Information and Posterior Probability Criteria for
Model Selection in Local Likelihood Estimation

Rafael A. IRIZARRY

Local likelihood estimation has proven to be an effective method for obtaining estimates of parameters that vary
with a covariate. To obtain useful estimates of such parameters, approximating models are used. In such cases it is
useful to consider window based estimates. We may need to choose between competing approximating models. In
this paper we propose a modification to the methods used to motivate many information and posterior probability
criteria for the weighted likelihood case. We derive weighted versions for two of the most widely known criteria,
namely the AIC and BIC. Via a simple modification, the criteria are also made useful for window span selection.
The usefulness of the weighted version of these criteria are demonstrated through a simulation study and an

application to three data sets.
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1. INTRODUCTION

Local regression has become a popular method for smoothing scatterplots and for nonparametric regression
in general. It has proven to be a useful tool in finding structure in datasets (Cleveland and Devlin 1988).
Local regression estimation is a method for smoothing scatterplots (x;,¥;), ¢ = 1,...,n in which the fitted
value at xq is the value of a polynomial fit to the data using weighted least squares where the weight given to
(xi,y;) is related to the distance between x; and x¢. Stone (1977) shows that estimates obtained using the
local regression methods have desirable theoretical properties. Recently, Fan (1993) has studied minimax
properties of local linear regression.

Tibshirani and Hastie (1987) extend the ideas of local regression to a local likelihood procedure. This
procedure is designed for nonparametric regression modeling in situations where weighted least squares is
inappropriate as an estimation method, for example binary data. Local regression may be viewed as a

special case of local likelihood estimation. Tibshirani and Hastie (1987), Staniswalis (1989), and Loader
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(1999) apply local likelihood estimation to several types of data where local regression is not appropriate
and find it provides useful information about the data.

In local likelihood estimation, we may need to select an approximating model for the local likelihood
structure. Automatic model selection criteria are desirable. In this paper we propose a way to modify
criteria, based on information theory and posterior probabilities, for selecting from amongst competing
models for cases where weighing observations for estimation purposes is desirable.

Section 2 gives a brief overview of local likelihood estimation. Section 3 reviews the concepts behind the
information and posterior probability criteria and develops criteria for weighted estimates as those used in
local likelihood estimation. As an example we develop weighted information criteria based on Akaike’s (1973)
AIC, Takeuchi’s (1976) TIC, and Bozdogan’s (1987) CAICF, and a posterior probability criterion based on
Schwarz’s (1978) BIC and Neath and Cavanaugh’s (1997) SIC;. In Section 4 we explore ways in which the
criteria developed can be extended so as to be used for window size selection. In Section 5 we illustrate the
usefulness of the weighted criteria via simulation studies. Section 6 presents examples of the criteria being

applied to two binary data sets and to a signal processing problem. Section 7 gives final remarks.

2. LOCAL LIKELIHOOD ESTIMATION

Suppose we have independent observations {(x1,¥1),---, (Xn,yn)} that are the realization of a response
random variable Y given a P x 1 covariate vector x which we consider to be known. Given the covariate
x, the response variable Y follows a parametric distribution ¥ ~ g(y|6) where 6 is a function of x. We are
interested in estimating 6 using the observed data.

The log-likelihood function can be written as
n
1(01,-.-,00) = 3 log g(yil6:) (1)
i=1

where 6; = s(x;). A standard modeling procedure would assume a parsimonious form for the 6;s, say
0; = x;8, B a P x 1 parameter vector. In this case the log-likelihood [(61,...,6,) would be a function of
the parameter 3 that could be estimated by maximum likelihood, that is by finding the B3 that maximizes

161, ..,6y).
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The local likelihood approach is based on a more general assumption, namely that s(x) is a “smooth”
function of the covariate x. Without more restrictive assumptions, the maximum likelihood estimate of
0 = {s(x1),...,5(x,)} is no longer useful because of over-fitting. Notice, for example, that for the case of
regression with all the x;s distinct, the maximum likelihood estimate would simply reproduce the data.

Suppose we are interested in estimating only 6y = 6(xg) for a fixed covariate value xq. The local likelihood
estimation approach is to assume that there is some neighborhood Ny of covariates that are “close” enough
to xp such that the data {(x;,y;)|x; € No} contain information about 6y through some link function n of

the form
6o = s(x0) = n(x0,8) and 6; = s(x;) ~ n(x;,8), for x; € No. (2)

Notice that we are abusing notation here since we are considering a different 3 for every xo. Throughout
the work we will be acting as if 6 is the only parameter of interest and therefore not indexing variables that
depend on the choice of x¢. However, in practice we find an estimate for each 8;,i = 1,...,n by repeating
the procedure for xg = x;,i =1,...,n.

The local likelihood estimate of 6y is obtained by assuming that, for data in Ny, the true distribution of
the data, g(y;|6;) is approximated by f(yi|xi, 8) = g(vi|n(x:, B)), finding the 3 that maximizes the weighted
log-likelihood

lh(B) = ) wilog f(yilxi,B), 3)

xi;€Ng

and then using Equation (2) to obtain what we will call the local likelihood estimate fo. In order to obtain
a useful estimate of 6y, we need B to be of “small” enough dimension so that we fit a parsimonious model
within Ng.

In (3) w; is a weight coefficient related to the “distance” between x¢ and x;. Throughout this paper we
will assume that the weight coefficients are obtained from some function w(s) satisfying Condition 1 shown
in the Appendix.

Hastie and Tibshirani (1987) discuss the case where the covariate x is a real valued scalar and the link
function, n(z;,3) = Bo + zif1, is linear. In this case the assumption being made is that the parameter

function s(z;) is approximately linear within “small” neighborhoods of zg, i.e. locally linear. Staniswalis
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(1989) presents a similar approach. In this case the covariate x is allowed to be a vector and the link function,
n(x;, B) = B, is a constant. The assumption being made here is that the parameter function s(z;) is locally
constant.

If we assume a density function of the form

log g(yil6:) = C + (yi — 6:)* /¢ (4)

where K and ¢ are constants that do not depend on the 6;s, local regression may be considered a special
case of local likelihood estimation. In this case the local likelihood estimate is going to be equivalent to the
estimate obtained by minimizing a sum of squares equation. The approach in Cleveland and Devlin (1988)
is to consider a real valued covariate and the polynomial link function 7(x;,3) = Z?:o :L-i Bj-

In general, the approach of local likelihood estimation, including the three above-mentioned examples,
is to assume that for “small” neighborhoods around xg, the distribution of the data is approximated by a
distribution that depends on a constant parameter 3(Xg), i.e. we have locally parsimonious models. This
allows us to use the usual estimation technique of maximum likelihood. However, in the local version of
maximum likelihood we often have an a priori belief that points “closer” to x¢ contain more information

about 6y, which suggests a weighted approach.

