
Chapter 8

Model Assessment and Selection

We have defined various smoothers and nonparametric estimation techniques. In
classical statistical theory we usually assume that the underlying model generat-
ing the data is in the family of models we are considering. For nonparametrics
this assumptions is relaxed and asymptotic and finite sample bias and variance
estimates are not always easy to find in closed form. In this Chapter we discuss
some resampling methods that are commonly used to get approximations of bias,
variance, confidence intervals, etc...

In particular we will look at the problem of choosing smoothing parameters. Re-
member how most of the smoothers we have defined have some parameter that
controls the smoothness of the curve estimate. For kernel smoothers we defined
the scale parameter, for local regression we defined the span or bandwidth, and for
smoothing splines we had the penalty term. We will call all of thesethe smoothing
parameterand denote it withλ. It should be clear from the context which of the
specific smoothing parameters we are referring to.
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Figure 8.1: Outcomes of model withf(x) = 5 sin(1/x) and IID normal errors
with σ2 = 1

8.1 The bias-variance trade-off

In smoothing in general there is a fundamental trade-off between the bias and vari-
ance of the estimate, and this trade-off is governed by the smoothing parameter.

Through out this section we will be using an artifical example defined by

yi = 5 sin(1/x) + εi, i = 1, . . . , n (8.1)

with theεi IID N(0, 1) or t3.

The trade-off is most easily seen in the case of the running mean smoother. The
fitted running-mean smooth can be written as

f̂k(x0) =
1

2k + 1

∑
i∈NS

k (x0)

yi

Under model (2.3). The variance is easy to compute. What is it?
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The bias is

E[f̂k(x0)]− f(x0) =
1

2k + 1

∑
i∈NS

k (x0)

{f(xi)− f(x0)}

Notice that ask, in this case the smoothing parameter, grows the variances de-
creases. However, the bigger thek the moref(xi)’s get into the bias.

We have no idea of what
∑

i∈NS
k (x0) f(xi) is because we don’t knowf ! Let’s see

this in a more precise (not much more) way.

Say we think thatf is smooth enough for us to assume that its second derivative
f ′′(x0) is bounded. Taylor’s theorem says we can write

f(xi) = f(x0) + f ′(x0)(xi − x0) +
1

2
f ′′(x0)(xi − x0)2 + o(|xi − x0|2).

Because1
2
f ′′(x0)(xi − x0)2 isO(|xi − x0|2) we stop being precise and write

f(xi) ≈ f(x0) + f ′(x0)(xi − x0) +
1

2
f ′′(x0)(xi − x0)2.

Implicit here is the assumption that|xi − x0| is small. This is the way these
asymptotics work. We assume that the kernel size goes to 0 asn gets big.

Why did we only go up to the second derivative?

To makes things simple, let’s assume that the covariatesx areequally spacedand
let ∆ = xj+1 − xj we can write

(2k + 1)−1
∑

i∈NS
k (x0)

f(xi) ≈ f(x0) + (2k + 1)−1k(k + 1)

6
f ′′(x0)∆2

So now we see that the bias increases withk2 and the second derivative of the
“true” functionf . This agrees with our intuition.

Now that we have

E{f̂k(x0)− f(x0)}2 ≈ σ2

2k + 1
+
k(k + 1)

6
f ′′(x0)∆2
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Figure 8.2: Smooths using running-mean smoother with bandwidths of .01 and
0.1. To the right are the smooths 25 replicates

we can actually find an optimalk

kopt =

{
9σ2

2∆4{f ′′(xi)}2

}
Usually this is not useful in practice because we have no idea of whatf ′′(x) is
like. So how do we chose smoothing parameters?

In Figure 8.2 we show the smooths obtained with a running mean smoother with
bandwidths of 0.01 and 0.1 on 25 replicates defined by (8.1). The bias-variance
trade-off can be clearly seen.

