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Abstract. The study of musical sound has become a popular research ®eld. Harmonic
regression signal plus noise statistical models have been used to analyze sound signals.
However, it is common to give estimates of harmonic parameters without indications of
their uncertainties. Least squares estimates for harmonic models have been studied and
asymptotic variance expression have been developed. In practice, window-based estimates
are used. This paper studies the statistical properties of such estimates; in particular, we
use asymptotic variance expressions to develop standard errors and construct con®dence
intervals. We present applications and examples of the statistical techniques to musical
sound signal analysis.

Keywords. Harmonic regression; asymptotic variance; weighted least squares esti-
mates; musical sound signals.

1. INTRODUCTION

Time series analysis has been applied to music in various ways (Brillinger and
Irizarry, 1998; Irizarry, 1998). In this paper, the particular application that will be
examined is the analysis of sound signals produced by musical instruments.
Researchers in this ®eld are interested in, for example, the problem of determining
what particular characteristics of the sound produced by musical instruments
permit humans to distinguish one instrument from another, what musicians call
timbre (Grey, 1977). With today's technology, we are able to process sounds in a
data analytic fashion. Risset and Mathews (1969) were the ®rst to successfully
make use of the computer to analyze the sound produced by musical instruments,
by using discrete samples of the continuous sound signal as data. Brillinger and
Irizarry (1998) provide more details on the quanti®cation of sound signals.

When ¯uctuations of air are approximately periodic, with period in the audible
range, we perceive what musicians have de®ned as a pitch (Pierce, 1992, ch. 2).

Figure 1 shows a segment of the sound signal produced by a clarinet playing
concert pitch A (441 Hz).

Physical modeling (Fletcher and Rossing, 1991) suggests that, within short
segments, we model musical sound signals as summations of sinusoidal
components, as done in the additive synthesis model proposed by Risset and
Mathews (1969). Serra and Smith (1991) incorporated a non-sinusoidal residual
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part to the additive synthesis and modelled it as an additive stochastic signal.
Since, many have used the so-called additive synthesis plus residual model (Rodet,
1997) in which short segments, called time-frames (durations of between 5 and 100
milliseconds), of a signal are modelled with

yt �
XK

k�1
qk cos�xkt � /k� � �t t � 1; . . . ; T �1�

An implicit convention is that x1 < x2 < � � � < xk, with x1 usually associated
with the frequency related to the pitch or note being played and called the
fundamental frequency. The component related to the frequency xk is called the
kth partial. The behaviour of such partials is believed to be essential in
determining timbre (Grey, 1977), thus estimating the parameters of model (1) is of
interest. However, in the sound analysis and synthesis literature, it is common to
give estimates of sinusoidal parameters without indications of their uncertainties.
The variation of the estimated parameters for di�erent segments of the signal are
sometimes explained with deterministic arguments. Under the assumption that
the signals contain a stochastic element, the possibility exists that such variations
are due to chance alone. In this paper, this possibility is explored by de®ning
estimates for which statistical properties can be studied.

The estimation procedures presented in current sound analysis research are
based on the assumption that within appropriately chosen time-frames, the model
given by (1) holds; in which case, it is equivalent to a harmonic regression signal
plus noise model like the one presented in, for example, Walker (1971).

In Walker (1971), Hannan (1973), Brown (1990), Quinn and Thomson (1991),
and Hassan (1982), among others, least squares estimates are presented for
models with harmonic regression signal plus noise. Consistency is shown for these
estimates and asymptotic variance expressions are developed. Since, for this
particular application, models are ®t to obtain estimates of parameters that are

FIGURE 1. 23 millisecond stretch and periodogram of a clarinet sound.
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thought to change from time-frame to time-frame, it is only natural to consider
window-based estimates. In this paper, the results obtained by Walker (1971) and
Hannan (1973) will be generalized to window-based estimates equivalent to
weighted least-squares. This will permit one to develop standard errors and
con®dence intervals for estimates obtained for the music signals.

