Local Harmonic Estimation in Musical Sound
Signals
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Statistical modeling and analysis have been applied to different music related fields. One of them is sound synthesis
and analysis. Sound can be represented as a real-valued function of time. This function can be sampled at a small
enough rate so that the resulting discrete version is a good approximation of the continuous one. This permits
one to study musical sounds as a discrete time series, an entity for which many statistical techniques are available.
Physical modeling suggests that many musical instruments’ sounds may be characterized by a deterministic periodic
and stochastic signal model. In this paper the interest is in separating these two elements of the sound and finding
parametric representations with musical meaning. To do so a local harmonic model that tracks changes in pitch
and in the amplitudes of the harmonics is fit. Deterministic changes in the signal, such as pitch change, suggest
that different temporal window sizes should be considered. Ways to choose appropriate window sizes are studied.
Amongst other things our analysis provides estimates of the harmonic signal and of the noise signal. Different

musical composition applications may be based on the estimates.
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1. INTRODUCTION

Statistics has been applied in various ways to music. For example, various stochastic techniques have been
applied in composition (Jones 1981) and in forecasting unfinished works (Dirst and Weigend 1992). Voss and
Clarke (1975) studied the spectral properties of different musical signals and speculated on the possibility of
it being so called 1/f noise. In Brillinger and Irizarry (1998) this is studied in more detail, and in particular
higher order statistics are examined. In this paper the particular application that will be examined in detail
is the analysis of sound signals produced by musical instruments. Statistical techniques have been used in
this field, for example, to separate the signals into what are believed to be deterministic and stochastic parts
and to deconstruct the deterministic part into harmonic components.

Every sound we hear is the consequence of pressure fluctuations called sound waves or sound signals

traveling through the air and hitting our ear drums. Physical theory and psychoacoustic concepts suggest that
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sound signals produced by harmonic instruments contain a component that is approximately periodic (Pierce
1992) and a non-periodic component which may be considered to be stochastic. Although sometimes referred
to as noise, the stochastic component is believed to be an integral part of the sound (Chafe 1990). This
belief has led sound researchers to use deterministic plus stochastic signal models (Serra and Smith 1991).
Parametric models are used to describe the deterministic part of the signal and statistical based procedures
are used to estimate parameters. The estimates obtained provide a way to separate the deterministic and
stochastic signals and a useful parameterization.

In Section 2 we examine some of the procedures suggested in the sound analysis literature and briefly dis-
cuss some of their strengths and weaknesses from a statistical point of view. In sections 3, 4, and 5 we present
a statistical model and an estimation procedure that we believe improves on the existing methods. The es-
timation procedure provides a parametric representation with musical interpretations and many practical
uses, as described in Section 6. There are accompanying audio versions of some of the examples mentioned

in this paper on the author’s web-page http://biosun01.biostat. jhsph.edu/~ririzarr/Demo.

2. SOUND ANALYSIS AND STATISTICS

For centuries, understanding sound has been of interest. In fact, the discovery of the relation between the
lengths of strings on musical instruments and their pitch is commonly attributed to Pythagoras. Today, the
study of sound has become a popular research field and, with the advent of electronic music, a practical one
too. Contemporary researchers are interested in, for example, the problem of determining what particular
characteristics of the sound produced by musical instruments, called timbre, permit humans to distinguish
one instrument from another (Grey 1977). Sound signals have been recorded and analyzed, using different
approaches, with the goal of understanding what defines timbre. We will call this type of study sound
analysis. The reproduction of musical sounds without the use of an acoustical instrument, called sound
synthesis, is also of interest. Mathews (1963) was one of the first to successfully make use of the information
obtained from sound analysis to produce effective sound synthesis. Recently, interest has focused on using
this information to facilitate the creation of new sounds based on an original. In this paper we wish to analyze
sound so as to be able to obtain some parametric representation that is musically meaningful and may be
manipulated to either reproduce the original sound or a new version of it. This analysis of the sound may also

provide insight to understanding timbre. In this section we discuss some of the statistical procedures that
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have been used in sound analysis/synthesis. We also discuss some of the physical and acoustical properties

that motivate these methods.

