
Chapter 7

Kernel Methods

One of the reasons why the running mean and nearest neighbor smoothers are
wiggly is because when we move fromxi to xi+1 two points are usually changed
in the group we average. If the new two points are very different thens(xi) and
s(xi+1) may be quite different. One way to try and fix this is by making the
transition smoother. That’s the idea behind kernel smoothers.

7.1 Kernel Smoothers

Generally speaking a kernel smoother defines a set of weights{Wi(x)}ni=1 for
eachx and defines

s(x) =
n∑
i=1

Wi(x)yi.

Most smoothers can be considered to be kernel smoothers in this very general
definition. However, what is called a kernel smoother in practice has a simple
approach to represent the weight sequence{Wi(x)}ni=1: by describing the shape
of the weight functionWi(x) via a density function with a scale parameter that
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adjusts the size and the form of the weights nearx. It is common to refer to this
shape function as akernelK. The kernel is a continuous, bounded, and symmetric
real functionK which integrates to one:

∫
K(u) du = 1.

For a given scale parameterh, the weight sequence is then defined by

Whi(x) =
K
(
x−xi
h

)∑n
i=1 K

(
x−xi
h

)
Notice:

∑n
i=1 Whi(xi) = 1

The kernel smoother is then defined for anyx as before by

s(x) =
n∑
i=1

Whi(x)Yi.

Notice: if we considerx andy to be observations of random variablesX andY
then one can get an intuition for why this would work because

E[Y |X] =

∫
yfX,Y (x, y) dy/fX(x),

with fX(x) the marginal distribution ofX andfX,Y (x, y) the joint distribution of
(X, Y ), and

s(x) =
n−1

∑n
i=1 K

(
x−xi
h

)
yi

n−1
∑n

i=1 K
(
x−xi
h

)
Because we think points that are close together are similar, a kernel smoother
usually defines weights that decrease in a smooth fashion as one moves away
from the target point.
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Running mean smoothers are kernel smoothers that use a “box” kernel. A natural
candidate forK is the standard Gaussian density. (This is very inconvenient com-
putationally because its never 0). This smooth is shown in Figure 7.1 forh = 1
year.

Figure 7.1: CD4 cell count since seroconversion for HIV infected men.

In Figure 7.2 we can see the weight sequence for the box and Gaussian kernels for
three values ofx.
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Figure 7.2: CD4 cell count since seroconversion for HIV infected men.

7.1.1 Technical Note: An Asymptotic result

For the asymptotic theory presneted here we will assume the stochastic design
model with a one-dimensional covariate.

For the first time in this Chapter we will set down a specific stochastic model.
Assume we haven IID observations of the random variables(X, Y ) and that

Yi = f(Xi) + εi, i = 1, . . . , n (7.1)

whereX has marginal distributionfX(x) and theεi IID errors independent of the
X. A common extra assumption is that the errors are normally distributed. We
are now going to letn go to infinity... What does that mean?

For eachn we define an estimate forf(x) using the kernel smoother with scale
parameterhn.

Theorem 2 Under the following assumptions
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1.
∫
|K(u)| du <∞

2. lim|u|→∞ uK(u) = 0

3. E(Y 2) ≤ ∞

4. n→∞, hn → 0, nhn →∞

Then, at every point of continuity off(x) andfX(x) we have∑n
i=1 K

(
x−xi
h

)
yi∑n

i=1 K
(
x−xi
h

) → f(x) in probability.

Proof: Homework. Hint: Start by proving the fixed design model.

7.2 Local Regression

Local regression is used to model a relation between a predictor variable and re-
sponse variable. To keep things simple we will consider the fixed design model.
We assume a model of the form

Yi = f(xi) + εi

wheref(x) is an unknown function andεi is an error term, representing random
errors in the observations or variability from sources not included in thexi.

We assume the errorsεi are IID with mean 0 and finite variance var(εi) = σ2.

We make no global assumptions about the functionf but assume that locally it
can be well approximated with a member of a simple class of parametric function,
e.g. a constant or straight line. Taylor’s theorem says that any continuous function
can be approximated with polynomial.
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7.2.1 Techinical note: Taylor’s theorem

We are going to show three forms of Taylor’s theorem.