3. MODEL SELECTION

Suppose we observe a realization of a random variable with distribution as defined in the previous section,
and suppose we are interested in estimating 6y = s(x¢), for some covariate xq, with a local likelihood
approach. For a neighborhood Ny around the covariate xo, we approximate the joint distribution of the

response variable Y = {Y;; z; € Ny} with

o) ~ [ fwilxiB) = fv(y1X,8) (5)
x;€Ng
where X is a matrix with row entries x; € No and 3 = (B1,...,08p)' € RY is a P x 1 parameter vector.

Notice that we are suppressing the s and using gy (y) to represent the true distribution of Y.
The local likelihood approach is to estimate (3 in order to obtain an estimate of 8. However, suppose

that before doing so we need to choose from amongst competing approximating models. For example, in
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local regression, when the covariate is a real valued scalar, we may need to decide if we should fit a constant,
linear, or quadratic function of z.

We will consider the situation where we are choosing from amongst P competing models generated by
simply restricting the general parameter space RY in which 3 lies. In terms of the parameter, we represent

the approximate models as

MIJ = {fY(Y|X7ﬂ) = H f(yi|xi>13);/3 € QIJ} (6)
z;ENg
with €, the sub-space of RF defined by the following restriction: Q, = {8 € RF : 8,11 =... = 8p = 0}.

We will refer to p as the number of parameters in the approximate model.

Given that we have chosen a particular model, say M,, we can find the ﬁp that minimizes the weighted
log-likelihood (3). Now, if instead we choose another model, say M,, and obtain Bq how do we compare
these two estimates? Which one is better? As we will see in the next section, using (3) as a criterion is not

practical. In this paper we develop criteria aimed at answering these questions.

3.1 Information Criteria

We wish to select the approximate model, defined by (6), that is “nearest” to the true model, defined by
(5), based on the observed data y. The principle behind information criteria is to define “nearest” using the
Kullback-Leibler discrimination information (Kullback 1959)

K{gv(y): x(y1X,8)} = /gy (y)log #(XY)B) dy. (7)

As done by Sawa (1978), we say that M, is the “nearest” or best approximating model amongst the models
defined by (6), if and only if infﬂeﬂq K{gv(y): fx(y|X,8)} < infyeq, K {gv(y) : fr(y|X,7)} for any
1<p#q< P

Assuming that gy (y) belongs to the set of competing models defined by (6), Akaike’s (1973) Information
Criterion (AIC) was developed in order to use observed data to estimate the true model. Takeuchi (1976)
developed the TIC, a generalization of AIC to situations where the fitted model is not necessarily properly
specified (Takeuchi (1976) is in Japanese, other references are Kitagawa (1987) and Shibata (1989)). Akaike’s

original work is for independent identically distributed (IID) data, however it is extended to a regression
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type setting in a straight-forward way (Hurvich and Tsai 1989). The approach is to choose the approximate
model producing the estimate ﬁp that minimizes Fvy [K { gy (y) : fy(y|X, J¢ ») H with the expectation taken

under the true distribution of the Y. Since the first term on the right hand side of (7) is constant over all

models, we may instead minimize the second term which can be written as

EY{ > —/g(yiwz') log f (yilxi, By) dyi}- (8)
x; ENg

Information criteria are obtained by constructing asymptotically unbiased estimates of (8).

Criteria such as AIC/TIC have been criticized for providing an estimate of (8) that is too simplistic.
Furthermore, these criteria do not produce asymptotically consistent estimates of the correct or best ap-
proximating model. Several authors have proposed ways to obtain better approximations of this quantity.
For example, Bozdogan (1987,1994) has developed the information-based complexity criterion (ICOMP),
the inverse-Fisher information matrix criterion (IFIM), and the consistent AIC with Fisher Information
(CAICF). For the case of normally distributed data, Hurvich and Tsai (1989) developed a “corrected” ver-
sion of AIC and one of the referees suggested a corrected version of CAICF. These corrected criteria provide
a significant improvement when the number of parameters of the true model p is close to the number of
observations n.

Because we are assuming a priori knowledge that there is more information about the parameter 8y for
data points associated with covariates “near” xg, it seems appropriate to consider a discrepancy measure
that takes this into account. In this paper we propose the use of a weighted version of the Kullback-Leibler
discrimination information (Gokhale and Kullback 1978) and use this to derive appropriate model selection

information criteria.

3.2 Weighted Information Criteria

Because in local estimation we are interested in estimating only 6y, we say, as done by Sawa (1978), that

ﬁ is a better estimate than 4, if and only if

Ev[K{g(0l6o) : f(yolx0,8)}] < Ev[K{g(yol6o) : f(yolx0,%)}]- 9)

with the expectation taken under the true distribution of the Y.
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In practice we usually have only one realization of Y, and thus we consider a discrepancy measure based
on a weighted version of the Kullback-Leibler discrimination information that leads us to weighted maximum
likelihood estimation that uses the data in Ny. Analogous to Section 2, the approach is to choose the model

producing the estimate ﬁp that minimizes

EY{ > _wi/g(yi|0i) log f(y,-lx,-,Bp)dyi}. (10)

x; ENg

As in Akaike (1973), we notice that the sample version of (10), 3=, ., —wilog f(yi|xs, B,) = —lo(B,), will
underestimate (10). In general, the larger p, the more lo(83) underestimates (10) making lo(3,) a criterion

that will favor larger models. We use Theorem 1 below to obtain an estimate of this bias.