The remainder of this paper is organized as follows. Section 2 presents the
harmonic plus noise model and the weighted least squares estimates for its
parameters. Section 3 summarizes key asymptotic theory developed for least
squares estimates, with an extension to the weighted case. In Section 4, we present
examples of how the estimates and asymptotic theory developed in Sections 2 and
3 can be useful as a data exploration tool in the study of sound signals. Some ®nal
remarks are given in Section 5.

2. HARMONIC REGRESSION MODEL

Many signals in nature have been statistically analyzed via sinusoidal regression
models (Brillinger, 1977). The harmonic regression signal plus noise model is
de®ned by

yt � s�t; b0� � �t t � 1; . . . ; T

where

s�t; b0� �
XK

k�1
fAk;0 cos�xk;0t� � Bk;0 sin�xk;0t�g �2�

and f�tg stationary stochastic process.
This model has been studied by various authors. Under the assumption that f�tg

is white noise with ®nite variance, Walker (1971) presents estimates that are
asymptotically equivalent to least squares estimates. Consistency is shown for these
estimates and asymptotic variance expressions are developed. Hannan (1973) does
the same under the assumption that f�tg is ergodic and purely non-deterministic.
For a more general model, with modulating amplitudes and under the assumption
that the noise is a linear processes satisfying a mixing condition, Hassan (1982)
®nds estimates that are consistent and asymptotically normal as well. Brown (1990)
and Quinn and Thomson (1991) develop similar results when adding the constraint
that xk,0� kk0, for some fundamental frequency k0, to model (2).

For weighted least squares estimates, the result of consistency follows in a
similar fashion to the unweighted case. However, some work is needed to obtain
asymptotic variance expressions. In the work that follows, we will be presenting
the results obtained by Walker (1971) and Hannan (1973), for estimates that are
asymptotically equivalent to weighted least squares, under the assumption that
the stationary f�tg has autocovariance function c���u� � covf�t�u; �tg, satis®es
Assumption 1 below, and has power spectrum
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f���k� � 1

2p

X
u

c�� exp�ÿiku� 1 < k <1

ASSUMPTION 1. The error series f�tg is a strictly stationary real valued random
process all of whose moments exist, with zero mean, and with c�...��u1; . . . ; uLÿ1�
the joint cumulant function of order L of the random process f�tg for L� 2, 3,¼.
Furthermore, the

CL �
X1

u1�ÿ1
� � �

X1
uLÿ1�ÿ1

jc�...��u1; . . . ; uLÿ1�j

satisfy X
k

Ckzk

k!
<1

for z in a neighbourhood of 0.
This assumption requires that the stochastic process f�tg have a short span of

dependence, that is that the random variables �t and �s are less statistically
dependent on each other as they become more distant, i.e. as | t ) s | ® 1.

2.1. Weighted least squares estimates

The weighted least squares method consists of choosing ~b to minimize the
criterion

ST �b� �
XT

t�1
w

t
T

� �
fyt ÿ s�t; b�g2 �3�

Here w(s) is a weight function. Some of the results regarding the asymptotic
behaviour of these estimates require that the weight function satisfy Assumption
2.

ASSUMPTION 2. The function w(s) is non-negative, bounded, of bounded
variation, has support [0, 1], W0 > 0 and, W 2

1 ÿ W0W2 6� 0. Here

Wn �
Z 1

0

snw�s�ds �4�
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3. ASYMPTOTIC THEORY

Throughout we are going to need the following simple result, proved in the
Appendix. Set

DT
n �k� �

XT

t�1
w

t
T

� �
tn exp�ikt�

LEMMA 1. If w(t) satis®es Assumption 2 then we have for n� 0, 1,¼

lim
T!1

Tÿ�n�1�DT
n k� � � Wn; for k � 0; 2p �5�

DT
n �k� � O�T n� for 0 < k < 2p �6�

To prove consistency and asymptotic variance of the weighted least squares
estimates, we ®rst de®ne the estimates b̂ composed of AÃk,T, B̂k;T and x̂k;T for
k� 1,. . ., K

