
Chapter 10

Additive Models, Trees, and Related
Methods

In observational studies we usually have observed predictors or covariatesX1, X2, . . . , Xp

and a response variableY . A scientist is interested in the relation between the co-
variates and the response, a statistician summarizes the relationship with

E(Y |X1, . . . , Xp) = f(X1, . . . , Xn) (10.1)

Knowing the above expectation helps us

• understand the process producingY

• assess the relative contribution of each of the predictors

• predict theY for some set of valuesX1, . . . , Xn.

One example is the air pollution and mortality data. The response variableY is
daily mortality counts. Covariates that are measured are daily measurements of
particulate air pollutionX1, temperatureX2, humidityX3, and other pollutants
X4,. . . ,Xp.
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Note: In this particular example we can consider the past as covariates. GAM is
more appropriate for data for which this doesn’t happen.

In this section we will be looking at a diabetes data set which comes from a study
of the factors affecting patterns in insulin-dependent diabetes mellitus in children.
The objective was to investigate the dependence of the level of serum C-peptide on
various other factors in order to understand the patterns of residual insulin secre-
tion. The response measurementsY is the logarithm of C-peptide concentration
(mol/ml) at diagnosis, and the predictor measurements are age and base deficit, a
measurement of acidity.

A model that has the form of (10.1) and is often used is

Y = f(X1, . . . , Xn) + ε (10.2)

with ε a random error with mean 0 and varianceσ2 independent from all the
X1, . . . , Xp.

Usually we make a further assumption, thatε is normally distributed. Now we
are not only saying something about the relationship between the response and
covariates but also about the distribution ofY .

Given some data, “estimating”f(x1, . . . , xn) can be “hard”. Statisticians like to
make it easy assuming a linear regression model

f(X1, . . . , Xn) = α + β1X1 + . . .+ βpXp

This is useful because it

• is very simple

• summarizes the contribution of each predictor with one coefficient

• provides an easy way to predictY for a set of covariatesX1, . . . , Xn.

It is not common to have an observational study with continuous predictors where
there is “science” justifying this model. In many situations it is more useful to
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let the data “say” what the regression function is like. We may want to stay
away from linear regression because it forces linearity and we may never see what
f(x1, . . . , xn) is really like.

In the diabetes example we get the following result:

So does the data agree with the fits? Let’s see if a “smoothed” version of the data
agrees with this result.

But how do we smooth? Some of the smoothing procedures we have discussed
may be generalized to cases where we have multiple covariates.

There are ways to define splines so thatg : I ⊂ Rp → R. We need to define knots
in I ⊂ Rp and restrictions on the multiple partial derivative which is difficult but
can be done.

It is much easier to generalize loess. The only difference is that there are many
more polynomials to choose from:β0, β0 +β1x, β0 +β1x+β2y, β0 +β1x+β2y+
β3xy, β0 + β1x+ β2y + β3xy + β4x

2, etc...
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This is what we get when we fit local planes and use 15% and 66% of the data.

However, when the number of covariates is larger than 2 looking at small “balls”
around the target points becomes difficult.

Imagine we have equally spaced data and that each covariate is in[0, 1]. We want
to fit loess usingλ× 100% of the data in the local fitting. If we havep covariates
and we are formingp− dimensional cubes, then each side of the cube must have
size l determined bylp = λ. If λ = .10 (so its supposed to be very local) and
p = 10 thenl = .11/10 = .8. So it really isn’t local! This is known asthe curse of
dimensionality.

10.1 Additive Models

Additive models are specific application of projection pursuit. They are more
useful in scientific applications.

In additive models we assume that the response is linear in the predictors effects
and that there is an additive error. This allows us to study the effect of each
predictor separately. The model is like (10.2) with

f(X1, . . . , Xp) =

p∑
j=1

fj(Xj).
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Notice that this is projection pursuit with the projection

α′jX = Xj.