8.1.1 Bias-variance trade-off for linear smoothers

DefineSλ as the hat matrix for a particular smoother when the smoothing param-
eterλ is used. The “smooth” will be written aŝfλ = Sλy.
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Define
vλ = f − E(Sλy)

as thebiasvector.

Define ave(x2) = n−1
∑n

i=1 x
2
i for any vectorx. We can derive the following

formulas:

MSE(λ) = n−1

n∑
i=1

var{f̂λ(xi)}+ ave(v2
λ)

= n−1tr(SλS
′
λ)σ

2 + n−1v′λvλ

PSE(λ) = {1 + n−1tr(SλS
′
λ)}σ2 + n−1v′λvλ.

Notice for least-squares regressionSλ is idempotent so that tr(SλS
′
λ) = tr(Sλ) =

rank(Sλ) which is usually the number of parameters in the model. This is why
we will sometimes refer to tr(SλS′λ) as theequivalent number of parametersor
degrees of freedom of our smoother.

8.2 Cross Validation: Choosing smoothness param-
eters

In the section, and the rest of the class, we will denote withf̂λ the estimate ob-
tained using smoothing parameterλ. Notice that usually what we really have is
the smootĥfλ.

We will use the model defined by (8.1). Figure 8.3 shows one outcome of this
model with normal and t-distributed errors.

We are trying to find theλ that minimizes

MSE(λ) = n−1

n∑
i=1

E[f̂λ(xi)− f(xi)]
2
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Figure 8.3: Outcomes of model (8.1)

Problem is we don’t nowf .

What if we could get a new set of datay∗1, . . . , y
∗
n from the same model producing

they1, . . . , yn? This would be quite helpful because thepredictive squared error

PSE(λ) = E[y∗i − f̂λ(xi)]2 = E[{y∗i −f(xi)}−{f̂λ(xi)−f(xi)}] = MSE(λ)+σ2.

says thatn−1
∑n

i=1[y∗i − f̂λ(xi)]
2 is an average having expected value the MSE

plus a constant. We could view this quantity as an estimate of MSE(λ) + σ2.
Sinceσ2 doesn’t depend onλ we could find theλ that minimizes it and think that
we are close to theλ that minimizes the MSE.

Notice that the above calculation can be done because they∗i s are independent of
the estimateŝfλ(xi)s, the same can’t be said about theyis.

In practice it is not common to have a new set of datay∗i , i = 1, . . . , n. Cross-
validation tries to imitate this by leaving out points(xi, yi) one at a time and
estimating the smooth atxi based on the remainingn − 1 points. The cross-
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validation sum of squares is

CV(λ) = n−1

n∑
i=1

{yi − f̂−iλ (xi)}2

wheref̂−iλ (xi) indicates the fit atxi computed by leaving out thei− th point.

We can now use CV to chooseλ by considering a wide span of values ofλ,
computing CV(λ) for each one, and choosing theλ that minimizes it. Plots of
CV(λ) vs.λ may be useful.

Why do we think this is good? First notice that

E{yi − f̂−iλ (xi)}2 = E{yi − f(xi) + f(xi)− f̂−iλ (xi)}2

= σ2 + E{f̂−iλ (xi)− f(xi)}2.

Using the assumption that̂f−iλ (xi) ≈ f̂λ(xi) we see that

E{CV(λ)} ≈ PSE(λ)

However, what we really want is

min
λ

E{CV(λ)} ≈ min
λ

PSE(λ)

but the law of large numbers says the above will do.

Why not simply use the averaged squared residuals

ASR(λ) = n−1

n∑
i=1

{yi − f̂λ(xi)}2?

It turns out this under-estimates the PSE. Notice in particular that the estimate
f̂(xi) = yi always has ASR equal to 0! We will see how we can adjust the ASR
to form “good” estimates of the MSE.

8.2.1 CV for linear smoothers

Now we will see some of the practical advantages of linear smoothers.
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For linear smoothers in general it is not obvious what is meant byf̂−iλ (xi). Let’s
give a definition...