Âk;T �
2
PT
t�1

w t
T

ÿ �
yt cos�x̂k;T t�

PT
t�1

w t
T

ÿ � �7�

B̂k;T �
2
PT
t�1

w t
T

ÿ �
yt sin�x̂k;T t�

PT
t�1

w t
T

ÿ � �8�

where if we write x� (x1,. . ., xK) and x̂T � �x̂1; T ; . . . ; x̂K;T �; x̂T is such that

qT �x̂T � � max
0�x�p

qT �x� �9�

where qT is de®ned by

qT �x� �
XK

k�1
Tÿ1

XT

t�1
w

t
T

� �
yt exp�itxk�

�����
�����
2

Notice that these estimates are the same ones presented in Walker (1971) and
Hannan (1973) in the unweighted case, but now using tapered data w(t/T)yt.
Similar to the unweighted case, we notice that these estimates are asymptotically
equivalent to the weighted least squares estimates and thus we may prove
asymptotic results for the former to obtain the results for the latter. This result is
best understood by ®rst considering the case of one sinusoidal component (K� 1)

s�t; b0� � A0 cos�x0t� � B0 sin�w0t�
with b0� (A0, B0, x0)

¢ and then generalizing to the case of several partials.
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As done in Walker (1971) for the unweighted case, we notice that if we de®ne

RT �b� �
XT

t�1
w

t
T

� �
y2t � 1

2�A2 � B2�
XT

t�1
w

t
T

� �
ÿ 2

XT

t�1
w

t
T

� �
ytfA cos�xt� � B sin�xt�g

�10�

with b� (A, B, x), then

ST �b� ÿ RT �b� � 1
2

XT

t�1
w

t
T

� �
f�A2 ÿ B2� cos�2xt� � 2AB sin�2xt�g �11�

Here ST(b) is the weighted residual sum of squares of equation (3). The di�erence
in (11) is deterministic and, using Lemma 1, we can show it is bounded as T ® 1
if 0 < x < p.

By taking derivatives and solving when they are set to 0, we see that the x
that maximizes the periodogram of the tapered data w(t/T)Yt also minimizes
RT(b). This and (11) may be used to show that the estimates presented in (7),
(8), and (9) are asymptotically equivalent to the weighted least squares
estimates.

For the case of more than one frequency, model (2), the function corresponding
to (10) whose minimization yields approximate weighted least squares estimators
becomes

RT �b� �
XT

t�1
w

t
T

� �
y2t � 1

2

XK

k�1
�A2

k � B2
k�
XT

t�1
w

t
T

� �
ÿ 2

XK

k�1

XT

t�1
w

t
T

� �
ytfAk cos�xkt� � Bk sin�xkt�g �12�

Here b� (A, B, x)¢� (A1,¼, AK, B1,¼, BK, x1,¼, xK)¢. In this case, to obtain
(12) from the weighted least squares equation (3), we need terms of the form

AkAl

XT

t�1
w

t
T

� �
cos�xkt� cos�xlt�

and

BkBl

XT

t�1
w

t
T

� �
sin�xkt� sin�xlt�

to be bounded, since they are included ST (A, B, x) ) RT (A, B, x). Some
conditions need to be imposed to avoid have the xk become too close together and
thus prevent the estimators of two or more frequencies from converging in
probability to the same value. An appropriate condition is
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lim
T!1

min
1�k 6�l�K

�T jxk ÿ xlj� � 1 �13�

See Walker (1971) for an example.
So we rede®ne the estimates of x0� (x1,0,¼, xk,0)¢ as the value that maximizes

(9) but under a constraint satisfying (13).
We have shown that the estimates b̂ de®ned by (7)±(9) are asymptotically

equivalent to the weighted least squares estimates b̂ de®ned by (3). Because the
two main results of this paper are asymptotic results, we will abuse notation and
use only b̂ to denote both these estimates.

To prove consistency and asymptotic normality for the weighted least squares,
or equivalently the estimates de®ned by (7)±(9), we need a result concerning the
behaviour of the periodogram of the noise and its derivatives with respect to x.