Theorem 1. For any xo there exists an appropriate sequence of neighborhoods Ny, such that under
Conditions 1-4, presented in the Appendix, and with the coefficients w; obtained from a weight function

satisfying Condition 5, also in the Appendix, we have that

Ev<lb(By) - > w,-/g(y,vlt%) log f(yilxi, Bp) dyi p = tr {I(B,)Tn(B,) "} + 0(1)

x;ENo,n
with

1.(8) = By l{%w)} {%W)}'] and J(8) = By [%gﬁ,zo(ﬂ)] (1)

and (3, defined by Condition 3 in the Appendix. See the Appendix for a discussion of the theoretical
justification of this theorem.
Theorem 1 provides a way to obtain a bias corrected estimate of (10). We may then choose the model M,

producing the estimate ﬁp that minimizes the following model selection criterion:

WAIC(p) = —2lo(B,) + 2tr {1,(8,)Jn(8,) '} . (12)

In practice we may not be able to obtain tr {I,, (8,)Jn(8,) " }. For the equally weighted case, many criteria

have been developed by considering different ways of estimating this quantity (Ljung and Caines (1979),
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Chow (1981), Shibata (1989)). For simplicity, in this paper we propose using a sample version substituting

In(ﬁp) with fn,p = {%lo(ﬁp)} {%lo(ﬁp)} and Jn(ﬂp) with jn

62

’pE aﬂaﬁllO(ﬂp) (13)

Notice that if w; = 1 for all 4 and the Ny include all the data for all n, Theorem 1 reduces to the result
obtained by Takeuchi (1976) and WAIC = TIC, the criterion proposed by Takeuchi. Furthermore, if gy (y)
is included in one of the models defined by (6) then I,,(3,) = Jn(83,) and tr {I,(8,)J.(8,) " } = p reducing
WAIC to AIC.

The WAIC can be criticized, similarly to the AIC, for providing an approximation to the bias of lo(,@p)
that is too simplistic. Furthermore, the WAIC does not produce asymptotically consistent estimates of
the best approximate model. However, improvements can be easily obtained by developing the weighted
version of criteria that improve AIC. For example, Bozdogan (1987) develops a modification to the AIC that
provides a criteria that produces asymptotically consistent estimates of the correct model (this is under the
assumption of IID data and that the correct model is one of the competing models). Corollary 1, based on

the derivation of Bozdogan (1987) and presented in the Appendix, motivates the following weighted criteria

WCAICF = —21o(3,) + 2tr {I,(8,)Jn(B8,) "} +logdet {~J,.(8,)} . (14)

If we consider the equally weighted case then, under the assumptions made by Bozdogan (1987), we have
tr {I.(8,)Jn(B,) '} = p and logdet {—Jn(8,)} = plogn + logdet{—J(8,)}, with J(83,) the matrix of
second partials of the likelihood based on one observation, and the WCAICF reduces to the CAICF. In
practice, as for the WAIC, we substitute I,,(3,) and J,(83,) with the sample versions given in (13).

Notice that the penalty added to the WAIC by the WCAICF is the sum of the log of the eigenvalues of the
weighted information matrix. In a way, this measures how much information about the non-zero components

of the parameter 3, is available in the data.

3.3 Posterior Probability Model Selection

A Bayesian-type approach for model selection was first suggested by Schwarz (1978). This approach is
based on assigning a prior probability to each model, assigning a prior distribution to the parameter vector

conditional on the model, and maximizing the posterior probabilities of the alternative models, given the
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observations. Schwarz considers only IID data, but the ideas are easily extended to other situations as done
by and Kashyap (1982). In particular, Neath and Cavanaugh (1997) consider the case of regression.

To derive a posterior probability criterion that takes weights into account, we start by considering the
approximation given by (5) to actually hold true. We act as if fy (y|X, 3) is the distribution of Y within the
neighborhood Ny. We then let Pr(M,,) be the prior probability of model M), being correct, and pu(3|M,) the
prior density for the parameter vector 3 conditioned on M, being correct. Notice that u(B3|Mp) is positive

only if B € Q,. By Bayes’ theorem the posterior probability of M, being the correct model is

Pr(M,) [, fv(y|X, B)u(BIM,) dB
Yoot Pr(My) fo fx(vIX, B)u(BIM,) dB’

Pr(M,|Y =y) = (15)

Since the denominator depends neither on the model nor on the data, we need only to maximize the numerator
when choosing models. Furthermore, in this paper we will consider only a uniform prior for the models, so
Pr(M,) is a constant that doesn’t need to be considered when maximizing the numerator.

Similar to the way we generalized information criteria to derive the WAIC, we obtain a weighted version
of BIC by considering a weighted version of (15). In this case the numerator of the posterior probability
that we look to maximize is

/Q eXp{ > w,-logf(yilxi,ﬁ)}u(ﬂIMp)dﬂ.

x;E€No
The following theorem gives us an approximation of this quantity.

Theorem 2. If each model has positive prior probability Pr(M,) and the assumption of Theorem 1 hold

then

2

log /Q,, exp {Z w; log f(yi|Xi7/3)} 1p(BIMy) dB = 1o(B,) — %log det {—Wlo

i=1

(B} + 0.

See the Appendix for a discussion of the theoretical considerations needed to prove this theorem.

Theorem 2 motivates using a posterior probability criterion of the form

WBIC(p) = —2lo(8y) + logdet { ~Ju,, } . (16)
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If we consider the equally weighted case then WBIC reduces to Neath and Cavanaugh’s SICy. Furthermore,
if the components of Y are IID then log det{—jn,,,} = plogn + logdet{—J (ﬁp)} which is asymptotically

equivalent to plogn the penalty term of the BIC. Here J(3,) is defined as in the previous section.
Notice that in practice the penalty terms of the WBIC and WCAICF differ by tr {fn,pj,; ;J}, which will be

negligible compared to log det{—jn,p} for large n. The fact that the WBIC and WCAICF are asymptotically

equivalent is corroborated by the simulations in Section 5.

4. EXTENSION TO WINDOW SIZE SELECTION

We have assumed that the functional parameter 8 defining the distribution of Y depends on the regression
variable x. At this moment we are interested only in estimating a given 6y associated with the covariate
xo. We have proposed using local likelihood estimation. If we were also trying to choose “optimal” window
coefficients w; in equation (3), we could define “optimal” as the coefficients that produced the best estimate
fo as defined by (9) or equivalently as the estimate minimizing Ev{— [ 9(yo|6o) log g(yo|é0) dyo}. However,
there may be only one observation yo to be used to estimate this quantity. In Section 3.2 we proposed
a criterion used to compare estimates obtained by fitting approximate models, with different number of
parameters, to neighborhoods of the data. The same weight coefficients were used when computing these
estimates. Now we want to compare estimates obtained using different weight coefficients. The criteria
developed in the previous sections are not appropriate since estimates using “heavier” weight coefficients or
more non-zero coefficients would produce larger values of the criteria. This problem may be easily resolved
by dividing by the total weight used in the estimation Wo = 7| w;.