Notice that any reasonable smoother will smooth constants into constants, i.e.
S1 = 1. If we think of the rowsSi· of S as weights of a kernels, this condition is
requiring that all then weights in each of then kernels add up to 1. We can define
f̂−iλ (xi) as the “weighted average”

Si·y =
n∑
j=1

Sijyj

but giving zero weight to theith entry, i.e.

f̂−iλ (xi) =
1

1− Sii

∑
j 6=i

Sijyj.

From this definition we can find CV without actually making all the computations
again. Lets see how:

Notice that
f̂−iλ (xi) =

∑
j 6=i

Sijyj + Siif̂
−i
λ (xi).

The quantities we add up to obtain CV are the squares of

yi − f̂−iλ (xi) = yi −
∑
j 6=i

Sijyj − Siif̂−iλ (xi).

Adding and subtractingSiiyi we get

yi − f̂−iλ (xi) = yi − f̂λ(xi) + Sii(yi − f̂−iλ (xi))

which implies

yi − f̂−iλ (xi) =
yi − f̂λ(xi)

1− Sii
and we can write

CV(λ) = n−1

n∑
i=1

{
yi − f̂λ(xi)

1− Sii

}2
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Figure 8.4: CV, MSE, and fits obtained for the normal and t models.

so we don’t have to computêf−iλ (xi)!

Lets see how this definition of CV may be useful in finding the MSE.

Notice that the above defined CV is similar to the ASR except for the division by
1− Sii. To see what this is doing we notice that in many situationsSii ≈ [SλSλ]ii
and1/(1− Sii)2 ≈ 1 + 2Sii which implies

E[CV(λ)] ≈ PSE(λ) + 2ave[diag(Sλ)v
2].

Thus CV adjusts ASR so that in expectation the variance term is correct but in
doing so induces an error of2Sii into each of the bias components.

In Figure 8.4 we see the CV and MSE forn = 100 andn = 500 observatios

8.3 Model Selection

Suppose we observe a realization of a random variableY , with distribution defined
by a parameterβ ∏

xi∈N0

f(yi; xi,β) ≡ fY(y; X,β) (8.2)

wherey is the observed response associated with the covariatesX andβ ∈ RP is
aP × 1 parameter vector.
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We are interested in estimatingβ. Suppose that before doing so, we need to
choose from amongstP competing models, generated by simply restricting the
general parameter spaceRP in whichβ lies.

In terms of the parameters, we representthe full model with P parameters as:

Model(P):fY(y; x,βP ),βP = (β1, . . . , βp, βp+1, . . . , βP )′.

We denote the “true value” of the parameter vectorβ with β∗.

Akaike (1977) formulates the problem of statistical model identification as one of
selecting a modelfY(y; x,βp) based on the observations from that distribution,
where the particular restricted model is defined by the constraintβp+1 = βp+2 =
. . . = βP = 0, so that

Model(p):fY(y; x,βp),βp = (β1, . . . , βp, 0, . . . , 0)′ (8.3)

We will refer top as thenumber of parameters and toΩp as the sub-space ofRP

defined by restriction (8.2). For eachp = 1, . . . , P , we may assume model(p) to
estimate the non-zero components of the vectorβ∗. We are interested in a criterion
that helps us chose amongst theseP competing estimates.

In this Chapter we consider 3 methods for model selection.

8.3.1 Mallow’sCp

Mallow’s Cp is a technique for model selection in regression (Mallows 1973).
The Cp statistic is defined as a criteria to assess fits when models with different
numbers of parameters are being compared. It is given by

Cp =
RSS(p)
σ2

−N + 2p (8.4)

If model(p) is correct then Cp will tend to be close to or smaller thanp. Therefore
a simple plot of Cp versusp can be used to decide amongst models.
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In the case of ordinary linear regression, Mallow’s method is based on estimating
the mean squared error (MSE) of the estimatorβ̂p = (X′pXp)

−1X′pY,

E[β̂p − β]2

via a quantity based on the residual sum of squares (RSS)