LEMMA 2. Let the stationary random process f�tg satisfy Assumption 1 and let the
weight function w (s) satisfy Assumption 2, then if

pT �x� � Tÿ�k�1�
XT

t�1
w

t
T

� �
tk�t exp�ÿitx�

�����
�����

one has k� 0, 1, ¼

lim
T!1

sup
0�x�p

pT �x� � 0; in probability

REMARK 1. Lemma 2 has been shown to be true under di�erent assumptions
for the equally weighted case, w(s)� 1. In most cases the result for the weighted
case follows similarly. Walker (1971) proves the Lemma for white noise with ®nite
variance. Hannan (1973) proves it under ergodic and purely non-deterministic
conditions. Brillinger (1986) proves a version of this Lemma for spatial point
processes. Under Assumptions 1 and 2, Lemma 2 follows directly from Brillinger
(1981, p. 98, Theorm 4.5.1)

We may now prove consistency of the weighted least squares estimates

THEOREM 1. If f�tg satis®es Assumption 1 and the weight function w(s) satis®es
Assumption 2, then for 0 < xk,0 < p

lim
T!1

Âk;T � Ak;0

lim
T!1

B̂k;T � Bk;0

lim
T!1

T jx̂k;T ÿ xk;0j � 0

for k� 1,¼, K, in probability.
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REMARK 2. Using Lemmas 1 and 2, we may prove consistency in a similar way
to Walker (1971) or Hannan (1973). In the Appendix, a sketch of the proof is
given containing the key di�erences for the weighted case.

The following theorem describes the asymptotic distribution of the weighted
least squares estimates. The result provides a way to construct standard errors and
con®dence intervals for our estimates.

THEOREM 2. Under the same conditions as Theorem 1, the vectors

fT 1
2�Âk;T ÿ Ak;0�; T 1

2�B̂k;T ÿ Bk;0�; T 3
2�x̂k;T ÿ xk;0�g0 k � 1; . . . ;K

converge in distribution to mutually independent normal vectors with zero mean and
variance matrices

4pf���xk;0�
A2

k;0 � B2
k;0

Vk

where

Vk �
c1A2

k;0 � c2B2
k;0 ÿc3Ak;0Bk;0 ÿc4Bk;0

ÿc3Ak;0Bk;0 c2A2
k;0 � c1B2

k;0 c4Ak;0

ÿc4Bk;0 c4Ak;0 c0

24 35 �14�

Here

c0 � a0b0

c1 � U0W ÿ2
0

c2 � a0b1

c3 � a0W1W ÿ2
0 �W 2

0 W1U2 ÿ W 3
1 U0 ÿ 2W 2

0 W2U1 � 2W0W1W2U0�
c4 � a0�W0W1U2 ÿ W 2

1 U1 ÿ W0W2U1 � W1W2U0�

�15�

where

a0 � �W0W2 ÿ W 2
1 �ÿ2

bn � W 2
n U2 � Wn�1�Wn�1U0 ÿ 2WnU1� for n � 0; 1

Here W0, W1, and W2 are de®ned by (4) and U0, U1 and U2 de®ned by

Un �
Z 1

0

snw�s�2ds

REMARK 3. Observe that if w(t)� 1 for all t, the constants in (15) reduce to
c1� 1, c2� 4, c3� 3, c4� 6 and c0� 12 and the variance matrix reduces to the
variance matrix obtained in the equally weighted case by, for example, Walker
(1971).
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4. EXAMPLES

The relation between the frequencies x1,0,¼, xk,0, called the partial frequencies,
and the frequency related to the pitch of the note heard when listening to the
signal represented by yt, call it k, is of interest in musical sound signal analysis.
With the estimation techniques used in sound analysis, it is common to have the
smallest of the estimates of the x relatively close to k and the kth smallest estimate
relatively close to kk (Rodet, 1997). As mentioned, in current sound analysis
research, it is common to present these estimates without indications of their
uncertainties. The fact that the smallest of the estimated x is usually di�erent
from k is usually interpreted as meaning that the signal is somewhat `out of tune'.
Under the assumption that the signals contain a stochastic element, the possibility
exists that such variations are `due to chance'. To explore this possibility, we
rede®ne the frequencies in model (2) so that x1,0 < � � � < xk,0 and add the
constraint

x̂1;T < � � � < x̂k;T �16�
to the estimation technique. See Remark 5 in the Appendix for a brief discussion
of why, for large enough T, we can still use the asymptotic results of Section 3
when the estimation technique includes constraint (16). The asymptotic variances
of the estimates resulting from this model provides a way to obtain approximate
standard errors and con®dence intervals for our estimates. The following
examples demonstrate some applications.