2.1 Music as a Time Series

In order to speak about statistical analysis of sound signals, we need to represent them as data. The energy
transmitted by a sound signal can be transformed into a fluctuating voltage V' (¢), which is a continuous
function in time. Tape recorders work by storing V' (¢) on magnetic tape. One wants to have discrete data
to facilitate statistical analysis. We take a discrete approximation of the continuous sound signal sampled

at 44100 observations per second, as done by Compact Disc (CD) technology.

2.2 Psychoacoustics and the Physics of Musical Sounds

Although not all existing sound synthesis and analysis techniques have found it necessary to use models that
are in agreement with physical theory and/or psychoacoustic principals, most of them are essentially based
on the physical properties of instruments and the way our brain perceives sounds.

The first important physical discovery related to music is that when fluctuations of air are approximately
periodic, with period in the audible range, we perceive what musicians have defined as a pitch. We will
call the frequency related to this periodicity the fundamental frequency. Instruments play different pitches
by changing the fundamental frequency of the sound signal they are creating. Some cultures, e.g. Western
cultures, have quantized these pitches and created notes. The pitch corresponding to 440 Hz has been called
concert pitch A or A4 (fourth usable A on a piano). Notes (A4, At, B, etc..) are defined so that the proportion
of the frequencies of consecutive notes, said to be a semitone apart, is fixed. Apparently, the trained ear
cannot distinguish two notes if they are less than 3 cents (1 cent = a hundredth of a tone) apart. See Pierce
(1992, Chapter 2) for details.

More recent discoveries have been related to timbre. As early as the second half of the 19th century,
physicists were interested in the harmonic structure of musical sound signals (Rayleigh 1894). Around this
time von Helmholtz (1885) conducted an experiment that proved that signals produced by harmonic instru-
ments had frequency components at multiples of the fundamental frequency, thus showing that the signals

contained a strong periodic component with more structure than a simple sinusoid. This discovery inspired
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physicists to seek an explanation for this phenomenon. In Fletcher and Ross (1991) mathematical models of
the physical acoustics of instrument sound productions are presented for a wide variety of instruments.

Also in the 19th century, Ohm (of Ohm’s law) conjectured that the human auditory system operates as
a spectrum analyzer that displays the power spectrum of a complex tone and is insensitive to the relative
phases of the components (Hartman 1997). Ohm was perhaps referring to the way the ear operates within
very small time windows, and recent psychology and physiological experiments seem to confirm this; see
Grey (1977) and Pierce (1992, chapter 7).

Von Helmholtz’s discovery suggests that, within small time intervals, sound signals produced by harmonic

instruments are periodic and hence can be expressed as a sum of sinusoids of the form

K

Z pr cos(kAt + ¢p,) (1)

k=1

with K < [w/)A], t an index representing units of time, in this case {sampling rate} ' seconds, and \/27 the
fundamental frequency in cycles per unit time. The K cosines included in the summation in (1) are referred
to as harmonic components. The musical term for these components are harmonics or overtones. Ohm’s
conjecture can then be summarized by saying that the timbre of short and “stable” segments of sound is

determined only by the pgs and A.
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Figure 1. Periodogram for sound signals of a trumpet and a clarinet playing concert pitch A.
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Time series analysis provides a simple tool that allows us to check if the data obtained from sound signals
are in agreement with this. For the data y;,¢t = 1,...,T obtained from the discrete representation of a sound

signal, the periodogram is defined by:

2
O<w< (2)

T

I{w) Z exp{—iwt}ys

- 27T

If the data y; is periodic as defined in equation (1), the periodogram will show peaks at frequencies kA
with kK = 1,..., |n/A] (Brillinger 1981). Computed periodograms of sound signals produced by harmonic
instruments exhibit such peaks. Figure 1 presents the periodograms for the signals produced by a trumpet
and a clarinet playing A4. Notice that peaks at the multiples of 440 Hz are observed in both cases and that
the two periodograms look different. However, relatively high values of the periodogram at non-harmonic
frequencies suggest that a considerable amount of the variation of the signal is not explained by such harmonic
components. This suggests that there is more to the sound signal than just a periodic component.