Intuitively, we argue that the weighted average information (10) is an estimate of the “true” information

quantity in the following way:

Ey {—/g(yo|00)logg(yoléép))dyo} ~ WLOEY{ > —wi/logg(yil&)f(yilxz-,ﬁp) dyi}

x; €Ng

with ) the estimate obtained from 3, using (2).
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Similarly, for the Bayesian approach

log /ﬂp F(yolx, B)u(B|Mp) dB ~ WLO log /Qp exp {; w; log f(yi|xi,ﬂ)} (8| M,) dB.

Because we have limited knowledge of the global behavior of the function 6(x), we might want to consider
different weight coefficients depending on how much importance we want to give to certain parts of the data.
In general, it seems appropriate to weigh the central values more heavily. The question is then what portion
of the data is given “significant” weight.

A convenient way to assign weights is by choosing a weight function w(s) satisfying Condition 1 and
considering different values of the span or window size h to define w;(h) using (23). Then, for each h we will
have a different estimate for each model M, Bp(h). This in turn defines estimates é(()p ) (h) of §y each with
a total weight, Wo(h) = Y7, wi(h), associated with it. We want to choose the best estimator according
to (9). The information criteria developed for deciding on the order of the approximate model to be used
may be extended to decide on what span or window size to use by basing our estimate on the average
weighted log-likelihood lo{3,(h)}/Wo(h). The weighted criteria are then: WAIC(p, h) = WAIC(p)/Wo(h),
WCAICF(p, h) = WCAICF (p)/Wy(h), and WBIC(p, h) = WBIC(p)/Wy(h) with WAIC(p), WCAICF(p)
and WBIC(p) defined by (12), (14), and (16) respectively. Notice that these criteria penalize for both large

values of p and small values of h.

5. A SIMULATION STUDY

5.1 Bozdogan's simulation

As in Bozdogan (1987) we define the n component random variable
Y; = B + Bomi + B3x? + fuzi + €5, =1,...,n

with B = (1,5,—1.25,0.15), z; = i and the ¢; independent normal with mean 0 and variance o2. We consider
0n/2 = E(Y,/2|25/2) to be the parameter of interest. We compute the local likelihood estimates of 6,5, using
Tukey’s triweight function, and consider the competing models to be polynomials of order 0 through 6, which

define models with dimension 1 through 7 respectively.
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Table 1. Percentage of times each dimension is chosen by each criteria in 1000 replications for varying sample size n and variance o2.

Estimated Dimension Estimated Dimension
3 4 5 6 7 Exprmnt  Crit 3 4 5 6 7

—
N
—_
N

Exprmnt Crit

AIC 678 164 106 5.2 AIC 65.9 169 112 6

AlC, 7115 99 41l AlC, 705 15 10 45

WAIC 762 8 51 107 WAIC 767 74 36 123

n=50  BIC 712 8 3 n=50 BIC 756 127 82 35
02=025 SICy 99 08 02 0 o2=5 SICy 992 06 02 0
WBIC 100 0 0 0 WBIC 100 0 0 0
CAICF 995 03 02 0 CAICF 997 03 0 0
CAICF, 995 03 02 0 CAICF, 997 03 0 0
WCAICF 100 0 0 0 WCAICF 100 0 0 0

AlC 68.2 133 121 6.4 AlC 712 135 111 42

AlC, 70 13 111 59 AlC, 724 134 104 38

WAIC 722 78 98 102 WAIC 732 7 94 104

n = 100 BIC 80.8 9 7.2 3 n =100 BIC 823 9.1 6.7 1.9

OO OC oo OoOo oo OO O OO OOoOOoOOo OO OO oo OoOoo
OO OC OO OO oo OO O OO OOOoOOoO OO OO OO OOoOOoO
[=NeNeNelNeNeNolNoNol [=NeNeNoNoNoNoNo o] [=NeNeNeNoNeNoNoNo]
[=NeNeleNeNelolNoNol [=NeNeNeoloNoNoRe o] [=NeNeNeloNeNoReNe]
OO OC OO OO oo OO O OO OOOoOOoO OO OO OO OOoOOoO
[=NeNeNeNeNeNolNolNe) [~NeNeNeNeNeNeNe Nl [=NeNeNelNeNeNeNe Nl

02=05 SICs 997 02 01 0 o2=5 SICs 882 67 45 06
WBIC 100 0 0 0 WBIC 100 0 0 0
CAICF 100 0 0 0 CAICF 100 0 0 0
CAICF, 100 0 0 0 CAICF, 100 0 0 0
WCAICF 100 0 0 0 WCAICF 100 0 0 0
AIC 688 148 108 5.6 AIC 684 143 115 58
AIC, 69.4 147 106 53 AIC, 69 143 113 54
WAIC 69 68 158 84 WAIC 692 72 157 79
n=200 BIC 837 86 58 19 n=200 BIC 839 78 66 17
c?=1  SICy 997 01 02 0 ¢>=5 SICy 999 01 0 0
WBIC 100 0 0 0 WBIC 100 0 0 0
CAICF 999 01 0 0 CAICF 100 0 0 0
CAICF, 999 01 0 0 CAICF, 100 0 0 0
WCAICF 100 0 0 0 WCAICF 100 0 0 0

For this example the likelihood is of the form of equation (4), therefore local likelihood is equivalent to

weighted least squares and we can construct the penalty terms for the weighted criteria using
tr {I,(8,)Jn(8,) '} = tr {X'WWX)(X'WX) '} and logdet {—J,,(8,)} =logdet(X'WX)/o?,(17)

with X the regression matrix used in the local regression and W a diagonal matrix with entries W; ; = w;.

Table 1 presents the percentage of times each of the competing models is chosen by various criteria in 1000
simulations. Six experiments consisting of various values of 62 and n are performed. The tables show that
the weighted versions are choosing the correct model (dimension of 4) more frequently than their equally-
weighted counterparts, i.e. WAIC outperforms AIC, WBIC outperforms SIC; and BIC, and WCAICF barely
outperforms CAICF. Notice that in all experiments the WCAICF and WBIC are the only criteria to choose
the correct model 100% of the times. However, the improvement is not remarkable. This is because in this
example using weighted estimates is not warranted. In fact, the least squares estimate obtained by setting
w; = 1 for all ¢ has smaller MSE (for normal errors, considering (9) is equivalent to considering the MSE)

than the weighted version. However, the idea of the simulation is not to show the usefulness of weighted
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estimates, but rather to test the criteria developed in the previous section through a simulation found in
the model selection literature. We now consider 3 simulations where weighted estimates actually present an

advantage.