A recording of a professional clarinet player playing (or trying to play)
concert pitch A (k� 441 Hz) was made. During the recording, 44100
observations of the air pressure wave were recorded per second. A one-second
segment of the signal was divided into 45 non-overlapping, contiguous time
frames, each with 1025 observations (approximately 23 milliseconds). The data
in the ®rst time-frame is shown in Figure 1 on page 000. Using the Splus
function nls ( ), weighted least squares estimates were found for model (2), with
K� 15, for the observed data in each of the above mentioned time frames. The
choice of K and the length of time frames was made to obtain `reasonable' ®ts.
For example, for the ®rst time frame, the residual mean-square is
r̂2 � 0:0000134. Comparing this to the variance of the original signal (1/T)
Rty2t � 0:7609363 shows that the ®tted model explains a large amount of the
variation of the original signal. Similar results where obtained for the other
time-frames. For a discussion of goodness of ®t and other selection procedures,
see Irizarry (1998).

For many orchestral instruments, such as the clarinet, physical modelling
(Fletcher and Rossing, 1991) suggests that, within short segments, the partial
frequencies are harmonically related, meaning that model (2) holds, with the
constraint

xk;0 � kk k � 1; . . . ;K �17�
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with k, the frequency related to the note being played. Under this null hypothesis,
with T large enough (we have T� 1025), we expect the weighted least squares
estimate of xk,0 to be `close' to kk for k� 1,¼, K. Table 1 presents the resulting
estimates x̂k;T ; k � 1; . . . ; 15 for the ®rst 5 frames. In current sound analysis
research, constraint (17) is not necessarily imposed when performing estimation
(Serra and Smith, 1991). The results shown on Table 1 seem to suggest that
maybe constraint (17) should be considered. Our estimates and asymptotic results
are a useful tool for exploring these results.

To examine the possibility that the fundamental frequency played by the
instrumentalist is related to the note we hear, we study how the estimates of x1,0

deviates from 441 Hz, the frequency related to concert pitch A, for each time
frame. Figure 2 shows the estimate x̂1;T obtained in the di�erent time frames
(corresponding to the dots in Figure 2). Theorem 2 provides the asymptotic
variance of this weighted least squares estimate, which we can use as an
approximation

vâr�x̂1;T � � 4pc0f̂ ���x̂1;T �
T 3�Â2

1;T �B̂
2

1;T �
with T, the number of observations used to perform the estimation, c0 de®ned
by (15), Â1;T and B̂1;T , the weighted least squares estimates of A1,0 and B1,0, and
f̂ ���x�, a suitable estimate of the spectrum of the noise process f�tg: see Quinn
and Thomson (1991) for some examples of how to obtain this estimates. We
can use this approximation, to construct marginal �2 s.e. limits, which we
include in Figure 2. The ®gure suggests that, in this signal, the fundamental
frequency is varying from 441 Hz for the di�erent time-frames. We could say
that, for most of the signal, the clarinet player is statistically signi®cantly out of
tune. But why do we hear 441 Hz? Studies show that the human ear cannot
distinguish notes that are 0.03 semitones away from each other (Pierce, 1992).
This implies that frequencies between 441 � 0.76 Hz will sound the same. In

FIGURE 2. Pitch estimate for clarinet sound and con®dence intervals around 441 Hz.
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fact, we can see that for all time-frames x̂1;T � 2
�������������������
vâr�x̂1;T �

p
is inside

441 � 0.76 Hz. Maybe the actual note being played is ¯uctuating between
these values.