In the early 1960s, Risset and Mathews (1969) made a discovery that greatly advanced the understanding
of timbre. By using the computer to study the local behavior of the harmonic components of sound signals
they noticed that the intensity of the harmonic components varied substantially through time. This implied
that the signals were not exactly periodic which is in agreement with Figure 1. We may verify this from the

data by computing spectrograms, defined at time g by:

2

1 to+M
I(to,A) = m t tZM exp{—iAt}y: (3)
—to—

Here 2M + 1 is some suitable window size.

In Figure 2 we see the spectrogram for the signals produced by three harmonic instruments: a violin, an
oboe, and a guitar. The violin and oboe are both playing C4 (261.6 Hz), while the guitar is playing D3
(146.8 Hz). Dark shades of grey represent high power for the spectrogram. In the spectrograms we see
that at all times the instruments show peaks at frequencies that are multiples of the fundamental frequency,
thus showing that the fundamental frequency is not changing much and that at least locally the signals
are approximately periodic. The amplitudes of these harmonic components, however, are definitely varying
through time in different ways. This verifies Risset and Mathews’ discovery and suggests that the shape of

the periodic component is changing. This is particularly clear in the case of the guitar where the higher
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Figure 2. Spectrograms for harmonic instruments with 2M + 1 = 20 millisecond windows.

harmonics “die off” more rapidly. Risset and Mathews conjectured that the time-varying character of the
harmonic structure was important in determining timbre. These observations led Risset and Mathews to
develop additive synthesis, a method for the analysis and synthesis of music sound signals described in the

next section.

2.3 Sound Analysis and Synthesis

A main goal of sound analysis/synthesis is to obtain a musically meaningful parametric representation of
sound signals. Let y;,t = 1,...,T be the discrete representation of a sound signal. We say 8;,t =1,...,T
is a parametric representation if it provides a source for reconstruction or synthesis of the original signal.
For example, we could have y; ~ s{t, 3;} for some reconstruction function s(-). We say the transformation
is musically meaningful if expressive sound transformations can be obtained through the parameters j;.
The ideas of von Helmholtz and Ohm motivate a method based on the periodogram. To characterize the
sound, let p = \/m and consider the parameterization 8 = (A, p1,...,pr). To obtain an approximation
of the original sound from the parametric representation, we simply take §; = >, pr cos(kAt). In this case
the parameterization does not change with time, thus it is only useful when considering short segments.
Instruments’ sounds have been synthesized using this representations. When the sounds are of relatively

long duration (say, more than 100 milliseconds), the results are not satisfactory in the sense that the synthetic
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sounds obtained sounded quite different from the original. This of course is due to the fact that, in general,
sound signals are not exactly periodic if long stretches are considered.

Additive synthesis is a local version of the above approach. This method has proven to be one of the
most effective methods available until now (Rodet 1997). In order to obtain a parametric representation
for sound signals produced by an instrument playing one note an appropriate A is chosen, then the signal
is divided into L = T//(2M + 1) non-overlapping segments of suitable size (2M + 1) and the spectrogram
is used to define pi(t) = \/I(t;k)) for all ¢ in the Ith segment with k = 1,..., K (K chosen heuristically)
and I(t; k) defined as in (3). The parametric representation is then 8; = {\, p1(¢),..., px(t)}. The signal
reconstruction is §; = Y, px(t) cos(kAt). Sounds have been synthesized using this parametric representation
and have been found to greatly improve on the method suggested by von Helmholtz. Yet the “fitted” signal
is never the same as the original. Possible reasons for this are added components that are not periodic in
nature and which we will refer to as the stochastic component. Some examples are the sounds produced by
fingers hitting keys, nails plucking strings, and surplus blown air. Some researchers have found it important
to model this in order to obtain a more accurate reconstruction of the sound. We now turn our attention to

a statistical model based on additive synthesis that takes the stochastic component into account.

2.4  Deterministic Plus Stochastic Signal Models

Serra and Smith (1991) incorporated a non-periodic component to additive synthesis and modeled it as an
additive random signal to account for the variation not described by the additive synthesis model. Since then,
many have proposed and used similar models (Rodet 1997). In Serra and Smith (1991) the deterministic

plus stochastic signal statistical model presented is

K
Yt=Zpk(t)cos{¢k(t)}+et,t=1,...,T, (4)
k=1

with {&} a stationary autoregressive process. An implicit assumption is that the deterministic signal resem-
bles a sum of sinusoids. In this case 8y = {p1(t), ¢1(¢), ..., pr(t), dx (t)} can be thought of as the parametric
representation of the deterministic part of the sound. We can think of wy,(t) = d¢y(t) /dt as the instantaneous
frequency of the kth harmonic which in this model need not be multiple of a fundamental frequency.