The assumption made here is not as strong as in linear regression, but its still quite
strong. It’s saying that the effect of each covariate is additive. In practice this may
not make sense.

Example: In the diabetes example consider an additive model that models log(C-
peptide) in terms of ageX1 and base deficitX2. The additive model assumes
that for two different agesx1 andx′1 the conditional expectation ofY (seen as a
random variable depending on base deficit):

E(Y |X1 = x1, X2) = f1(x1) + f2(X2)

and

E(Y |X1 = x′1, X2) = f1(x′1) + f2(X2).

This say that the way C-peptide depends on base deficit only varies by a constant
for different ages. It is not easy to disregard the possibility that this dependence
changes. For example, at older ages the effect of high base deficit can be dra-
matically bigger. However, in practice we have too make assumptions lik these in
order to get some kind of useful description of the data.

Comparing the non-additive smooth (seen above) and the additive model smooth
shows that it is not completely crazy to assume additivity.
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Notice that in the first plots the curves defined for the different ages are different.
In the second plot they are all the same.

How did we create this last plot? How did we fit the additive surface. We need to
estimatef1 andf2. We will see this in the next section.

Notice that one of the advantages of additive model is that no matter the dimension
of the covariates we know what the surfacef(X1, . . . , Xp) is like by drawing each
fj(Xj) separately.
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10.1.1 Fitting Additive Models: The Backfitting Algorithm

Conditional expectations provide a simple intuitive motivation for the backfitting
algorithm.

If the additive model is correct then for anyk

E

(
Y − α−

∑
j 6=k

fj(Xj)

∣∣∣∣∣ Xk

)
= fk(Xk)

This suggest an iterative algorithm for computing all thefj.

Why? Let’s say we have estimateŝf1, . . . , f̂p−1 and we think they are “good”
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estimates in the sense that E{fj(Xj)− fj(Xj)} is “close to 0”. Then we have that

E

(
Y − α̂−

p−1∑
j=1

f̂j(Xj)

∣∣∣∣∣ Xp

)
≈ fp(Xp).

This means that the partial residualsε̂ = Y − α̂−
∑p−1

j=1 f̂j(Xj)

ε̂i ≈ fp(Xip) + δi

with theδi approximately IID mean 0 independent of theXp’s. We have already
discussed various “smoothing” techniques for estimatingfp in a model as the
above.

Once we choose what type of smoothing technique we are using for each co-
variate, say its defined bySj(·), we obtain an estimate for our additive model
following these steps

1. Definefj = {fj(x1j), . . . , fj(xnj)}′ for all j.

2. Initialize:α(0) = ave(yi), f
(0)
j = linear estimate.

3. Cycle overj = 1, . . . , p

f
(1)
j = Sj

(
y − α(0) −

∑
k 6=j

f
(0)
k

∣∣∣∣∣xj
)

4. Continue previous step until functions “don’t change”, for example until

max
j

∣∣∣∣∣∣f (n)
j − f

(n−1)
j

∣∣∣∣∣∣ < δ

with δ is the smallest number recognized by your computer. In my computer
using S-Plus its:

.Machine$double.eps = 2.220446e-16

Things to think about:

Why is this algorithm valid? Is it the solution to some minimization criterion? Its
not MLE or LS.
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10.1.2 Justifying the backfitting algorithm

The backfitting algorithm seems to make sense. We can say that we have given an
intuitive justification.

However statisticians usually like to have more than this. In most cases we can
find a “rigorous” justification. In many cases the assumptions made for the “rig-
orous” justifications too work are carefully chosen so that we get the answer we
want, in this case that the back-fitting algorithm “converges” to the “correct” an-
swer.

In the GAM book, H&T find three ways to justify it: Finding projections inL2

function spaces, minimizing certain criterion with solutions from reproducing-
kernel Hilbert spaces, and as the solution to penalized least squares. We will look
at this last one.