To see what the data have to say about (17), the harmonic relation suggested
by physical theory, we can look at the di�erences x̂k;T ÿ kx̂1;T for k� 2, ¼, K.
In Figure 3, we plot these di�erences. Notice that they are, in general, not
exactly equal to 0. Of course, this could simply be random variation. In current
sound analysis research, this is taken as evidence that for each time frame,
partials are not exactly multiples of the fundamental frequency. Again, Theorem 2
provides the asymptotic variance of weighted least squares estimates which we
can use to compute approximations of the standard errors for the di�erences in
question:

vâr�x̂k;T ÿ kx̂1;T � � 4pc0Tÿ3
f̂ ���x̂k;T �

Â
2

k;T � B̂
2

k;T

� k2
f̂ ���x̂1;T �

Â
2

1;T �B̂
2

1;T

0@ 1A k � 1; . . . ;K

Using this, we construct marginal �2 s.e. limits about 0 and include them in
Figure 3. In the present case, there seems to be no evidence that the partial
frequencies are di�erent from the respective multiples of the fundamental
frequency. Notice that we are not presenting this as a formal hypothesis test, but
rather as a useful exploratory method. For an example of how formal hypothesis
testing can be performed, see Quinn and Thomson (1991).

For the ®ne example, a recording of a guitar playing D (146.8 Hz) was made.
For plucked string instruments, like the guitar, physical models predict that
partial frequencies will be higher than multiples of the fundamental frequency. In
Fletcher and Rossing (1991) the ratio is predicted to be proportional to the partial
number squared,

FIGURE 3. Di�erence between partial frequencies and respective multiples of fundamental frequency
estimates for the clarinet sound with con®dence intervals around 0. The range of the y-axes is )0.03±

0.03 semitones in every plot.
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xk;0

x1;0
� bk2; k � 2; . . . ;K �18�

Here b is a constant determined by the physical properties of the strings. In
Figure 4, spectrograms of the guitar and clarinet sounds are compared. Dark
shades of grey represent large values. For the clarinet, the fact that dark
horizontal bands are centered at frequencies that are multiples of 441 Hz (denoted
with dotted lines) is in agreement with our assertion that the partial frequencies
are harmonically related. For the guitar, notice that dark horizontal bands are
centered a bit higher than the multiples of 146.8 (this is most noticeable for the
higher partials). The di�erences between the partial frequencies suggested by the
spectrogram and the multiples of the 146.8 Hz frequency are quite small. In
general, these di�erences are undetectable to even a `trained ear'. However, it is of
interest to assess the harmonic relationship proposed by physical models using
data. The methodology described in this paper provides a way of doing this.

A two-second segment of the guitar signal was divided into 60 non-overlapping,
contiguous time frames with 3000 observations each (approximately 68
milliseconds). As done for the clarinet, we ®nd the weighted least squares
estimates for model (2), with K� 12, for each of these time frames. In Figure 5,
the di�erences x̂k;T ÿ kx̂1;T are shown for one of the time frames with marginal
�2 s.e. limits around 0. All values are outside the �2 s.e. limits, suggesting that

FIGURE 4. Spectrograms (sonograms) of clarinet playing A note (441 Hz) and guitar playing D note
(146.8 Hz).
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the di�erences are not 0. Figure 5 also shows these di�erences for all time frames.
A parabola is ®tted to these values and is also shown. These results provide
evidence that the guitar produces partials that are not harmonically related and
seem to be in agreement with a relationship like that of equation (18).

The asymptotic variance expressions can also be used to construct con®dence
intervals for the amplitude estimates q̂k;T � �Â

2

k;T �B̂2
k;T �

1
2, k� 1, ¼, K. We use the

delta method to arrive at

vâr�q̂k;T � � 4pc1
f̂���x̂k;T �

T
k � 1; . . . ;K

5. DISCUSSION

In this paper, we have presented an expression for the asymptotic variance of the
weighted least squares estimates in a harmonic regression signal plus noise
model. Useful applications in sound signal analysis were found for these results.
In particular, we have examined the possibility that variations of estimates in
di�erent parts of the signal are due to chance alone. We presented evidence
suggesting that the fundamental frequency of a clarinet sound departs from a
®xed frequency. No evidence was found to contradict the fact that the clarinet is
a harmonic instrument, with partial frequencies related to multiples of a
fundamental frequency. This suggests that for the clarinet, and possibly other
harmonic instruments, the additive synthesis model (1) might be improved by the
constraint xk� kk. In the case of a guitar sound, we found evidence suggesting it
does not follow the same harmonic relation as the clarinet. Furthermore, the

