance!

Notice thatw̃ makes sense because it shrinks coefficients with small signal to
noise ratio. By shrinking small coefficients closer to 0 we reduce variance and
the bias we add is not very large, thus reducing risk. However, we don’t knowξ
norσ2 so in practice we can’t producẽw. Here is where having economical bases
are helpful: we construct estimation procedures that shrink more aggressively the
coefficients for which we have a-priori knowledge that they are “close to 0” i.e.
have small signal to noise ratio. Two examples of such procedure are:

In Figure 6.10, we show for the body temperature data the the fitted curves ob-
tained when using shrinkage coefficients of the fromw = (1, 1, . . . , 1, 0, . . . , 0).

If Figure 6.11 we show the fitted curve obtained withw = (1, 1, . . . , 1, 0, . . . , 0)
and using REACT. In the first plot we show the coefficients shrunken to 0 with



106CHAPTER 6. SPLINES AND FRIENDS: BASIS EXPANSION AND REGULARIZATION

Figure 6.10: Fitted curves obtained when using shrinkage coefficients of the from
w = (1, 1, . . . , 1, 0, . . . , 0), with 2m + 1 the number of 1s used.

crosses. In the secondz plot we showwz with crosses. Notice that only the first
few coefficients of the transformation are “big”. Here are the same pictures for
data obtained for 6 consecutive weekends.

Finally in Figure 6.12 we show the two fitted curves and compare them to the
average obtained from observing many days of data.

Notice that usingw = (1, 1, 1, 1, 0, . . . , 0) reduces to a parametric model that
assumesf is a sum of 4 cosine functions.

Any smoother with a smoothing matrixS that is a projection, e.g. linear regres-
sion, splines, can be consider a special case of what we have described here.

Choosing the transformationU is an important step in these procedure. The theory
developed for Wavelets motivate a choice ofU that is especially good at handling
functionsf that have “discontinuities”.
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Figure 6.11: Estimates obtained with harmonic model and with REACT. We also
show thez and how they have been shrunken.

6.9.3 Wavelets

The following plot show a nuclear magnetic resonance (NMR) signal.

The signal does appear to have some added noise so we could use (6.5) to model
the process. However,f(x) appears to have a peak at aroundx = 500 making it
not very smooth at that point.

Situations like these are where wavelets analyses is especially useful for “smooth-
ing”. Now a more appropriate word is “de-noising”.

The Discrete Wavelet Transform defines an orthogonal basis just like the DFT
and DCT. However the columns of DWT are locally smooth. This means that
the coefficients can be interpreted as local smoothness of the signal for different
locations.

Here are the columns of the Haar DWT, the simplest wavelet.
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Figure 6.12: Comparison of two fitted curves to the average obtained from ob-
serving many days of data.

Notice that these are step function. However, there are ways (they involve com-
plicated math and no closed forms) to create “smoother” wavelets. The following
are the columns of DWT using the Daubechies wavelets

The following plot shows the coefficients of the DWT by smoothness level and by
location:

Using wavelet with shrinkage seems to perform better at de-noising than smooth-
ing splines and loess as shown by the following figure.

The last plot is what the wavelet estimate looks like for the temperature data
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