One is interested in estimating the ¢y (t)s and pg(t)s. Serra and Smith (1991) divide the signal into short

(usually 256 data points), possibly overlapping segments called analysis frames. For each segment, the
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amplitude and frequency of peaks of the periodogram are recorded and considered as a possible indication of
a sinusoidal partial. Peaks of successive analysis frames are grouped into tracks. For a particular track, say
the kth track, the frequencies at which the peaks occur are considered to be estimates of the instantaneous
frequency wy(t) of the kth sinusoidal component. This tracking is usually based on a heuristic approach that
matches peaks of consecutive frames by the proximity of the frequencies associated with them. A procedure
described in Depalle, Garcia and Rodet (1993), takes into account that under model (4) periodogram peaks
are random quantities and perform the tracking by globally optimizing over the set of all tracks via a hidden
Markov model. The validity of this method under the model defined in (4) and the statistical properties of
the estimates obtained are not discussed by Depalle, Garcia and Rodet (1993). We now discuss some of the
statistical considerations.

In model (4) the existence of a deterministic component in the signal Y; is assumed. As mentioned above,
in many examples this deterministic component appears to be periodic within small segments of the signal. If
this is the case, strong peaks will appear in the periodogram at frequencies that are multiples of a fundamental
frequency as seen in Figures 1 and 2. However, the above mentioned partial tracking algorithms allow partials
to exist at frequencies that are not multiples of a fundamental frequencies. Furthermore, the assumed model
implies that the periodogram quantities are random, i.e. a peak can be due to random variability. In
particular, when only 256 observations are used when computing the periodogram, the variation can be
relatively large. Estimates obtained for the deterministic component when many non-harmonic partials are
“tracked”, as done by Depalle, Garcia and Rodet (1993), are hard to interpret from a statistical point of
view.

Computing the statistical properties of periodogram peaks found by such tracking algorithms can be
complicated, even when using a simple statistical model. For this reason finding an algorithm for partial
tracking that provides useful estimates is not straightforward and will not be discussed in this paper. Instead,
in Sections 3, 4, and 5, we present a statistical model that assumes the deterministic components of the signal
are locally periodic as opposed to simply a sum of sinusoidal components that are not necessarily related in

a harmonic fashion.

2.5 Applications

Obtaining parametric representations of sounds leads to many musical applications. One example is timbre
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morphing, which is the process of combining two or more sounds to create a new sound with intermediate
timbre and duration. Morphing can be used to create interesting sounds that are not found in nature, but
that have the characteristics of naturally occurring sounds. An interesting example is the recreation of a
castrato voice (Depalle, Garcia, and Rodet 1995). This was done to produce a sound-track for the film
Farinelli, the famous 18th century castrato. To simulate Farinelli’s voice, the voice of a countertenor and
a soprano were analyzed and parametric representations were obtained. These two representations were

combined in a way that produced a timbre similar to that of a castrato.

3. HARMONIC REGRESSION MODELS

Both physics and data analysis seem to suggest that musical sound signals produced by harmonic instruments
are locally periodic. Psychoacoustical experiments suggest that the harmonic components of such signals are
important in determining timbre. Further analyses seem to suggest that there is also a stochastic component
included in these signals. This suggest that for data y;,t = 1,...,7T, obtained from a short segment of a

sound signal, a useful deterministic plus stochastic signal model is

K
yr=s5t;0)+e t=1,...,T with s(; 8) = Z{Ak cos(kAt) + By sin(kAt)}, (5)

k=1
8=(A1,B,...,Ak,Bk,\) and {e:} a stochastic component. In a musical context we call A the pitch and

the terms being added in (5) the harmonics or overtones with amplitudes defined by py = (42 + B2)'/2.