5.2 Local Regression Simulation

Consider the case where we are given observations from the following model

Yi=s(z;) +e€,i=1,...,n

with €; independent normal with mean 0 and variance 02, z; € Ng,i = 1,...,n known covariates, and s(z)

a “smooth” function shown in Figure 1.

Figure 1. Mean function s(z) shown with dark line, weight function shown with dotted line, and 101 simulated data points.
In this ezample we use s(z) = 2cos(z) and o = 7/2.

In practice we don’t know s(z) and we may use local regression to obtain an estimate. For this simulation
we consider g = s(zg) to be the parameter of interest with xo shown in Figure 1. Superimposed, in Figure
1, is the weight function to be used. In practice, for example when using the function loess in S-Plus, we
are given the choice of locally fitting a constant, a line, or a parabola. We add the option of a cubic function
for illustrative purposes. Using (9) we find that fitting a line produces the best estimate. Notice that at a
visual level, it seems that a cubic polynomial would fit better than a straight line. However, since the points
with z € (0.5, 3) receive “most of the weight” it turns out that fitting a line is in fact the better alternative.
Order 2 is thus considered the correct choice in Table 2, which presents the same information as Table 1

but for the simulation described in this section. In this example we notice that the weighted criteria clearly
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outperform their equally-weighted counterparts. The WBIC and WCAICF perform best in all experiments

except for n = 50 and ¢ = 5, in which case WAIC performs best.

Table 2.Percentage of times each approximate model is chosen by each criteria in 1000 replications for varying sam-
ple size n and variance 2.

Estimated Dimension Estimated Dimension
Experiment  Criterion 1 2 3 4 Experiment  Criterion 1 2 3 4
AIC 116 164 298 422 AIC 272 288 29.1 149
AIC, 117 166 296 421 AlC. 277 289 288 146
WAIC 0 624 113 263 WAIC 35 709 134 122
n=50  BIC 151 184 277 388 n=50  BIC 428 2717 217 7.8
o?=1  SICy 341 266 22 173 o?=5  SICy 741 224 35 0
WBIC 0 999 01 0 WBIC 386 614 0 0
CAICF 428 245 199 1238 CAICF 797 188 15 0
CAICF, 431 246 197 126 CAICF, 798 187 15 0
WCAICF 0.1 998 0.1 0 WCAICF 456 544 0 0
AIC 77 43 229 651 AIC 103 258 357 282
AIC. 78 44 229 649 AlC, 103 259 358 28
WAIC 0 501 74 425 WAIC 02 703 135 16
n=100 BIC 119 55 219 607 ~n=100 BIC 157 297 331 215
o2 =1 SICy 196 81 224 499  ¢g%Z=5  SICs 40 398 188 1.4
WBIC 0 999 01 0 WBIC 6.8 931 0.1 0
CAICF 21.8 87 217 4738 CAICF 476 385 132 07
CAICF, 22 88 217 475 CAICF, 477 385 131 0.7
WCAICF 0 100 0 0 WCAICF 82 918 0 0
AIC 133 1.8 9 759 AIC 158 14 289 413
AIC, 134 1.8 9 758 AlC, 158 14 289 413
WAIC 0 369 3 601 WAIC 0 664 97 239
n =200 BIC 159 2 85 736 n=200 BIC 196 151 276 377
o? = SIC 217 21 74 688 o2=5  SIC 315 22 246 219
WBIC 0 100 0 0 WBIC 04 996 0 0
CAICF 233 21 69 677 CAICF 36.4 229 225 182
CAICF, 233 21 69 677 CAICF, 364 229 225 182
WCAICF 0 100 0 0 WCAICF 06 994 0 0

5.3 Local Logistic Regression Simulation

We now perform a simulation with Y;,7 = 1,...,n independent Bernoulli random variables with

0; = Pr(Y; = 1|z;), with log (1 f’9> = s(=z;).

As in the previous simulation, we consider 6y to be the parameter of interest with s(z) and zy those shown
in Figure 1. We use local logistic regression with the choices of locally fitting a constant, a line, a parabola,
or a cubic function. According to (9), fitting a line is the correct choice, as in the previous simulation. In
Table 3 we present the relevant results. We don’t include the AIC, and CAICF, because they are developed
for normal random variables. In this example we also see the weighted criteria outperforming their equally

weighted counterparts with the WBIC and WCAICF performing the best.
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Table 3.Percentage of times each approximate model is chosen, in local likelihood estimation, by each criteria in 1000 replications
for varying sample size n. To avoid sparseness we consider larger n than in the previous two simulations.

n = 100 n = 200 n = 500
Estimated Dimension Estimated Dimension Estimated Dimension
Criterion 1 2 3 4 Criterion 1 2 3 4 Criterion 1 2 3 4
AIC 3.9 46.2 335 164 AIC 8.1 265 354 30 AIC 36 186 276 50.2
WAIC 0 716 153 131 WAIC 0 67.7 124 19.9 WAIC 0 59 10 31
BIC 4.8 535 295 122 BIC 9.1 296 348 265 BIC 45 195 279 48.1
SIC 144 709 137 1 SICy 153 426 309 112 SICy 57 243 286 41.4
WBIC 1 99 0 0 WBIC 0.1 99.8 0.1 0 WBIC 0 100 0 0

CAICF 181 707 108 04  CAICF 186 449 277 8.8  CAICF 65 246 284 405
WCAICF 3 97 0 0 WCAICF 01 998 0.1 0 WCAICF 0 100 0 0

5.4 Signal Processing Simulation

In this section we perform a simulation motivated by one presented by Ohtaki (1985), but modified to
imitate a problem arising in signal processing similar to the example studied in Section 6.2. We define the

n component random variable

2
Y; = s(t:) +€i,i =1,...,n, with s(t) = > pro cos{2rkA(t)t + b0} (18)
k=1

with ¢; = /44100 and ¢; independent normal with mean 0 and variance 1. We consider ¢ € (0,0.040), i.e.
n=1764, and let A(t) be constant and equal to 660 Hz for ¢ € (0,.025] and gradually changing to 832 Hz for
t € (0.025,0.040). We can think of ¥ as a digital sample (sampled at 44100 Hz) of a 40 millisecond segment
of a sound signal produced by an instrument, with timbre defined by the ps and s, playing an F' note for

25 milliseconds and then bending to Fff. Figure 2 shows the simulated signal.