• This is the original. Supposef is a real function on[a, b], f (K−1) is contin-
uous on[a, b], f (K)(t) is bounded fort ∈ (a, b) then for any distinct points
x0 < x1 in [a, b] there exist a pointx betweenx0 < x < x1 such that

f(x1) = f(x0) +
K−1∑
k=1

f (k)(x0)

k!
(x1 − x0)k +

f (K)(x)

K!
(x1 − x0)K .

Notice: if we view f(x0) +
∑K−1

k=1
f (k)(x0)

k!
(x1 − x0)k as function ofx1, it’s

a polynomial in the family of polynomials

PK+1 = {f(x) = a0 + a1x+ . . .+ aKx
K , (a0, . . . , aK)′ ∈ RK+1}.

• Statistician sometimes use what is called Young’s form of Taylor’s Theo-
rem:

Let f be such thatf (K)(x0) is bounded forx0 then

f(x) = f(x0) +
K∑
k=1

f (k)(x0)

k!
(x− x0)k + o(|x− x0|K), as|x− x0| → 0.

Notice: again the first two term of the right hand side is inPK+1.

• In some of the asymptotic theory presented in this class we are going to use
another refinement of Taylor’s theorem called Jackson’s Inequality:

Supposef is a real function on[a, b] with K is continuous derivatives then

min
g∈Pk

sup
x∈[a,b]

|g(x)− f(x)| ≤ C

(
b− a

2k

)K
with Pk the linear space of polynomials of degreek.
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7.2.2 Fitting local polynomials

We will now define the recipe to obtain a loess smooth for a target covariatex0.

The first step in loess is to define a weight function (similar to the kernelK we
defined for kernel smoothers). For computational and theoretical purposes we
will define this weight function so that only values within asmoothing window
[x0 + h(x0), x0 − h(x0)] will be considered in the estimate off(x0).

Notice: In local regressionh(x0) is called the span or bandwidth. It is like the
kernel smoother scale parameterh. As will be seen a bit later, in local regression,
the span may depend on the target covariatex0.

This is easily achieved by considering weight functions that are0 outside of
[−1, 1]. For example Tukey’s tri-weight function

W (u) =

{
(1− |u|3)3 |u| ≤ 1

0 |u| > 1.

The weight sequence is then easily defined by

wi(x0) = W

(
xi − x0

h(x)

)

We define a window by a procedure similar to thek nearest points. We want to
includeα× 100% of the data.

Within the smoothing window,f(x) is approximated by a polynomial. For exam-
ple, a quadratic approximation

f(x) ≈ β0 + β1(x− x0) +
1

2
β2(x− x0)2 for x ∈ [x0 − h(x0), x0 + h(x0)].

For continuous function, Taylor’s theorem tells us something about how good an
approximation this is.
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To obtain the local regression estimatef̂(x0) we simply find theβ = (β0, β1, β2)′

that minimizes

β̂ = arg min
β∈R3

n∑
i=1

wi(x0)[Yi − {β0 + β1(xi − x0) +
1

2
β2(xi − x0)}]2

and definef̂(x0) = β̂0.

Notice that the Kernel smoother is a special case of local regression. Proving this
is a Homework problem.

7.2.3 Defining the span

In practice, it is quite common to have thexi irregularly spaced. If we have a fixed
spanh then one may have local estimates based on many points and others is very
few. For this reason we may want to consider a nearest neighbor strategy to define
a span for each target covariatex0.

Define∆i(x0) = |x0 − xi|, let ∆(i)(x0) be the ordered values of such distances.
One of the arguments in the local regression functionloess() (available in the
modreg library) is thespan . A span ofα means that for each local fit we want to
useα× 100% of the data.

Let q be equal toαn truncated to an integer. Then we define the spanh(x0) =
∆(q)(x0). Asα increases the estimate becomes smoother.

In Figures 7.3 – 7.5 we see loess smooths for the CD4 cell count data using spans
of 0.05, 0.25, 0.75, and 0.95. The smooth presented in the Figures are fitting a
constant, line, and parabola respectively.
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Figure 7.3: CD4 cell count since seroconversion for HIV infected men.
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Figure 7.4: CD4 cell count since seroconversion for HIV infected men.
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Figure 7.5: CD4 cell count since seroconversion for HIV infected men.
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7.2.4 Symmetric errors and Robust fitting

If the errors have a symmetric distribution (with long tails), or if there appears to
be outliers we can use robust loess.