Many signals in nature have been statistically analyzed via sinusoidal regression models like the one
defined by (5) (Brillinger 1997). In Hannan (1973) and Brown (1990) similar models are studied under
the assumption that the noise {e;} is stationary. Assuming certain regularity conditions, these authors find
estimates that are asymptotically equivalent to least squares estimates. Consistency is shown and asymptotic
variance expressions are developed. See Irizarry (2000) for a review.

Since we are fitting this model in order to obtain estimates of parameters that may vary with time, it is
only natural to consider window based estimates. The weighted least squares method consists of choosing B
to minimize the criterion

S(B) =D w(t/T){ys — s(t,8)}". (6)

t=1
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Here w(s) is a non-negative weight function with support [0,1]. In the remainder of this paper we use the

following constants

1 1
W, = / t"w(t)dt and U, = / t"w(t)? dt (7)
0 0

for n =0,1, and 2.

In general, we allow the stationary noise {e;} to be correlated. However, we are using an estimation
procedure commonly used for uncorrelated noise. Under general assumptions for {e;}, Irizarry (2000) shows
that the weighted least squares estimates have desirable asymptotic properties and provides the following

approximations for the variances of the fundamental frequency and amplitude estimates:

—1
Var(d) ~ 4nT-3 {WO U (;Vivv‘gflg%*wl UO} {Z 02/ foe(bA) } ®)
A L (U
Var(pr) ~ 4mfec(kN)T 1(#(’)2) )

where Wy, W1, Wy, Uy, Uy, and U, are defined by (7) and f.. is the power spectrum of the stationary noise ¢;
defined by fe(w) = % Y Cee€xp{—iwu}, —00 < w < oo with ¢c(u) = Cov{€rty, €}, the autocovariance
function of {e;}. If we use this asymptotic approximation to find standard errors and confidence intervals
for our estimates, we need to estimate f..(k\) for k = 1,..., K. We may use the residuals to compute an

estimate, for example, by using a smoothed periodogram (Brillinger 1981).

3.1 An Example

We illustrate the appropriateness of fitting a harmonic model as that defined by (5) to short segments of
musical sound signals with an example. For the sound signal of a violin, sampled at 44.1 kHz, playing the
note C4, we consider a 50 millisecond stretch (2200 observations). In Figure 3 we see how the segment seems
to be usefully periodic. We define weights with Tukey’s triweight function and use the weighted least squares
procedure, described in the previous section, to fit a harmonic model with K=15 to this data. The residual
mean-square, which is 0.0003, is quite small compared to the total variance, which is 0.26, so it seems to
be a reasonable fit. The residual plot, also seen in Figure 3, suggests that the noise could be considered

stationary in the given stretch.
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Figure 3. Local fit for the sound signal of a violin playing C4 and corresponding residuals. Smoothed periodogram estimates
for the spectrum of the noise for the sound signal of a violin playing C4.

We have seen an example of how useful a periodic deterministic plus stochastic signal model can be for
describing sound signal data within short time segments. This motivates the use of a local regression type

estimation procedure for parameterizing sound signals of long duration.

4. LOCAL HARMONIC ESTIMATION

In the case of sound signals of long duration, the harmonic structure appears to change in time as the
performer changes the sound being produced by the instrument. Examples of such changes are note changes,
vibrato, and tremolo, to mention a few. For this reason the stationary model described in Section 3 is not
appropriate when considering long stretches of musical signals. We now present a statistical model and an
estimation procedure for these types of signals.

We model the sound signal produced by a harmonic instrument with a deterministic plus stochastic signal
model Y; = u(t) +¢,t =1,...,T with u(t) the deterministic component and ¢; the stochastic noise. Say we
are interested in estimating only (), the local harmonic estimation approach, similar to local regression
(Cleveland and Devlin 1988), is to assume that for “small” segments (to — h,to + h) the deterministic

component is approximately periodic and the noise component is approximately stationary. We can write

K
Y, & s(t; Bo) + € for t € (to — h,to + ) with s(t; ) = > _{ Ay, cos(kot) + Brosin(ket)}  (10)
k=1

and Bo = (A1,0,B1,0,---,AK,0, B0, Ao) and {e} a stationary process. We obtain an estimate Bo of Bo using
weighted least squares by giving positive weight only to points within the estimation segment (tq — h,to + h).
To obtain an estimate of u(to) we simply use equation (10) and let fi(to) = s(to, Bo). We may repeat this

procedure for each t¢ = 1,...,T and obtain estimates ji(t),t = 1,...T. Furthermore, we can define a
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parametric representation using the estimates obtained for each ty, namely Bt, t=1,...,T. This provides
a musically meaningful parametric representation of the signal since ﬁt contains an estimate of the local
fundamental frequency \; and amplitudes py, ; = {fl%’t + B,%’t}l/z, k=1,...,K.