200

100

-100

0 10 20 change of note 30 40
Time in Milliseconds

MSE Criteria for K=2

50.00
0.50

5.00

0.50
0.05

0.05
0.01

25 5 10 20 25 5 10 20
Window size in milliseconds Window size in milliseconds

Figure 2. Simulated sound signal with w(t;h) superimposed for various values of h. The weight function that is slightly darker
has the “optimal” window size. MSE of estimates obtained for K = 2 plotted against window size. Average values of model
selection criteria against window size.
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We are interested in estimating s(to), or equivalently the pg s, ¥r,0s and A(tp), with ¢ = 0.02. As
described in Section 6.2, most estimation techniques used in the signal processing literature are equivalent

to local likelihood estimation with (2) defined by

K

0; = s(t;) =~ n(t;, B) = Zpk cos(kAt; + iy,) for t; € Ny (19)
k=1

with 8 = (p1,¢1,..., pk, ¥k, A) and Ny an appropriately sized segment of the signal. Since A is constant,
(19) defines approximate models for (18). A model selection problem is to choose a K and a window size.

In this simulation, we consider various weight functions by defining w(t; h) = ¢{3 x (t — 0.02)/h} with ¢
the standard normal density. Since ¢(s) ~ 0 for s > 3 we call h the window size. In Figure 2 we superimpose
weight functions obtained for various values of h. Using (9) we find that the best choice of window size
is about h = 12 milliseconds with K = 2, which agrees with our intuition since the note change occurs 5
milliseconds after to and K = 2 is the actual number of sinusoidal components in (18). In Figure 2 we see a
plot of MSE against h of the estimates obtained using K = 2. The worst estimates occur for window sizes
larger than 12. The MSE slowly increases as the window sizes become smaller than 12.

We create 5000 simulated signals and minimize WAIC, WBIC, WCAICF, and their unweighted counter-
parts to choose between K = 1,2, or 3 and amongst various values of h. Because n is relatively large we do
not include AIC. and WCAICF.. Table 3 shows the percent of times each criteria chooses values of each

K. We subdivide these totals into percentage of times the criteria choose 12 < h, 6 < h < 12, and h < 6.

Table 4.Percentage of times each approximate model is chosen subdivided into 3 different regions of chosen win-
dow sizes in 5000 simulations.

Dimension K=1 K=2 K=3

Criterion  12<h 6<h<12 h<6 Tot |12<h 6<h<12 h<6 Tot |12<h 6<h<12 h<6 Tot
AlC 0 0 0 0 0 0 30 30 0 0 70 70
WAIC 0 0 0 0 0 8 45 53 0 7 40 47
SICs 0 0 0 0 0 0 28 28 0 0 72 72
WBIC 0 0 0 0 0 79 18 97 0 2 1 3

CAICF 0 0 0 0 0 0 0 0 0 0 100 100
WCAICF 0 0 0 0 0 87 12 99 0 1 0 1

Based on the MSE, we characterize these choices as window size that are: too large, appropriate, and too
small respectively. Notice that the equally weighted criteria consistently choose h that are too small. The
WCAICF and WBIC choose the correct K more than 97% of the time. They also perform quite well at

choosing appropriate window sizes. The WAIC outperforms the equally weighted criteria, but is inferior
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to the other two weighted criteria. Figure 2 also shows the average values (scaled to fit in same plot) of
the different criteria obtained for K = 2, plotted against h. We see that all the weighted criteria have a
minimum near the optimal window size of 12 and that the reason the WCAICF and WBIC outperform the

WAIC is that the latter’s penalty for small windows is not “strong” enough.

6. EXAMPLES

6.1 Weighted Logistic Regression

An advantage of local likelihood over local regression is that it is applicable in situations with non-
continuous data. Tibshirani and Hastie (1987) and Loader (1999) present examples of local likelihood
estimation applied to binary data. The model they consider assumes the binary observations are the outcomes
of independent Bernoulli random variables Y;,i =1,...,n with probability of success p;. Both consider age
as one of the covariates of interest and use local likelihood estimation to get an estimate of p;,i = 1,...,n.
For a given age zo an appropriate neighborhood N is chosen and a linear function of age is fitted using (2)

as follows
0; = 1(pi) = (s, B) = Bo + x4, for z; € No (20)

with I(p;) = log{pi/(1 — p;)}. The B that minimizes the weighted log-likelihood

lo(B) = Y wilyi(Bo +if1) —log {1+ exp(Bo + z:61)}] (21)

z;ENp

is used to obtain an estimate of py = 171(6).

In (20) instead of a linear function of age, we may fit a constant n(z,3) = Bo or a quadratic function
n(z,B) = Bo + B1x + B2x2. Weighted criteria may be used to help us make this decision. Furthermore, we
may use the criteria to decide on a span or size of the neighborhood Ng.

In this case, the penalties needed to construct the criteria are
tr {I,(8,)Jn(8,) '} = tr {X'WVWX)(X'WVX) ')} and logdet {—J,,(8,)} =logdet(X'WVX)

where X is the design matrix used in the local regression, W is a diagonal matrix with entries W; ; = wj,

and V the diagonal variance matrix with entries V;; = I=1{n(x;, 8,) }[1 — 1" {n(xs, B,)}]-
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Figure 3. Values obtained for WAIC, WCAICF, and WBIC when using different window sizes and approzimate models and
final local likelihood estimate for a mortality data set.
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Figure 4. Values obtained for WAIC, WBIC, and WCAICF when using different window sizes and approzimate models and
final local likelihood estimate for a clinical trial data set.

For the mortality data presented in Loader (1999), we fix the covariate of interest at 2o = 77 and find the
estimate of §y using various window sizes when fitting a constant, linear, and quadratic function. In Figure 3
we see the resulting WAIC, WBIC, and WCAICF. The equally weighted counterparts are not shown because
they all choose the smallest window size considered, which is not practical since estimates would reproduce
the data. The minimum of WAIC and WBIC is obtained by fitting a quadratic function with a window
size of 45 years. WCAICF chooses a linear function with the same window size. All criteria have a local
minimum near a window size of 13 years when fitting a constant function and near a window size of 15 years
when fitting a linear function. It is encouraging to see the criteria automatically choosing smaller models for

smaller window sizes. In Figure 3 we also see the final local likelihood estimates of p;,i = 1,...,n obtained
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when using the models and window sizes chosen by the criteria. Except for slightly different predictions for
older ages, the resulting estimates are quite similar.