RSS(p) =
N∑
n=1

(yn − xnβ̂p)
2

= (Y −Xpβ̂p)
′(Y −Xpβ̂p)

= Y′(IN −Xp(X
′
pXp)

−1X′p)Y

Here IN is anN × N identity matrix. By using a result for quadratic forms,
presented for example as Theorem 1.17 in Seber’s book, page 13, namely

E[Y′AY] = E[Y′]AE[Y] + tr[ΣA]

Σ being the variance matrix ofY, we find that

E[RSS(p)] = E[Y′(IN −Xp(X
′
pXp)

−1X′p)Y]

= E[β̂p − β]2 + tr
[
IN −Xp(X

′
pXp)

−1X′p
]
σ2

= E[β̂p − β]2 + σ2
(
N − tr

[
(X′pXp)(X

′
pXp)

−1
])

= E[β̂p − β]2 + σ2(N − p)

whereN is the number of observations andp is the number of parameters. Notice
that when the true model hasp parameters E[Cp] = p. This shows why, if model(p)
is correct, Cp will tend to be close top.

One problem with the Cp criterion is that we have to find an appropriate estimate
of σ2 to use for all values ofp.

Cp for smoothers

A more direct way of constructing an estimate of PSE is to correct the ASR. It is
easy to show that

E{ASR(λ)} =
{

1− n−1tr(2Sλ − SλS
′
λ)
}
σ2 + n−1v′λvλ
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notice that
PSE(λ)− E{ASR(λ)} = n−12tr(Sλ)σ

2

This means that if we knewσ2 we could find a “corrected” ASR

ASR(λ) + 2tr(Sλ)σ
2

with the right expected value.

For linear regression tr(Sλ) is the number of parameters so we could think of
2tr(Sλ)σ2 as a penalty for large number of parameters or for un-smooth estimates.

How do we obtain an estimate forσ2? If we had aλ∗ for which the bias is 0, then
the usual unbiased estimate is∑n

i=1{yi − fλ∗(xi)}2

n− tr(2Sλ∗ − Sλ∗S′λ∗)

The usual trick is to chose one aλ∗ that does little smoothing and consider the
above estimate. Another estimate that has been proposed it the first order differ-
ence estimate

1

2(n− 1)

n−1∑
i=1

(yi+1 − yi)2

Once we have an estimateσ̂2 then we can define

Cp = ASR(λ) + n−12tr(Sλ)σ̂
2

Notice that thep usually means number of parameters so it should beCλ.

Notice this motivates a definition for degrees of freedoms.

8.3.2 Information Criteria

In this section we review the concepts behind Akaike’s Information Criterion
(AIC).
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Akaike’s original work is for IID data, however it is extended to a regression
type setting in a straight forward way. Suppose that the conditional distribution
of Y givenx is know except for aP -dimensional parameterβ. In this case, the
probability density function ofY = (Y1, . . . , Yn) can be written as

fY(y; X,β) ≡
n∏
i=1

f(yi; xi,β) (8.5)

with X the design matrix with rowsxi.

Assume that there exists a true parameter vectorβ∗ defining a true probability
density denoted byfY(y; X,β∗). Given these assumptions, we wish to selectβ,
from one of the models defined as in (8.2), “nearest” to the true parameterβ∗

based on the observed datay. The principle behind Akaike’s criterion is to define
“nearest” as the model that minimizes the Kullback-Leibler Information Quantity

∆(β∗; X,β) =

∫
{log fY(y; X,β∗)− log fY(y; X,β)} fY(y; X,β∗) dy.

(8.6)

The analytical properties of the Kullback-Leibler Information Quantity are dis-
cussed in detail by Kullback (1959) . Two important properties for Akaike’s cri-
terion are

1. ∆(β∗; X,β) > 0 if fY(y; X,β∗) 6= fY(y; X,β)

2. ∆(β∗; X,β) = 0 if and only if fY(y; X,β∗) = fY(y; X,β)

almost everywhere on the range ofY. The properties mentioned suggest that
finding the model that minimizes the Kullback-Leibler Information Quantity is an
appropriate way to choose the “nearest” model.