We extend the idea of penalized least squares by considering the following crite-
rion

n∑
i=1

{
yi −

p∑
j=1

fj(xij)

}2

+

p∑
j=1

λj

∫
{f ′′j (t)}2 dt

over all p-tuples of functions(f1, . . . , fp) that are twice differentiable.

As before we can show that the solution to this problem is a p-tuple of cubic
splines with knots “at the data”, thus we may rewrite the criterion as

(
y −

p∑
j=1

fj

)′(
y −

p∑
j=1

fj

)
+

p∑
j=1

λjfjKjfj

where theKjs are penalty matrices for each predictor defined analogously to the
K of section 3.3.

If we differentiate the above equation with respect to the functionfj we obtain
−2(y −

∑
k fk) + 2λjKjfj = 0. The f̂j ’s that solve the above equation must
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satisfy:

f̂j = (I + λjKj)
−1

(
y −

∑
k 6=j

f̂k

)
, j = 1, . . . , p

If we define the smoother operatorSj = (I + λjKj)
−1 we can write out this

equation in matrix notation as
I S1 . . . S1

S2 I . . . S2
...

...
...

...
Sp Sp . . . I




f1

f2
...
fp

 =


S1y
S2y

...
Spy


One way to solve this equation is to use the Gauss-Seidel algorithm which in turn
is equivalent to solving the back-fitting algorithm. See Buja, Hastie & Tibshirani
(1989) Ann. Stat. 17, 435–555 for details.

Remember that that for any set of linear smoother

f̂j = Sjy

we can argue in reverse that it minimizes some penalized least squares criteria of
the form

(y −
∑
j

fj)
′(y −

∑
j

fj) +
∑
j

f ′j(S
−
j − I)fj

and conclude that it is the solution to some penalized least squared problem.

10.1.3 Standard Error

When usinggam() in S-Plus we get point-wise standard errors. How are these
obtained?

Notice that our estimateŝfj are no longer of the formSjy since we have used a
complicated backfitting algorithm. However, at convergence we can expressf̂j
asRjy for somen × n matrix Rj. In practice thisRj is obtained from the last
calculation of thêfj ’s but finding a closed form is rarely possible.



182CHAPTER 10. ADDITIVE MODELS, TREES, AND RELATED METHODS

Ways of constructing confidence sets is not straight forward, and (to the best of
my knowledge) is an open area of research.

10.2 Generalized Models

What happens if the response is not continuous? This the same problem that
motivated the extension of linear models to generalized linear models (GLM).

In this Chapter we will discusss two method based on a likelihood approach simlar
to GLMs.

10.2.1 Generalized Additive Models

We extend additive models to generalized additive models in a similar way to the
extension of linear models to generalized linear models.

SayY has conditional distribution from an exponential family and the conditional
mean of the responseE(Y |X1, . . . , Xp) = µ(X1, . . . , Xp) is related to an additive
model through some link functions

g{µi} = ηi = α +

p∑
j=1

fj(xij)

with µi the conditional expectation ofYi givenxi1, . . . , xip. This motivates the use
of the IRLS procedure used for GLMs but incorporating the backfitting algorithms
used for estimation in Additive Models.

As seen for GLM the estimation technique is again motivated by the approxima-
tion:

g(yi) ≈ g(µi) + (yi − µi)
∂ηi
∂µi
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This motivates a weighted regression setting of the form

zi = α +

p∑
j=1

fj(xij) + εi, i = 1, . . . , n

with theεs, the working residuals, independent with E(εi) = 0 and

var(εi) = w−1
i =

(
∂ηi
∂µi

)2

Vi

whereVi is the variance ofYi.