The residuals may be defined via € = y; — fi(t), t = 1,...,T and studied to assess the fit. For example,

by converting them into a sound file, we may listen to the residuals and perform residual analysis by ear.

4.1 An Example

We run the analysis on the sound signal of an oboe playing C'4 for a duration of 3 seconds. Listening to
this sound we notice that the oboist is playing vibrato and tremolo, slight and rapid variations in volume
and pitch respectively. We obtain estimates of u(tg) using K = 15 and 20 millisecond estimation windows
for each tg = 1,...,T. In Figure 4 we see the estimated deterministic signal and the residuals. The residual
plot suggests a reasonable fit. The larger variation of the residuals during the beginning of the sound is in
agreement with the known fact that the presence of noise components in a sound signal are stronger during
the beginning of a note, or what musicians refer to as the attack (Masri and Bateman 1996). If we listen to

the residuals we hear what sounds like the initial burst of air blown by the instrumentalist.
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Figure 4. Estimated fundamental frequency and amplitude of first five partials for the sound signal of an oboe playing C4.

In Figure 4 we also see A(t) and pi(t) for k = 1,...,5. The dotted lines in Figure 4 are 3 cents away

from the average fundamental frequency (259.25 Hz), which would be considered a C4. The Figure seems
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to suggest that there are variations in pitch perceivable to the ear and that there are variations in the
amplitudes of the first five partials. This is in agreement with what we hear: vibrato and tremolo. Here, we
are using the fact that the approximate standard errors (not shown) are small compared to the range of the
estimates. In Section 6.1 we further discuss standard errors and their musical interpretation.

In this and many other cases studied, the sounds of the original signals y; and the estimated deterministic
component fi(t) were almost indistinguishable. When amplified, the sound of residuals sounded much as we
expected: specifically, a sound like that of air and spit going through a tube for the saxophone, clarinet and

trumpet, a screechy metallic sound for a violin, a pluck with no clear tone for the guitar, etc.

5. DYNAMIC WINDOW SIZE AND NUMBER OF HARMONICS SELECTION

For a particular sound signal a variety of factors may affect how good of an approximation it is to assume
the deterministic component is periodic within a given segment. For example, a change in note creates a
discontinuity in the fundamental frequency and thus any segment containing the time change will not be
periodic. Another example is gradual changes in volume. Such phenomena suggest that the estimation
window sizes should not remain fixed and that we need to choose an appropriate window size h for all

estimation times tg.
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Figure 5. Comparison of two stretches of different duration of the sound signal of a violin playing C4.

In Figure 5 we see two stretches, taken from an early part of the signal (to = 0.17 seconds) of a violin

playing C4,
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one with a duration of 20 milliseconds and the other with a duration of 50 milliseconds. Notice that in the
second plot the deterministic component does not appear to be approximately periodic, but rather that the
total amplitude is growing with time. Looking at the residuals, also seen in Figure 5, produced from fitting
a harmonic model with K = 15, we see that they do not appear to be stationary for the 50 millisecond
stretch. In this case we would pick the 20 millisecond stretch over the 50 millisecond one.

Also, for different segments the number of harmonic components that seem meaningful varies, as seen for
the guitar in Figure 2. Previous estimation procedures (Depalle, Garcia, and Rodet 1993) usually fit many
sinusoidal components. However, fitting too many parameters may result in a saturated model. A decision
that we need to make is how many harmonic components K to consider when estimating. The number of
“significant peaks” in the periodogram plot may be used to obtain a general idea of how many harmonics
to consider. However, this procedure is quite arbitrary. We may use z-tests to reduce the value of K in
situations where many pj, are not “statistically significant” for the larger value of k. Yet this strategy is also
a bit arbitrary so we do not intend to use hypothesis testing as a tool for choosing how many harmonics
to include in our model. In any case, we have found it to be useful as a descriptive illustration of why

considering different number of harmonics for different sound signals may be appropriate.