Since the first term on the right hand side of (8.5) is constant over all models we
consider, we may instead maximize

H(β) =

∫
log fY(y; X,β)fY(y; X,β∗) dy
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=
n∑
i=1

∫
log f(yi; X,β) f(yi; xi,β

∗) dyi. (8.7)

Let β̂p be the maximum likelihood estimate under Model(p). Akaike’s procedure
for model selection is based on choosing the model which produces the estimate

that maximizes Eβ∗
[
H(β̂p)

]
amongst all competing models. Akaike then derives

a criterion by constructing an asymptotically unbiased estimate of Eβ∗
[
H(β̂p)

]
based on the observed data.

Notice thatH(β̂p) is a function, defined by (8.6), of the maximum likelihood
estimateβ̂p, which is a random variable obtained from the observed data. A
natural estimator of its expected value (under the true distribution of the data) is
obtained by substituting the empirical distribution of the data into (8.6) resulting
in the log likelihood equation evaluated at the maximum likelihood estimate under
model(p)

l(β̂p) =
n∑
i=1

log f(yi; xi, β̂p).

Akaike noticed that in generall(β̂p) will overestimate Eβ∗
[
H(β̂)

]
. In particular

Akaike found that under some regularity conditions

Eβ∗
[
l(β̂p)−H(β̂p)

]
≈ p.

This suggests that larger values ofp will result in smaller values ofl(β̂p), which
may be incorrectly interpreted as a “better” fit, regardless of the true model. We
need to “penalize” for larger values ofp in order to obtain an unbiased estimate of
the “closeness” of the model. This fact leads to the Akaike Information Criteria
which is a bias-corrected estimate given by

AIC(p) = −2l(β̂p) + 2p. (8.8)

See, for example, Akaike (1973) and Bozdogan (1987) for the details.
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8.3.3 Posterior Probability Criteria

Objections have been raised that minimizing Akaike’s criterion does not produce
asymptotically consistent estimates of the correct model Notice that if we consider
Model(p∗) as the correct model then we have for anyp > p∗

Pr [AIC(p) < AIC(p∗)] = Pr
[
2{l(β̂p)− l(β̂p∗)} > 2(p− p∗)

]
. (8.9)

Notice that, in this case, the random variable2{l(β̂p) − l(β̂p∗)} is the logarithm
of the likelihood ratio of two competing models which, under certain regularity
conditions, is known to converge in distribution toχ2

p−p∗, and thus it follows that
the probability in Equation (8.8) is not 0 asymptotically. Some have suggested
multiplying the penalty term in the AIC by some increasing function ofn, say
a(n), that makes the probability

Pr
[
2{l(β̂p)− l(β̂p∗)} > 2a(n)(p− p∗)

]
asymptotically equal to 0. There are many choices ofa(n) that would work in this
context. However, some of the choices made in the literature seem arbitrary.

Schwarz (1978) and Kashyap (1982) suggest using a Bayesian approach to the
problem of model selection which, in the IID case, results in a criterion that is
similar to AIC in that it is based on a penalized log-likelihood function evaluated
at the maximum likelihood estimate for the model in question. The penalty term
in the Bayesian Information Criteria (BIC) obtained by Schwarz (1978) is the AIC
penalty termp multiplied by the functiona(n) = 1

2
log(N).

The Bayesian approach to model selection is based on maximizing the posterior
probabilities of the alternative models, given the observations. To do this we must
define a strictly positive prior probabilityπp = Pr[Model(p)] for each model
and a conditional priordµp(β) for the parameter given it is inΩp, the subspace
defined by Model(p). LetY = (Y1, . . . , Yn) be the response variable and define
the distribution givenβ following (8.4)

fY(y|X,β) ≡
n∏
i=1

f(yi; xi,β)
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The posterior probability that we look to maximize is

Pr [Model(p)|Y = y] =

∫
Ωp
πpfY(y|X,β)dµp(β)∑P

q=1

∫
Ωq
πqfY(y|X,β)dµq(β)

Notice that the denominator depends neither on the model nor the data, so we
need only to maximize the numerator when choosing models.