We begin with the estimate described abovef̂(x). The residuals

ε̂i = yi − f̂(xi)

are computed.

Let

B(u; b) =

{
{1− (u/b)2}2 |u| < b

0 |u| ≥ b

be the bisquare weight function. Letm = median(|ε̂i|). The robust weights are

ri = B(ε̂i; 6m)

The local regression is repeated but with new weightsriwi(x). The robust estimate
is the result of repeating the procedure several times.

If we believe the variance var(εi) = aiσ
2 we could also use this double-weight

procedure withri = 1/ai.

7.2.5 Example

Radiolabeling based gene expression measurements are useful for cancer research
because they can be carried out using small amounts of biological materials. Sta-
tistical issues are different from fluorescence expression data, because radiolabel-
ing gives absolute intensities that reflect gene expression and there is no internal
control.

The data-set described here was obtained to identify genes that may be associated
with lung cancer. Lung cancer tissue was obtained from various subjects. Normal
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tissues from the same type of cells was obtained from those same subjects. From
each of these tissues 2 samples were prepared using 2 different isotopic batches.
Each of these 4 samples were hybridized with a filter spotted with cDNA from
many genes in a48× 24 grid. We refer to these spotted filters as arrays. Each of
these arrays were scanned to produce an image file which was then analyzed with
specialized software that produced an intensity level for each grid point orspoton
the array.

Not all the values read from the arrays are associated with genes. There were 207
spots where no cDNA was spotted. They were left empty. Because there isnon-
specificbinding between the samples and the filters, positive values are obtained
from these empty spots. The intensities read from these empty spots provide direct
evidence about measurement error associated with the system. Spots associated
with genes that are not expressed will also have intensities due to non-specific
binding.

Can we rank genes by differential expression between cancer and normal tissues
in each subject?

If we denote withx andy the log intensities of each spot we could say a gene is
differentially expressed ify − x is significantly bigger than 0 for the spot related
to that gene. One problem with this is that there is a filter effect, soy can be
systematically smaller thanx.

A common procedure in microarray data analysis is to simply normalize the filters
by subtracting the mean of each filter from each value, i.e. considery

(normalized)
i =

yi−ȳ and similarly for thexs. The danger with doing this is that many of the genes
spotted on the arrays are usually selected because researchers consider them likely
to be over-expressed. This means that the mean of theys should be larger than the
xs and this difference in mean is confounded with the difference in filter effect. By
subtracting means we would be subtracting out some of the differential expression
between cancer and normal tissues.

In Figure 7.6 we plot the ratio of the intensities vs. the product of the intensities in
a log scale, i.e.y− x vs. x+ y, for the two replicates of subject 1. Notice that the
filter effectseems to change with the total intensity of a particular spot. For this



7.2. LOCAL REGRESSION 127

reason using medians or trimmed means to remove the filter effect is not a good
solution. If we modelx andy as random variables then we have that the expected
filter effect depends on the total intensity, i.e. E(y − x|x + y) is not constant.
This arises because specific binding and non-specific binding are two different
natural processes. Because we have no way of knowing which points represent
non-specific binding and which represent specific binding we cannot normalize
by just estimating two means. Rather, we estimate E(y − x|y + x) using loess.
It is critical to use a robust loess, so that large differences do not affect the fit too
much. Notice in Figure 7.6 the difference in the robust and non-robust estimates.

Figure 7.6: Total intensity plotted against ratio with a loess prediction using Gaus-
sian and symmetric kernel.

7.2.6 Multivariate Local Regression

Because Taylor’s theorems also applies to multidimensional functions it is rela-
tively straight forward to extend local regression to cases where we have more
than one covariate. For example if we have a regression model for two covariates

Yi = f(xi1, xi2) + εi
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with f(x, y) unknown. Around a target pointx0 = (x01, x02) a local quadratic
approximation is now

f(x1, x2) ≈ β0+β1(x1−x01)+β2(x2−x02)+β3(x1−x01)(x2−x02)+
1

2
β4(x1−x01)2+

1

2
β5(x2−x02)2

Once we define a distance, between a pointx andx0, and a spanh we can define
define waits as in the previous sections:

wi(x0) = W

(
||xi,x0||

h

)
.