FIGURE 5. Di�erences between partial frequencies and respective multiples of fundamental frequency
estimates for a guitar sound.
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results seem to suggest that a constraint of the form xk� (a + ck)2k may be
appropriate. Further investigation of guitar sounds are of interest.
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APPENDIX

PROOF OF LEMMA 1. Fix n. To prove (5), notice that, for k� 0, 2p, we have,
from the boundedness and bounded variation of w(s) that

lim
T!1

Tÿ�n�1�DT
n �k� � lim

T!1

XT

t�1

t
T

� �n
w

t
T

� � 1

T

� �
�
Z 1

0

unw�u�du

� Wn

To prove (6) let 0 < k < 2p and de®ne

Dt�k� �
Xt

s�1
exp�iks�

with the convention that D0(k)� 0. Letting h(u)� unw(u) and using summation by
parts gives

DT
n �k� � T n h�1�DT �k� �

XTÿ1
t�1

h
t
T

� �
ÿ h

t � 1

T

� �� �
Dt�k�

" #
Notice that, if w(t) is bounded and has bounded variation on [0, 1], so does h(s).
Let M be sups |h(s)| and V be the total variation of h(s):
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V � sup
Xk

i�1
jh�si� ÿ h�siÿ1�j

with the suprema taken over all possible subdivision 0 < s0 < s1 < � � � < sk < 1
of [0, 1].

Then, we have

DT
n �k�

�� �� � T n M jDT �k�j � V max
1�t�T

jDt�k�j
� �

We know ± see, for example, Brillinger (1981) ± that |Dt(k)| £ L� 1/|sin�12k�j for all
t. Notice that L depends on k, but given 0 < k < 2p it is constant for all t, thus

DT
n �k�

�� �� � T nL�M � V �
and this completes the proof of the Lemma.

PROOF OF THEOREM 1 Consider ®rst the one sinusoidal case (K� 1). We start by
proving

lim
T!1

T jx̂T ÿ x0j � 0 in probability �19�

which is stronger than the usual consistency

jx̂T ÿ x0j � 0 in probability

but is needed to prove the consistency of the remaining two estimates and
asymptotic normality.

Letting D0 � 1
2�A0 ÿ iB0� gives

qT �x� � Tÿ1dT �x��� ��2� Tÿ1fD0D
T
0 �x0 � x� � �D0D

T
0 �x0 ÿ x�g�� ��2

� 2R Tÿ1dT �x�� �
Tÿ1fD0D

T
0 �x0 � x� � �D0D

T
0 �x0 ÿ x�g� �ÿ � �20�

with

dT �x� �
XT

t�1
w

t
T

� �
�t exp�ÿixt�

By Lemma 1, for 0 < x < p,

Tÿ1DT
1 �x0 � x� � o�1�

and

Tÿ1DT
1 �x0 ÿ x� � W0 x � x0

o�1� otherwise

�
Lemma 2 implies that for 0 < x < p, T )1dT(x)� op(1). Thus we have that
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qT �x� � 1

4
q2
0 Tÿ1DT

0 �xÿ x0�
�� ��2 � op�1�

and

qT �x0� � 1

4
q2
0W 2

0 � op�1�

To prove (19), for any b > 0, de®ne

PT �b� � fx : T jxÿ x0j � bg �21�
Notice that

Pr�T jx̂T ÿ x0j � b� � Pr sup
x2PT �b�

qT �x� � qT �x0�
 !

� Pr sup
x2PT �b�

Tÿ1DT
0 �xÿ x0�

�� �� � W0 � op�1�
 !