Schwarz (1978) and Kashyap (1982) suggest criteria derived by taking a Taylor
expansion of the log posterior probabilities of the alternative models. Schwarz
(1978) presents the following approximation for the IID case

log

∫
Ωp

πpfY(y|X,β)dµp(β) ≈ l(β̂p)−
1

2
p log n

with β̂p the maximum likelihood estimate obtained under Model(p).

This fact leads to the Bayesian Information Criteria (BIC) which is

BIC(p) = −2l(β̂p) + p log n (8.10)

Kyphosis Example

The AIC and BIC obtained for the gam are:

AIC(Age) = 83 BIC(Age) = 90
AIC(Age,Start) = 64 BIC(Age,Start) = 78
AIC(Age,Number) = 73 BIC(Age,Number) = 86
AIC(Age,Start,Number) = 60 BIC(Age,Start,Number) = 81

8.4 Bootstrap Standard Errors and Confidence Sets

Statistical science is the science of learning from experience. Efron and Tibshirani
(1993) say “Most people are not natural-born statisticians. Left to our own devices
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we are not very good at picking out patterns from a sea of noisy data. To put it
another way, we are all too good at picking out non existing patterns that happen
to suit our purposes.”

Suppose we find ourselves in the following common data-analytic situation: a
random samplex = (x1, . . . , xn) from an unknown probability distributionF has
been observed and we wish to estimate a parameter of interestθ = t(F ) on the
basis ofx. For this purpose, we calculate an estimateθ̂ = s(x) from x.

A common estimate is theplug-in estimatet(F̂ ) whereF̂ is the empirical distri-
bution defined by

F (x) =
number of values inx equal tox

n

Can you think of a plug-in estimate that is commonly used?

The bootstrap was introduced by Efron (1979) as a computer based method to
estimate the standard deviation ofθ̂.

What are the advantages:

• It is completely automatic

• Requires no theoretical calculations

• Not based on asymptotic results

• Available no matter how complicated the estimatorθ̂ is.

A bootstrap sample is defined to be a random sample of sizen drawn fromF̂ , say
x∗ = (x∗1, . . . , x

∗
n).

For each bootstrap samplex∗ there is a bootstrap replicate ofθ̂,

θ̂∗ = s(x∗).
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The bootstrap estimate ofseF (θ̂) is defined by

seF̂ (θ̂∗). (8.11)

This is called theideal bootstrap estimateof the standard error ofs(x).

Notice that for the case whereθ is the expected value or mean ofx1 we have

seF̂ (x̄∗) = seF̂ (x∗1)/
√
n =

√√√√n−1

n∑
i=1

(xi − x̂)2/
√
n

and the ideal bootstrap estimate is the estimate we are used to. However, for any
other estimator other than the mean obtaining (8.10) there is no neat formula that
enables us to compute a numerical value in practice.

The bootstrap algorithm is a computational way of obtaining a good approxima-
tion to the numerical value of (8.10).

8.4.1 The bootstrap algorithm

The bootstrap algorithm works by drawing many independent bootstrap samples,
evaluating the corresponding bootstrap replications, and estimating the standard
error ofθ̂ by the empirical standard error, denoted byŝeB, whereB is the number
of bootstrap samples used.

1. SelectB independent bootstrap samplesx∗1, . . . ,x
∗
B, each consisting ofn

data values drawing with replacement fromx.