The procedure for estimating the functionfjs is called thelocal scoring proce-
dure:

1. Initialize: Find initial values for our estimate:

α(0) = g

(
n∑
i=1

yi/n

)
; f

(0)
1 = . . . , f (0)

p = 0

2. Update:

• Construct an adjusted dependent variable

zi = η
(0)
i + (yi − µ(0)

i )

(
∂ηi
∂µi

)
0

with η(0)
i = α(0) +

∑p
j=1 f

(0)
j (xij) andµ(0)

i = g−1(η
(0)
i )

• Construct weights:

wi =

(
∂µi
∂ηi

)2

0

(V
(0)
i )−1

• Fit a weighted additive model tozi, to obtain estimated functionsf (1)
j ,

additive predictorη(1) and fitted valuesµ(1)
i .

Keep in mind what a fit is....̂f .
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• Compute the convergence criteria

∆(η(1), η(0)) =

∑p
j=1 ||f

(1)
j − f

(0)
j ||∑p

j=1 ||f
(0)
j ||

• A natural candidate for||f || is ||f ||, the length of the vector of evalua-
tions off at then sample points.

3. Repeat previous step replacingη(0) by η(1) until ∆(η(1), η(0)) is below some
small threshold.

10.2.2 Penalized Likelihood

How do we justify the local scoring algorithm? One way is to minimize a penal-
ized likelihood criterion.

Given a generalized additive model let

ηi = α +

p∑
j=1

fj(xij)

and consider the likelihoodl(f1, . . . , fp) as a functionη = (η1, . . . , ηp)
′.

Consider the following optimization problem: Over p-tuples of functionsf1, . . . , fp
with continuous first and second derivatives and integrable second derivatives find
one that minimizes

pl(f1, . . . , fp) = l(η; y)− 1

2

p∑
j=1

λj

∫
{f ′′j (x)}2 dx

whereλj ≥ 0, j = 1, . . . , p are smoothing parameters.

Again we can show that the solution is an additive cubic spline with knots at the
unique values of the covariates.



10.2. GENERALIZED MODELS 185

In order to find thefs that maximize this penalized likelihood we need some opti-
mization algorithm. We will show that the Newton-Raphson algorithm is equiva-
lent to the local-scoring procedure.

As before we can write the criterion as:

pl(f1, . . . , fp) = l(η,y)− 1

2

p∑
j=1

λjf
′
jKjfj.

In order to use Newton-Raphson we letu = ∂l/∂η andA = −∂2l/∂η2. The first
step is then taking derivatives and solving the score equations:

A + λ1K1 A . . . A
A A + λ2K2 . . . A
...

...
...

...
A A . . . A + λpKp




f1
1 − f0

1

f1
2 − f0

2
...

f1
p − f0

p

 =


u− λ1K1f

0
1

u− λ1K1f
0
2

...
u− λ1K1f

0
p


where bothA andu are evaluated atη0. In the exponential family with canonical
family, the entries in the above matrices are of simple form, for example the matrix
A is diagonal with diagonal elementsaii = (∂µi/∂ηi)

2V −1
i .

To simplify this further, we letz = η0 + A−1u, andSj = (A + λjKj)
−1A, a

weighted cubic smoothing-spline operator. Then we can write
I S1 . . . S1

S2 I . . . S2
...

...
.. .

...
Sp Sp . . . I




f1
1

f1
2
...
f1
p

 =


S1z
S2z

...
Spz



Finally we may write this as
f1
1

f1
2
...
f1
p

 =


S1(z−

∑
j 6=1 f1

j )

S2(z−
∑

j 6=2 f1
j )

...
Sp(z−

∑
j 6=p f1

j )
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Thus the Newton-Raphson updates are an additive model fit; in fact they solve a
weighted and penalized quadratic criterion which is the local approximation to the
penalized log-likelihood.

Note: any linear smoother can be viewed as the solution to some penalized like-
lihood. So we can set-up to penalized likelihood criterion so that the solution is
what we want it to be.

This algorithm converges with any linear smoother.