A similar analysis is performed for the clinical trial data presented in Tibshirani and Hastie (1987). In
Figure 4 we see the values of the weighted criteria obtained for the three competing models at the different
window sizes. The minimum for the WAIC occurs at window size 23 when fitting a constant function, the
minimum for the WBIC is at window size 12 when fitting a constant, and the WCAICF chooses the largest
window size of 49 when fitting a constant. In Figure 4 we also see the final local likelihood estimates of

pi,i =1,...,n obtained when using these choices.

6.2 Application in Signal Processing

The study of musical sound has become a popular research field within signal processing. Stochastic
harmonic regression models, y; = s(t;) + €(¢;), have been used to analyze musical sound waves. Harmonic
parameters in sound analysis models are considered to be time-varying; it is thus useful to consider window

based estimates when performing estimation. See Rodet (1997) for details.
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Figure 5. WAIC and WBIC plotted against pairs of number of parameters and window sizes.

The estimation procedures presented in current sound analysis research are based on the assumption that
short segments of the acoustic signal, called time-frames, it may be considered to follow a deterministic

harmonic signal plus stochastic noise model. Estimates for the deterministic part of the signal at a given



Rafael A. Irizarry: Model Selection for Local Likelihood 20

time ¢ty are found using weighted least squares estimation, which implies that we may view the procedure
as a case of local likelihood estimation with (2) now defined as in (19). As mentioned in section 5.4, two
model selection problems are choosing the number of partials K to include in the approximate model and
the window size h of the time-frames considered for estimation purposes.

We apply our procedure to the sound signal of a clarinet. Previous estimation procedures usually fit
approximate models with many parameters (K > 50) to short time-frames (around h = 2 milliseconds).
Arbitrarily fitting too many parameters to small amounts of data may result in estimates that are hard to
interpret. The weighted criteria developed in this paper provide a data driven procedure for choosing from
amongst the different possible estimates obtained using different window sizes and values of K. In Figure
5 we see a contour plot of the values of the WCAICF when considering windows sizes between 9 and 50
milliseconds and fitting models with K = 1,...,48. The pairs chosen are K = 15 (31 parameters) and h = 18
milliseconds. The estimates obtained by using the model and window size chosen by the WCAICF are also
shown in Figure 5. Notice how well the estimates fit the data (the original signal has a range of about 25,
the residual’s range is about 0.5). The WBIC produces similar results. The WAIC chooses K = 16 and
window size of 11 milliseconds. The equally weighted criteria all choose the smallest window size considered.

For this particular case we can show that the penalty in (12) and (16) can be well approximated with

2(K + 1)% and 2K10g/w(s) ds

respectively, with w(s) the weight function, making the procedure computationally fast.

7. CONCLUSIONS AND EXTENSIONS

We have presented model selection criteria to be used in local likelihood estimation. They were developed
as weighted versions of well known criteria, namely AIC, BIC, and CAICF. However, we believe that most of
the information and posterior probability criteria presented in the model selection literature can be extended
to weighted versions, intended for use in local likelihood settings, in similar ways to the ones presented in

this paper.
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The theoretical results used to justify the criteria are based on an asymptotic approximation. However,
simulations show that the WBIC works well in many situations dealing with finite samples. The WAIC
does not seem to work as well, but a rather simple modification leads us to the WCAICF which, simulations
demonstrate, works as well or better than the WBIC. This is not surprising since, in practice, the two criteria
are essentially equivalent for large n.

In the simulations, the WAIC did outperform the WBIC and WCAICF in one particular instance: a small
sample with large variance. The main difference between the WAIC and the other two is the det log —jn,p
term defined by (13). This can be become the dominant term of the criteria in some cases with small n.
Consider the case of simple linear regression with normal errors. The detlog —jn,p term grows with the range
of the covariates. With large enough variance the difference between the lO(,é)s obtained for different models
can be small enough to make det log —jn,p the dominant term resulting in under-fitting. Given a particular
application, one should examine the behavior of this term to avoid under-fitting. It is also important to
consider that the appropriateness of det log—jn,p as an estimate of J,(3,) will depend on how close the
approximate models are to the generating model. These and other factors, such as the value of parameters
and the size of the largest approximate model, can affect the performance of model selection criteria. See
Soofi (1997) for a thorough discussion with illustrative examples. Given the broad spectrum of possible
applications it is beyond the scope of this paper to give a complete set of guidelines for when each criteria
should be used. We can, however, discuss some of our experiences with the application of these criteria.

In the applications presented in Section 6.1 we consider the largest window size to be one that would
include all of the covariates. However, Figures 3 and 4 seem to suggest that the criteria will choose larger
window sizes if these are permitted. Moreover, if the largest window is restricted, say to 30 or less, the
criteria would choose smaller window sizes. In practice we can never consider all possible window sizes and
all possible approximate models. Scientific knowledge of the problem should be considered in conjunction
with the data-driven criteria. As suggested in part by the simulations, this is especially important when n
is relatively small, which is the case in these two examples. Yet in many situations we can argue, from a
practical point of view, that we are only interested in certain window sizes. For example, for the data in
Tibshirani and Hastie (1987) a physiologist may know (or suspect) that the risk of disease changes at least

every 25 years. This would lead us to consider window sizes smaller than 25 years and to an estimate such as
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the one chosen by WBIC (shown in Figure 4). This estimate purveys that the chance of survival is larger for
young patients and smaller for the older, which agrees with our intuition. Since we used a model selection
criteria, our choice of window size and approximate model is, in part, data-driven. Under the mentioned
restriction, all the criteria choose roughly the same model. The simulation results shown in Table 3 suggest
that for this size n all three criteria perform similarly.

When computing the local likelihood estimates shown in Figures 3 and 4, a separate estimate was obtained
for each z; = 1,...,n. However, we used the window size and approximate model chosen for z,,/5. A more
appropriate procedure would be to choose a window size and approximate model for each i. This of course
is computationally more time consuming and, in this particular case, we don’t expect the results to change
much. However, in the signal processing example a procedure such as this is quite useful.