2. Evaluate the bootstrap replication corresponding to each bootstrap sample

θ̂∗(b) = s(x∗b), b = 1, . . . , B

3. Estimate the standard errorseF (θ̂) by the sample standard error of theB
replicates

ŝeB =

[
1

B − 1

B∑
b=1

{θ̂∗(b)− θ̂∗(·)}2

]
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Figure 8.5: Estimated regression curves of Improvement on Compliance.

with

θ̂∗(·) = B−1

B∑
b=1

θ̂∗(b)

The limit of ŝeB asB goes to infinity is the ideal bootstrap estimate of (8.10). But
how close is (8.10) toseF (θ̂)? See Efron and Tibshirani (1993) for more details.

8.4.2 Example: Curve fitting

In this example we will be estimating regression functions in two ways, by a
standard least-squares line and by loess.

A total of 164 mean took part in an experiment to see if the drug cholostyramine
lowered blood cholesterol levels. The men were supposed to take six packets of
cholostyramine per day, but many of them actually took much less. Figure 8.5
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shows compliance plotted against percentage of the intended dose actually taken.
We also show a fitted line and a loess fit (using span=2/3). Notice the curves
similar from 0 to 60, a little different from 60 to 80 and quite different from 80 to
100.

Assume the points a regression model

yi = f(xi) + εi, i = 1, . . . , n

with theεi IID.

Say we are interested in the difference in rate of change off(x) in the 60–80 and
80–100 sections. We could define as the parameter to describe this. How can we
do this?

Notice that finding a standard error for this estimate is not straight-forward. We
can use the bootstrap.

Table 8.1: Estimates and bootstrap standard errors off(60), f(80), andf(100).
f̂line(60) f̂line(80) f̂line(100) f̂loess(60) f̂loess(80) f̂loess(100)

value: 33 44 56 28 35 66
ŝe50: 2 2 3 5 4 4

As seen in Figure 8.6. Even when there is no parameter of interest, the bootstrap
estimates off give us an idea of what a confidence set is for the nonparametric
estimates. We will see more of this in Chapter 7 and 8.

8.4.3 Confidence “intervals” for linear smoothers

It is easy to show that the variance-covariance matrix of the vector of fitted values
f̂ = Sy is

cov(f̂) = SS′σ2

and given an estimate ofσ2 this can be used to give point-wise standard errors,
mainly by looking at diag(SS′)σ2.
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Figure 8.6: 50 boostrap curves for each estimation techinique.

Can we construct confidence intervals? What do we need?

First of all we need to know the distribution (at least approximately) off̂ . If the
errors are normal we know thatf is normally distributed. Why?

In the normal case, what are the confidence intervals for?

Remember that our estimates are usually biased, E(f̂) = Sf 6= f . If our null
hypothesis isSf = f (in the case of splines this is equivalent to assumingf ∈ G)
then our confidence intervals are forf otherwise it is much more convinient to
compute them forSf . We will start using the notatioñf = Sf . We can think
of f̃ as the best possilble approximation to “the truth”f when using theS as a
smoother.

To see how point-wise estimates can be useful, notice that we can get an idea of
how variablêf(x0) is. However, it isn’t very helpful when we want to see how
variablef̂ is as a whole.
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What if we want to know if a certain function, say a line, is in our “confidence
interval”? Point-wise intervals don’t really help us with this.

8.4.4 Global confidence bands

Remember that̂f ∈ R
n. This means that talking about confidence intervals

doesn’t make much sense. We need to consider confidence sets.

For example if the errors are normal we know that

χ(f̃) = (f̂ − f̃)′(SS′σ2)−1(f̂ − f̃)

is χ2
n distributed. This permits us to construct confidence sets (which you can

think of as randomn-dimensional balls) for̃f of probabilityα

Cα = {g ∈ Rb;χ(g) ≤ χ1−α} = {g ∈ Rb; (f̂ − g)′(SS′σ2)−1(f̂ − g) ≤ χ1−α}.

Notice that the probability that the random ball doesn’t fall on the approximate
truth f̃ is α:

Pr(f̃ 6∈ Cα) = Pr
[
(f̂ − f̃)′(SS′σ2)−1(f̂ − f̃) > χ1−α

]
= α.

This is only the case if we knowσ2.