5.1 Information Criteria

Due to the large amount of data and points of estimation, using procedures like cross-validation to choose
h and K is unrealistic (at least in 2000). We want a criteria that will permit us to automatically choose
from amongst different possible estimates. Irizarry (1999) presents useful criteria for model selection for
this situation. If we assume that the errors in the approximate model in Section 4 follow a Gaussian-type

distribution for the data of a segment (to — h,to + h) then a useful criterion is
WBIC(K,h) = log 6° + {2K log(N4/2) — p} /Ny,

where p is the equivalent number of parameters, in this case defined by (Us/Wy)2(K + 1) with Uy and Wy
defined by (7), and Ny, the equivalent number of observations, in this case defined by Ny, = Efio w(t/2h) =

2hWy. We define the estimated variance for a given segment with h, as

2h
6% =(Np—p)* Zw(t/Zh) {ytofh+t —s(to—h+ t;ﬁAo)}2 ;

t=0
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with Bo the weighted least squares estimate described in Section 4. Notice that the WBIC criterion satisfies
the conditions for consistent model selection criteria for harmonic models presented in Wang (1991). Fur-
thermore, Irizarry (1999) presents simulations showing that this criteria performs relatively well at choosing

window sizes with small MSE.

5.2 An Example

The Shakuhachi flute is a Japanese instrument characterized as being “noisy”. The sound of the performer
blowing is one of its distinguishing characteristics. By listening to this example, we notice that it is char-
acterized by a rapid change of pitch for the first half second, then the pitch is held steady for about 3.5

seconds, then a vibrato is played for about half a second, after which the pitch is held fixed again.
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Figure 6. Estimated fundamental frequency when using fized window sizes of 100 and 10 milliseconds and the respective
residuals.

This particular sound is interesting to study for two reasons. First, the noisy character of the sound makes
the partial tracking techniques, described in Section 2, difficult to implement because it is hard to discern
significant peaks in the periodogram with small amounts of data. Second, the different behavior of the pitch
function in different parts of the signal suggests that a fixed window size may be inappropriate and thus that

different window sizes should be used in different parts of the signal.
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For various segments of the shakuhachi flute signal, the WBIC criteria suggested that we fit a local
harmonic model with 15 harmonics. We fit such a model using fixed window sizes of 100 milliseconds
and then 10 milliseconds. In Figure 6 we see the estimated fundamental frequencies and residual plots for
these two window sizes. For the estimate obtained with the larger window size, we notice that during the
vibrato part the fit is not as good (the residuals are bigger). If we try to fix this problem by considering a
smaller window size, then the estimated fundamental frequency seems to be too variable, as seen in Figure

6, especially towards the end.
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Figure 7. Selected window size (in milliseconds) and smoothed version of the selected windows; estimated fundamental
frequency when using a dynamic window size and respective residuals.

We fitted a local harmonic model with K = 15 using the WBIC to choose between window sizes of 10,
20, 40, 60, 80, 100, and 120 milliseconds. In Figure 7 we see how the window size that minimizes the WBIC
vary as the signal progresses. Notice in particular how, on average, smaller window sizes are chosen during
the parts of the signal where the fundamental frequency is not near constant. Because the WBIC choices
are so variable, we compute a smoothed version of window sizes by using a kernel smoother, also seen in
Figure 7. The dynamic window local harmonic estimate is obtained by following the procedure defined in

Section 4 using window sizes h defined by the smoothed WBIC choices. We present the estimate of the
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fundamental frequency and the residuals obtained using this procedure in Figure 7. We see the improvement
this provides over the fit obtained with the 100 millisecond window procedure by comparing the residuals,
seen in Figures 6 and 7. We see the improvement it provides over the fit obtained with a 10 millisecond

window by comparing the estimated fundamental frequencies, also seen in Figures 6 and 7.

6. APPLICATIONS

6.1 Variability of the Estimates

In current sound analysis research it is common to give estimates of harmonic parameters without indica-
tions of their uncertainties. The asymptotic variances of the estimates presented in Section 3 provides a way
to obtain approximate standard errors and to construct approximate confidence intervals for our estimates.