The sound signal studied in Section 6.2 was a segment of a more complicated 3 second duration note.
In most situations these types of signals have parts that are “stable” and others that are less so. This
suggests that different window sizes should be used in different parts of the signal. Considering a proce-
dure that performs model selection for each t; seems appropriate. The final result is an estimate of the
deterministic harmonic signal s(¢) and of its time-varying harmonic parameters. We can perform residual
analysis by listening to the fitted and residual signals. The WCAICF and WBIC estimates are indistin-
guishable to the ear and the sound of the residuals are as we would expect. For example, the clarinet
residuals sound like air and spit going through a mouth-piece. The results obtained by this procedure
greatly improve those obtained by the fixed predetermined window size procedures suggested by the sound
signal literature. The WAIC estimates, however, sound too “noisy”, thus suggesting that the chosen win-
dow sizes are too small. Equally weighted criteria are not useful because they tend to choose the smallest
window considered; in fact it was for this example that the weighted criteria presented in this paper were
first developed. The results of this residual analysis by ear are in agreement with the simulation results.
Examples of the results and sounds mentioned here can be found in the Demo Section of the author’s web
page http://biosun0l.biostat.jhsph.edu/~ririzarr. The S-Plus code used for the simulations and

examples can be found in the Software Section.

APPENDIX
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Discussion of Theorems 1 and 2.

One of the assumptions stated in Theorem 1 is that we have an “appropriate sequence of neighborhoods No,”.
Notice that we have not defined what is meant by “appropriate sequence of neighborhood”. A theoretically rigorous
description requires assumptions on the behavior of the function 6(x) and the density families gy (y) within arbitrarily
small neighborhoods of x. Since the purpose of this paper is to present and motivate new model selection criteria
and to show how they can be used in practice, these theoretical details are left as future work. We will only discuss
what is meant by this in a heuristic fashion. The asymptotic theory presented in, for example, Staniswalis (1989) and
Loader (1996), is developed under the assumption that as the size (or radius) of the neighborhood of the covariate of
interest xo tends to 0, the difference between the true and the approximating distributions within such neighborhood
becomes negligible. Furthermore, we assume that despite the fact that the neighborhoods become arbitrarily small,
the number of data points in the neighborhood somehow tends to co. The idea is that, asymptotically, the behavior
of the data within a given neighborhood is like the one assumed in classical asymptotic theory for non-IID data:
the small window size assures that the difference between the true and approximating models is negligible and the
large number of independent observations is available to estimate a parameter of fixed dimension that completely
specifies the joint distribution. This concept motivates us to prove Theorems 1 and 2 for the special case where for
all n the neighborhood Ny,, actually contains all the covariates x1,...,x,. Notice that these conditions, together
with Condition 5, suggest that for these results to be useful in practice, we need to have the number of data points
given significant weight to be large. The results don’t fit well in situations where n is large but the window size is
small enough so that the data points receiving considerable weight are considerably smaller than n. In the case of
the signal processing example these approximations seem more than adequate. For the other two examples they seem
adequate enough.

We assume that that for any of the models defined by (6) the following 4 conditions hold:

Condition 1. For any 3 € Q, both the gradient vector %lo(/ﬁ) and the Hessian matrix ﬁlo(ﬂ) are well defined
with probability 1.
Condition 2. For any g8 € Q, we have Ey ‘%lo (ﬂ)‘ < oo and Ey ‘ﬁlo(ﬁ)‘ < oo. Here the comparisons are taken

component-wise.

Condition 3. For the neighborhood No,» under consideration, there exists a unique 3, € €2, such that

Evy {g—ﬁzo(ﬁp)} =0. (22)

For any ¢ > 0,

sup  lo(B) —lo(B,)
18-85 ||><
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diverges to —oo for 3, € Q.

Condition 4. For any € > 0 there exists a § > 0 such that

sup  [Bw (By = 8,)' Tu(8,) By = B,) = tr {1u(8,)7u(8,) "}
18-B,] <5

with I,(8,) and J,(8,) defined as in (11) and B, the local likelihood estimate obtained under model M,.
We also assume that the weight function satisfies the following condition.

Condition 5. The function w(s) is non-negative, bounded, of bounded variation, and has support [0,1] with
fol w(s)ds > 0.

Weight coefficients can then be defined via
wizw{|xi—x0|/2h+1/2} (23)

with |x; — xo| some distance and h > 0 a span of the same order as the size of Ny,

Under these conditions the proof of Theorem 1 follows in the same way as in Shibata (1989).

Proof.  Expand lp(3,) around B, to obtain

62

5357 0 B0) (B = 8,)

to(B5) = to(B,) + (B = 8,) 35 10(8,) + 5B — B,) 535

with B,, between ﬂA,, and 3,,.

Condition 3 implies we can expand Y7, wi [ g(v:]0:) log f(yilx:, B) dy; as

1

sz/ (yil6s) log f(yilxi, 8,) dys + {sz/ (il6:) 3,33,3 lng(y¢|xhﬂp)dyl} (ﬁp )

with 3, between 3, and Byp-

Now using Condition 4 the expectation

Ey {sz / (il6:) log f(yilxz-,ﬁp)dyi} = By {10(8,)} = 30 {1a(8,)Jn(8,)™"} + o(1)
We expand lo(8,) around Bp. Since dlo(B)/08 = 0 we have

lo(8,) = lo(Bp) + 5 (,8 —Bp) 10(3,) (B, — B»)

Bﬂaﬂ

and we can obtain the result from the theorem.

The following corollary is obtained by extending Theorem 1 in the same way Bozdogan (1987) extends the result

of Akaike (1973).
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Corollary 1. Under the same conditions of Theorem 1 we have that

By {lo(B) = 3 wi / (il6:) og £(yilxi, B) dyi § = tr {1.(8,)J(8,) ™"} +log det {1 (8,)} +o(1).

x;€No,n
The proof of Theorem 2 follows in the same way as Chow (1981) or Neath and Cavanaugh (1997).

Proof.  Following the proof of a well known theorem of Jeffreys (1961), we can show that the conditional density

of B given the data and that model M, is true can be approximated with

et der {0 logf(yz|xz,,6p)}lexp{ (5= Bo) 5o o0~ )} 1+ 0(').)

apap 3ﬁ3ﬂ

Evaluating this equation and taking natural logarithms we arrive at the result of the theorem. Notice that p/2log(27)

is of order O(1) and, for simplicity, we leave this term out in the result of Theorem 2.
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