Usually we construct an estimate

σ̂2 = (y − f̂)′(y − f̂)/{n− tr(2S− SS′)}

and define confidence sets

C(f̃) = {g ∈ Rb; ν(g) ≤ G1−α}

based on
ν(f̃) = (f̂ − f̃)′(SS′σ̂2)−1(f̂ − f̃).

HereG1−α is the(1− α)th quantile of the distribution ofν(f̃).

Do we knowG? Not necessarily.
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In the case of linear regression, where the gaussian model is correct andS is a
p-dimensional projection,ν(f̃) = ν(f) has distribution(n− p) + pFp,n−p.

When this is not the case we can argue that the distribution is approximately

{n− tr(2S− SS′)}+ tr(SS′)Ftr(SS′),n−tr(2S−SS′)

If we are not sure of the normality assumption or thatf̃ ≈ f we can use the
bootstrap to construct an approximate distributionĜ of G.

How do we do it?

Figure 8.7: The regression curve and an outcome withn = 100 andσ2 = 1.

8.4.5 Bootstrap estimate ofG1−α

A bootstrap sample is generated in the following way
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• For some datay use some procedure (a linear smoother for example) to
obtain an estimatêf of some estimand (in this case the regression function
f ).

• Obtain residualŝε = y − f̂ .

• Take a simple random sample of sizeB from the residualŝε1, . . . , ε̂n. No-
tice that this makes them IID just like theεs.

• Construct a “new” data set

y∗ = f̂ + ε̂∗

with ε̂∗ the vector of resampled residuals.

• From the new data form a new estimatef̂∗.

• Finally we obtain the value of

ν∗ = (f̂∗ − f̂)′(SS′σ̂∗2)−1(f̂∗ − f̂)

• We repeat this procedure many times and form an approximate distribution
Ĝ with the values ofν∗. We may use the(1 − α)th quantile ofĜ as an
estimate ofG1−α.

Let’s consider the modelyi = f(xi) + εi, i = 1, . . . , n with εi IID normal. In
Figure 8.8 we see qqplots of the trueG, the bootstrapG and the F-distribution
approximation.

8.4.6 Displaying the confidence sets

Displaying ann− dimensional ball is not easy.

Global confidence bands usually show the projections of the confidence set onto
each of the component sub-spaces. Notice that a function (now I’m using function
andn-dimensional vector interchangeably) in this set would actually be in a con-
fidence cube as opposed to a ball! So a vector within the confidence bands isn’t
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necessarily in the confidence ball. However its true that being in the ball implies
being within the band.

Another popular approach is selecting a few functions at random fromN(f̂ ,SS′σ̂2)
and checking to see if they are in the confidence set. If they are, we plot them.
This enables us to see what kind of “shape” functions in the confidence set have.
Maybe they all have a bump, maybe a large amount of them are close to being
constant lines, etc...

Figure 8.8: QQ-plot of bootstrap vs. trueG and the F-distribution approximation.
We also see point-wise confidence intervals and curves in (blue) and out (green)
of the bootstrap confidence set.

8.4.7 Approximate F-test

Using the F-distribution approximations we may construct F-tests for testing var-
ious hypotheses.

The p-value given by the S-Plus functiongam() is usually testing for linearity
and using an F-distribution approximation.
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Suppose we wish to compare 2 smoothersf̂1 = S1y andf̂2 = S2y. For example,
f̂1 may be linear regression andf̂2 may be a “rougher” smoother.

Let RSS1 andRSS2 be the residual sum of squares obtained for each smoother.
Which one do you expect to be bigger?

andγ1 andγ2 be the degrees of freedom of each smoother, tr(2Sj−SjS
′
j), j = 1, 2.

An approximation that may be useful for this comparison is

(RSS1 −RSS2)/(γ2 − γ1)

RSS2/(n− γ2)
∼ Fγ2−γ1,n−γ2

There are moment corrections that can make this a better approximation (see
H&T).

Figure 8.9: Same as previos figure but with t-distributed errors
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