It is interesting to speculate on the meaning of these quantities in a musical context.

Frequency Estimate for Trumpet

Time in Seconds

Figure 8. Pitch estimate for trumpet sound and confidence intervals.

A recording was made by a professional trumpet player playing (or trying to play) concert pitch A (440 Hz).
In Figure 8 we see approximate point-wise 99% confidence intervals around our estimated pitch. The figure
suggests that for most of the signal the trumpet player is “statistically significantly out of tune”. However, if
we hear the signal it seems to be in tune. Is the statistical variation of our estimates unreasonably “small”?
In Figure 8 we also see that for most of the signal the distance between the estimate and 440 Hz is not
“statistically significantly” bigger than 3 cents, so our estimates are actually in agreement with what we
hear. The trumpet player may not be playing an exact 440 A, but it is close enough for our ears not to

perceive the difference. Notice that if we consider the estimated pitch



Rafael A. Irizarry: Local Harmonic Estimation in Musical Sound Signals 18

ignoring its statistical variability, one could conclude that at the beginning and at the end the trumpet
player is more out of tune than during the middle. However, during these sections the standard error is also
bigger, reflecting the possibility that the larger deviation is due to chance.

In general, the human ear/brain is quite accurate at determining pitch. Suppose our brain “estimates”
pitch in a similar manner to our procedure and that the stochastic part of the signal made the variation
in this “pitch estimate” large. Then changes in pitch might be detected even when hearing a sound with
deterministic constant pitch.

This interpretation of variability should be considered with caution since confidence intervals estimates are
constructed using asymptotic approximations. In our case, T is usually between 800 and 2000 observations;
hence there is a possibility that the variances of our estimates are larger than the approximations used. Also,
the approximations made by our model for the deterministic part of the signal may not be as good as we
would want them to be. Simulation and bootstrap methods can be used to check this. Furthermore, we
obtain variance estimates under the assumption of additive noise. For many instruments this assumption
appears inappropriate, since the noise seems to be signal related and possibly not additive (Maganza and
Caussé 1986). Finding variance structures under assumptions like these is a subject of future work. A
possible approach is to follow the ideas presented in the literature on time series models with time-varying

parameters, for example the approach followed by West, Prado, and Krystal (1999).

6.2 Applications to Musical Composition

We may use the parametric representation /3’15 provided by our method to create new sounds. In general, we
can create a new signal based on the estimates of the original via z; = Eszl T () pre cos{k ()N 7(t)}. We
can now: change pitch through the function I(¢) (pitch modification), change duration of certain parts of
the signal using a time substitution function (Wessel 1987) 7(¢) (time scale modification), and change the
energy of a specific harmonic through the functions rg () in order to change the timbre of the sound (timbre
modification).

Using this technique we have constructed various interesting sound examples which are all available on the
aforementioned web page. For example, our analysis provides a way of bringing the hidden soprano out of

an oboe sound, mainly by adding jitter to the even harmonics as well as a way to turn the sound produced
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by a professional violin player into a beginner’s by “amplifying” the estimated stochastic component of the

sound signal.

7. CONCLUSIONS AND EXTENSIONS

We have presented a statistical procedure that permits us to decompose musical sound signals into locally
harmonic and stochastic signals. The procedure provides a parametric representation with musical interpre-
tations which has many practical uses, such as in musical composition applications. A possible extension
to the procedure is to represent the time-varying coefficients parametrically. For example, we could model
amplitudes of the harmonics of instruments like the guitar with a decaying exponential. This would permit
us to consider larger window sizes. Furthermore, we could fit flexible models through the use of splines and
fit them through a single optimization.

The procedure presented in this paper need not be restricted to sound signals. The procedure may be useful
for analyzing other types of data with approximately periodic behavior, such as biological data following
Circadian patterns and EEG data. The procedure would not only provide a smooth version of the data, but
also a parametric representation that may have useful interpretation. Listening to the residuals in order to
detect lack of fit, residual analysis by ear, may also be useful in fields other than musical sound analysis.
Hidden periodicities, non-stationarity, and other phenomena may be detected by hearing data or residuals

in situations where large amounts of data are available and visual plots are not quite useful.
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