10.2.3 Inference

Deviance

The deviance or likelihood-ratio statistic, for a fitted modelµ̂ is defined by

D(y; µ̂) = 2{l(µmax; y)− l(µ̂)}

whereµmax is the parameter value that maximizesl(µ̂) over allµ (the saturated
model). We sometimes unambiguously useη̂ as the argument of the deviance
rather than̂µ.

Remember for GLM if we have two linear models defined byη1 nested withinη2,
then under appropriate regularity conditions, and assumingη1 is correct,D(η̂2; η̂1) =
D(y; η̂1)−D(y; η̂2) has asymptoticχ2 distribution with degrees of freedom equal
to the difference in degrees of freedom of the two models. This result is used
extensively in the analysis of deviance tables etc...

For non-parametric we can still compute deviance and it still makes sense to com-
pare the deviance obtained for different models. However, the asymptotic approx-
imations are undeveloped.

H&T present heuristic arguments for the non-parametric case.
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Standard errors

Each step of the local scoring algorithm consists of a backfitting loop applied to
the adjusted dependent variablesz with weightsA given by the estimated infor-
mation matrix. IfR is the weighted additive fit operator, then at convergence

η̂ = R(η̂ + A−1µ̂)

= Rz,

whereû = ∂l/∂η̂. The idea is to approximatez by an asymptotically equivalent
quantityz0. We will not be precise and write≈ meaning asymptotically equiva-
lent.

Expandingû to first order about the trueη0, we getz ≈ z0 + A−1
0 u0, which has

meanη0 and varianceA−1
0 φ ≈ Aφ.

Remember for additive models we had the fitted predictorη̂ = Ry wherey has
covarianceσ2I. Hereη̂ = Rz, andz has asymptotic covarianceA−1

0 . R is not a
linear operator due to its dependence onµ̂ and thusy through the weights, so we
need to use its asymptotic versionR0 as well. We therefore have

cov(η̂) ≈ R0A
−1
0 R′0φ ≈ RA−1R′φ

Similarly
cov(f̂j) ≈ RjA

−1R′jφ

whereRj is the matrix that produceŝfj from z.

Under some regularity conditions we can further show thatν̂ is asymptotically
normal, and this permits us to construct confidence intervals.

10.2.4 Degrees of freedom

Previously we described how we defined the degrees of freedom of the residuals
as the expected value of the residual sum of squares. The analogous quantity in
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generalized models is the deviance. We therefore use the expected value of the
deviance to define therelative degrees of freedom.

We don’t know the exact or asymptotic distribution of the deviance so we need
some approximation that will permit us to get an approximate expected value.

Using a second order Taylor approximation we have that

E[D(y; µ̂)] ≈ E[(y − µ̂)′A−1(y − µ̂)]

with A the Hessian matrix defined above. We now write this in terms of the “linear
terms”.

E[(y − µ̂)′A(y − µ̂)] ≈ (z− η̂)′A(z− η̂)

and we can show that this implies that if the model is unbiased

E(D) = dfφ

with
df = n− tr(2R−R′ARA−1)

This gives the degrees of freedom for the whole model not for each smoother. We
can obtain the dfs for each smoother by adding them one at a time and obtaining

E[D(η̂2; η̂1)] ≈ tr(2R1 −R′1A1R1A
−1
1 )− tr(2R2 −R′2A2R2A

−1
2 )

In general, the crude approximationdfj = tr(Sj) is used.

10.2.5 An Example

The kyphosis data frame has 81 rows representing data on 81 children who have
had corrective spinal surgery. The binary outcome Kyphosis indicates the pres-
ence or absence of a postoperative deformity (called Kyphosis). The other three
variables areAge in months,Number of vertebra involved in the operation, and
the beginning of the range of vertebrae involved (Start ).

Using GLM these are the results we obtain
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Value Std. Error t value
(Intercept) -1.213433077 1.230078549 -0.986468

Age 0.005978783 0.005491152 1.088803
Number 0.298127803 0.176948601 1.684827

Start -0.198160722 0.065463582 -3.027038

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 65.01627 on 79 degrees of freedom

The dotted lines are smooths of the residuals. This does not appear to be a very
good fit.