It makes sense to re-scalex1 andx2 so we smooth the same way in both directions.
This can be done through the distance function, for example by defining a distance
for the spaceRd with

||x||2 =
d∑
j=1

(xj/vj)
2

with vj a scale for dimensionj. A natural choice for thesevj are the standard
deviation of the covariates.

Notice: We have not talked about k-nearest neighbors. As we will see in Chapter
VII the curse of dimensionalitywill make this hard.

7.2.7 Example

We look at part of the data obtained from a study by Socket et. al. (1987) on
the factors affecting patterns of insulin-dependent diabetes mellitus in children.
The objective was to investigate the dependence of the level of serum C-peptide
on various other factors in order to understand the patterns of residual insulin
secretion. The response measurement is the logarithm of C-peptide concentration
(pmol/ml) at diagnosis, and the predictors are age and base deficit, a measure of
acidity. In Figure 7.7 we show a loess two dimensional smooth. Notice that the
effect of age is clearly non-linear.
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Figure 7.7: Loess fit for predicting C.Peptide from Base.deficit and Age.
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7.3 Local Likelihood

Suppose we have independent observation s{(x1, y1), . . . , (xn, yn)} that are the
realization of a response random variableY given aP × 1 covariate vectorx
which we consider to be known. Given the covariatex, the response variableY
follows a parametric distributionY ∼ g(y; θ) whereθ is a function ofx. We are
interested in estimatingθ using the observed data.

The log-likelihood function can be written as

l(θ1, . . . , θn) =
n∑
i=1

log g(yi; θi) (7.2)

whereθi = s(xi). A standard modeling procedure would assume a parsimonious
form for the θis, sayθi = x′iβ, β a P × 1 parameter vector. In this case the
log-likelihood l(θ1, . . . , θn) would be a function of the parameterβ that could
be estimated by maximum likelihood, that is by finding theβ̂ that maximizes
l(θ1, . . . , θn).

The local likelihood approach is based on a more general assumption, namely
that s(x) is a “smooth” function of the covariatex. Without more restrictive
assumptions, the maximum likelihood estimate ofθ = {s(x1), . . . , s(xn)} is no
longer useful because of over-fitting. Notice for example that for the case of
regression with all thexis distinct the maximum likelihood estimate would simply
reproduce the data.

Suppose we are interested in estimating onlyθ0 = θ(x0) for a fixed covariate
valuex0. The local likelihood estimation approach is to assume that there is some
neighborhoodN0 of covariates that are “close” enough tox0 such that the data
{(xi, yi); xi ∈ N0} contain information aboutθ0 through somelink function η of
the form

θ0 = s(x0) ≡ η(x0,β) and (7.3)

θi = s(xi) ≈ η(xi,β), for xi ∈ N0. (7.4)

Notice that we are abusing notation here since we are considering a differentβ
for everyx0. Throughout the work we will be acting as ifθ0 is the only parameter
of interest and therefore not indexing variables that depend on the choice ofx0.
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The local likelihood estimate ofθ0 is obtained by assuming that, for data inN0,
the true distribution of the data,g(yi; θi) is approximated by

f(yi; xi,β) ≡ g(yi; η(xi,β)), (7.5)

finding theβ̂ maximizes the local log-likelihood equation

l0(β) =
∑

xi∈N0

wi log f(yi;β), (7.6)

and then using Equation (7.3) to obtain the local likelihood estimateθ̂0. Herewi
is a weight coefficient related to the “distance” betweenx0 andxi. In order to
obtain a useful estimate ofθ0, we needβ to be of “small” enough dimension so
that we fit a parsimonious model withinN0.

Hastie and Tibshirani (1987) discuss the case where the covariatex is a real valued
scalar and the link function is linear

η(xi,β) = β0 + xiβ1

Notice that in this case, the assumption being made is that the parameter function
s(xi) is approximately linear within “small” neighborhoods ofx0, i.e. locally
linear.

Staniswalis (1989) presents a similar approach. In this case the covariatex is
allowed to be a vector, and the link function is a constant

η(xi, β) = β

The assumption being made here is that the parameter functions(xi) is locally
constant.