We may be able to modify it a bit, by choosing a better model than a sum of lines.
We’ll use smoothing and GAM to see what “the data says”.

Here are some smooth versions of the data:
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And here are the gam results:

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 42.74212 on 70.20851 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1

s(Age) 1 2.9 6.382833 0.0874180
s(Start) 1 2.9 5.758407 0.1168511

s(Number) 1 3.0 4.398065 0.2200849

Notice that it is a much better fit and not many more degrees of freedom. Also
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notice that the tests for linearity are close to “rejection at the 0.05 level”.

We can either be happy considering these plots as descriptions of the data, or we
can use it to inspire a parametric model:

Before doing so, we decide not to include Number becuase it seems to be asso-
ciated with “Start” and not adding much to the fit. This and other considerations
suggest we not includeNumber . The gam plots suggest the following “paramet-
ric” model.

glm2 <- glm(Kyphosis˜poly(Age,2) + I((Start > 12) * (Start - 12)),
family=binomial)

Here are the results of this fit... much better than the original GLM fit.

Coefficients:
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Value Std. Error t value
(Intercept) -0.5421608 0.4172229 -1.2994512

poly(Age, 2)1 2.3659699 4.1164283 0.5747628
poly(Age, 2)2 -10.5250479 5.2840926 -1.9918364

I((Start > 12) * (Start - 12)) -1.3840765 0.5145248 -2.6900094

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 56.07235 on 79 degrees of freedom

Number of Fisher Scoring Iterations: 6

Here are the residual plots:
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10.2.6 Prediction using GAM

Often we wish to evaluate the fitted model at some new values.

With parametric models this is simple because all we do is form a new design
matrix and multiply by the estimated parameters.

Some of the functions used to create design matrices in lm, glm a and gam are
data dependent. For examplebs() , poly() , make some standardization of the
covariate before fitting and therefore new covariates would change the meaning
of the parameters.

As an example look at what happens when we predict fitted values for new values
of AGE in the Kyphosis example usingpredict() .

The solution is to usepredict.gam() that takes this into account
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predict.gam is especially useful when we want to make surface plots. For
example:
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10.2.7 Over-interpreting additive fits

One of the advantages of GAM is their flexibility. However, because of this flexi-
bility we have to be careful not to “over-fit” and interpret the results incorrectly.

Binary data is especially sensitive. We construct a simulated example to see this.

The following figure shows the functional componentsf1 andf2 of a GAM

logit{Pr(Y = 1|U, V )} = −1 + f1(U) + f2(V )

with U andV independent uniform(0,1).

We also show the “smooths” obtained for a data set of 250 observations and a data
set of 50 observations. Notice how “bad” the second fit is.

If we make a plot of the meanµ(u, v) and of it’s estimate we see why this happens.
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We have relatively large neighborhoods of[0, 1] × [0, 1] that contain only 1s or
only 0s. The estimates in these regions will have linear part close to infinity and
minus infinity!
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One way to detect this when we don’t know “the truth” is to look at the estimates
with standard errors and partial residuals. If the partial residuals follow the fit to
closely and the standard errors “explode” we know something is wrong.

10.3 Classification Algorithms and Regression Trees

This is from the book by Breiman et. al.

At the university of California, San Diego Medical Center, when a heart attack
patient is admitted, 19 variables are measured during the first 24 hours. They in-
clude BP, age and 17 other binary covariates summarizing the medical symptoms
considered as important indicators of the patient’s condition.

The goal of a medical study can be to develop a method to identify high risk
patients on the basis of the initial 24-hour data.
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The next figure shows a picture of a tree structured classification rule that was
produced in the study. The letter F means no high and the letter G means high
risk.

How can we use data to construct trees that give us useful answers. There is a large
amount of work done in this type of problem. We will give a brief description in
this section.

10.3.1 Classifiers as Partitions

Suppose we have a categorical outcomey ∈ C = {1, 2, . . . , J}. We callC the set
of classes. Denote withX the space of all possible covariates.

We can define a classification rule as a functiond(x) defined onX so that for
everyx, d(x) is equal to one of the numbers1, . . . , J .
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This could be considered a systematic way of predicting class membership from
the covariates.

Another way to define classifiers is to partitionX into disjoint setsA1, . . . , Aj
with d(x) = j for all x ∈ Aj.

But how do we construct these classifiers from data?

10.3.2 What is truth?

We are now going to describe how to construct classification rules from data.
The data we use to construct the tree is called the training setL which is simply
{(x1, j1), . . . , (xn, jn)}.

Once a classification ruled(X) is constructed how do we define it’s accuracy?

In this section we will define thetrue misclassification rateR∗(d).

One way to estimateR∗(d) is to draw another very large subset (virtually infinite)
from the same population asL and observe the rate of correct classification in that
set. The proportion misclassified byd is our estimate ofR∗(d).

To make this definition more precise, define the spaceX × C as the set of all
couples(x, j) wherex ∈ X andj ∈ C. Let Pr(A, j) be a probability distribution
onX × C. Assume each element ofL is an iid outcome from this distribution.

We define the misclassification rate as

R∗(d) = Pr[d(x) 6= j|L] (10.3)

with (x, j) an outcome independent ofL.

How do we obtain an estimate of this?
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The substitution estimatesimply counts how many times we are right with the
data we have, i.e.

R(d) =
1

N

N∑
n=1

1d(xn) 6=jn .

The problem with this estimate is that most classification algorithms construct
d trying to minimize the above equation. If we have enough covariates we can
define a rule that always hasd(xn) = jn and randomly allocates any otherx. This
has anR(d) = 0 but one can see that, in general,R∗(d) will be much bigger.

Another popular approach is thetest sampleestimate. Here we divide the dataL
into two groupsL1 andL2. We then useL1 to defined andL2 to estimateR∗(d)
with

R(d) =
1

N2

∑
xn∈L2

1d(xn) 6=jn

with N2 the size ofL2. A popular choice forN2 is 1/3 ofN , the size ofL.

A problem with this procedure is that we don’t use 1/3 of the data when construct-
ing d. In situations whereN is very large this may not be such a big problem.

The third approach is cross validation. We divide the data into many subsets
of equal (or approximately equal) sizeL1, . . .LV , define adv for each of these
groups, and use the estimate

R(d) =
1

V

V∑
v=1

1

Nv

∑
xn∈Lv

1d(xn) 6=jn .

10.3.3 Constructing tree classifiers

Notice how big the space of all possible classifiers is. In the simple case where
X = {0, 1}p this space has2p elements.

Binary trees are a special case of this partition. Binary trees are constructed by
repeated splits of the subsets ofX into two descendant subsets, beginning withX
itself.
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The subsets created by the splits are callednodes. The subsets which are not split
are called terminal nodes.

Each terminal nodes gets assigned to one of the classes. So if we had 3 classes
we could getA1 = X5 ∪ X9, A2 = X6 andA3 = X7 ∪ X8. If we are using the
data we assign the class most frequently found in that subset ofX . We call these
classification tress.

Various question still remain to be answered

• How do we define truth?

• How do we construct the trees from data?
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• How do we assess trees, i.e. what makes a good tree?

The first problem in tree construction is how to useL to determine the binary
splits ofX into smaller and smaller pieces. The fundamental idea is to select each
split of a subset so that the data in each of the descendant subsets are “purer” than
the data in the parent subset.

This can be implemented in the following way

• Define the node proportionsp(j|t) to be the proportion of casesxn ∈ t
belonging to classj so that

∑
j p(j|t) = 1.