If we assumes a density function of the form

log g(yi; θi) = C + (yi − θi)2/φ (7.7)

whereK andφ are constants that do not depend on theθis, local regression may
be considered a special case of local likelihood estimation.
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Notice that in this case the local likelihood estimate is going to be equivalent to
the estimate obtained by minimizing a sum of squares equation. The approach
in Cleveland (1979) and Cleveland and Devlin (1988) is to consider a real valued
covariate and the polynomial link function

η(xi,β) =
d∑
j=0

xjiβj.

In general, the approach of local likelihood estimation, including the three above-
mentioned examples, is to assume that for “small” neighborhoods aroundx0, the
distribution of the data is approximated by a distribution that depends on a con-
stant parameterβ(x0), i.e. we have locally parsimonious models. This allows us
to use the usual estimation technique of maximum likelihood. However, in the
local version of maximum likelihood we often have an a priori belief that points
“closer” to x0 contain more information aboutθ0, which suggest a weighted ap-
proach.

The asymptotic theory presented in, for example, Staniswalis (1989) and Loader
(1986)is developed under the assumption that as the size (or radius) of some neigh-
borhood of the covariate of interestx0 tends to 0, the difference between the true
and approximating distributions within such neighborhood becomes negligible.
Furthermore, we assume that despite the fact that the neighborhoods become arbi-
trarily small, the number of data points in the neighborhood somehow tends to∞.
The idea is that, asymptotically, the behavior of the data within a given neighbor-
hood, is like the one assumed in classical asymptotic theory for non-IID data: The
small window size assure that the difference between the true and approximating
models is negligible and the large number of independent observations is avail-
able to estimate a parameter of fixed dimension that completely specifies the joint
distribution. This concept motivates the approach taken in the following sections
to derive a model selection criteria.
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7.4 Kernel Density Estimation

Suppose we have a random samplex1, . . . , xn drawn from a probability density
fX(x) and we wish to estimatefX at a pointx0.

A natural local estimate is the histogram:

f̂X(x0) =
#xi ∈ N (x0)

Nλ

whereN (x0 is a small metric neighborhood aroundx0 of width λ.

This estimate is bumpy and a kernel version usually works better:

f̂X(x0) =
1

Nλ

∑
i=1

Kλ(x0, x1)

Notice this is just like the scatter-smoother expect ally = 1. This intuitive because
we are counting occurences ofxs.

7.4.1 Kernel Density Classification

If we are able to estimate the densities of the covariates within each class, then we
can try to estimate Bayes rule directly:

Pr(G = j|X = x0) =
π̂j f̂j(x0)∑J
k=1 π̂kf̂k(x0)

The problem with this classifier is that if thex are multivariate the density estima-
tion becomes unstable. Furthemore, we do not really need to know the densities
to form a classifier. Knowing the likelihood ratios between all classes is enough.
TheNaive Bayes Classifieruses this fact to form a succesful classifier.
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7.4.2 Naive Bayes Classifier

This classifier assumes, not only that the outcomes are independent but, that the
covariates are independent. This implies that

fj(X) =

p∏
k=1

fjk(Xk)

This implies that we can write

log
Pr(G = l|X)

Pr(G = J |X)
= log

πlfl(X)

πjfj(X)

= log
πl
∏p

k=1 flk(X)

πj
∏p

k=1 fjk(X)

= log
πl
πj

+ log

∏p
k=1 flk(X)∏p
k=1 fjk(X)

≡ αl +

p∑
k=1

glk(Xk)

This has the form of a generalized additive model (which we will discuss latter)
and can be fitted stabely.

7.4.3 Mixture Models for Density Estimators

The mixture model is a useful tool for density estimators and can be viewed as a
kind of kernel mehtod. The Gaussian mixture model has the form

f(x) =
M∑
i=1

αmφ(x;µm,Σm)

with the mixing proportionsαm adding to 1,
∑M

m=1 αm = 1. Hereφ represents
the Gaussian density.
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These turn out to be quite flexible and not too many parameters are needed to get
good fits.

To estiamte the parameters we use the EM algorithm which is not very fast, but is
very stable.

Figure 7.8 provides an example.

Figure 7.8: Loess fit for predicting C.Peptide from Base.deficit and Age.
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