• Define a measure of impurityi(t) as a nonnegative functionφ such that it
reaches its maximum atφ(1/n, . . . , 1/n), φ(1, 0, . . . , 0) = 0, and is sym-
metric with respect to its entries.

A popular example is the entropy

i(t) = −
J∑
j=1

p(j|t) log p(j|t),

but there are many other choices.

• Define a setS of binary splitss at each node. Then we chose the split that
minimize the impurity of the new left and right nodes

∆i(s, t) = i(t)− pLi(tl) + pRi(tR)

There are many different possible splits. For continuous variables there are an
infinite amount. We need to define the set of splitsS that we consider.

Most implementations require that the the splits are defined by only one covariate,
but fancier versions permit the use of linear combinations.

If the covariate is continuous or ordered then the split must be defined byx < c
andx ≥ c.
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If the covariate is categorical then we simply consider all splits that divide original
set into two.
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Now all we need is a stopping rule and we are ready to create trees. A simple
stopping rule is that∆i(s, t) < δ, but this does not work well in practice.

What is usually done is that we let the trees grow to a size that is bigger than what
we think makes sense and then prune. We remove node by node and compare the
trees using estimates ofR∗(d).

Sometimes to save time and/or choose smaller trees we define a penalized criterion
based onR∗(d).
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The big issue here ismodel selection. The model selection problem consists of
four orthogonal components.

1. Select a space of models

2. Search through model space

3. Compare models

• of the same size

• of different sizes (penalize complexity)

4. Assess the performance of a procedure

Important points :

• Components 2 and 3 are often confused (e.g., in stepwise regression). That’s
bad.

• People often forget component 1.

• People almost always ignore component 4; it can be the hardest.

Better trees may be found by doing a one-step “look ahead,” but this comes with
the cost of a great increase in computation.

10.3.4 Regression Trees

If instead of classification we are interested in predicting we can assign a pre-
dictive value to each of the terminal nodes. Notice that this defines an estimate
for the regression function E(Y |X1, . . . , Xn) that is like a multidimensional bin
smoother. We call these regression trees.
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Regression trees are constructed in a similar way to classification trees. They are
used for the case whereY is a continuous random variable.

A regression tree partitionsx-space into disjoint regionsAk and provides a fitted
value E(y|x ∈ Ak) within each region.
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In other words, this is a decision tree where the outcome is a fitted value fory.

We need a new definitiond(x) andR∗(d).

Now d(xj) will simply be the average of the terminal node wherexj lies. Sod(x)
defines a step-functionRp → R.
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Instead of misclassification rate, we can define mean squared error

R∗(d) = E[Y − d(x)]2

The rest is pretty much the same.

10.3.5 General points

From Karl Broman’s notes.

• This is most natural when the explanatory variables are categorical (and it
is especially nice when they arebinary).

• There is nothing special about the tree structure...the tree just partitionsx-
space, with a fitted value in each region.

• Advantage: These models go afterinteractionsimmediately, rather than as
an afterthought.

• Advantage: Trees can be easy to explain to non-statisticians.

• Disadvantage: Tree-space is huge, so we may needa lot of data.

• Disadvantage: It can be hard to assess uncertainty in inference about trees.

• Disadvantage: The results can be quite variable. (Tree selection is not very
stable.)

• Disadvantage: Actual additivity becomes a mess in a binary tree. This
problem is somewhat alleviated by allowing splits of the formx1 + bx2 <
(≥) d.

Computing with trees

R: library(tree) ; library(rpart) [MASS, ch 10]
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An important issue: Storing trees

Binary trees are composed of nodes (root node, internal nodes and terminal nodes).

Root and internal nodes:

• Splitting rule (variable + what goes to right)

• Link to left and right daughter nodes

• Possibly a link to the parent node (null if this is the root node)

Terminal nodes:

• Fitted value

• Possibly a link to the parent node

C: Use pointers and structures (struct )

R: It beats me. Take a look.
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