Noticing that the expression on the left is a Reimman sum (Irizarry, 1998), we have

sup
x2PT �b�

Tÿ1DT
0 �xÿ x0�

�� �� � Z 1

0

w�s� expfiT �xÿ x0�sgds

���� ����� o�1�

Let x* be such thatZ 1

0

w�s� expfiT �x� ÿ x0�sgds

���� ���� � sup
x2PT �b�

Z 1

0

w�s� expfiT �xÿ x0�sgds

���� ����
Let b*�T|x* ) x0| ³ b > 0. Then, by the de®nition of PT(b) given by (21),
we have

lim
T!1

Pr�T jx̂T ÿ x0j � b� � lim
T!1

Pr

Z1
0

w�s� exp�ib�s�ds

������
������� o�1� � W0 � op�1�

0@ 1A
Since W0 > 0 is a deterministic constant and b* > 0

W0 �
Z 1

0

w�s�ds

���� ����
�
Z 1

0

jw�s� exp�ib�s�jds

>

Z 1

0

w�s� exp�ib�s�ds

���� ����
and we have (19).

To prove consistency for AÃT and B̂T , let
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r�t;b� � fD0 exp�ix0t� � �D0 exp�ÿix0t�g
and

L � 2
XT

t�1
w

t
T

� �( )ÿ1
By Lemma 1 and the mean value theorem, for some ~xT satisfying
j ~xT ÿ x0j � jx̂T ÿ x0j

jÂT ÿ A0 � i�B̂T ÿ B0�j � � L
XT

t�1
w

t
T

� �
r�t; b�it exp�i ~xT t��x̂T ÿ x0�

�����
������ op�1�

The ®rst term in the right-hand side of the above equation is smaller than

L
XT

t�1
w

t
T

� �
jr�t; b�jtjx̂T ÿ x0j � q0T jx̂T ÿ x0j � op�1�

And thus j�ÂT ÿ A0� � i�B̂T ÿ B0�j � op(1), and because both the real and imaginary
parts converge in probability to 0, consistency for the one sinusoidal case is proven.
The general case follows in the same way. See Irizzary (1998) for details.

REMARK 4. Notice that qT(x) is symmetric in its K arguments. As noticed by
Walker (1971), a way of determining which component of x is associated with a
particular partial has to be found. Walker (1971) notices that if we determine the
x̂k;T as the kth largest local maxima of qT(x) subject to separation condition (13),
these will, for su�ciently large T, almost certainly estimate the frequencies of the
harmonic components arranged in descending order of magnitude. The same
argument works in our situation.

REMARK 5. In some applications, it is convenient to have the parameters in
ascending order. De®ne x�1;0 < � � � < x�K;0 so that x�k;0 � kth smallest of x1,0, ¼,
xK,0 and de®ne the A�k;0 and B�k;0 accordingly. Under this `re-parameterization',
instead of using the technique described in Remark 4, we do the following:

Notice that the proof of Theorem 1 shows that for all xk,0, k� 1, ¼, K, for any
d > 0 there is a T0 such that, for all T ³ T0, one of the K components of x̂T , call
it x̂k;T , satis®es

Pr�T jx̂k;T ÿ x̂k;0j > b� < d �22�
for all b > 0. For each T, de®ne the estimate x̂�k;T as the kth smallest of
x̂1;T ; . . . ;xK̂;T . Because K is ®nite, we have that for any d¢ > 0, we can ®nd an
appropriate d(K, d¢) in (22) so that for T ³ T0 we have
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Pr T f min
1�k�K

x̂k;Tg ÿ x�1;0

���� ���� > b
� �

< d0

for all b > 0. Similarly, we ®nd that limT!1 T jx̂�k;T ÿ x�k;0j � 0.

PROOF OF THEOREM 2. We follow in a similar way to Walker (1971) and
Hannan (1973). First, consider the case of one sinusoidal component (K� 1).
Using Theorem 4.4.2 in Brillinger (1981, p. 95), we have that the vector u, with
components

u1 � Tÿ
1
2

X
w

t
T

� �
�t cosx0t

u2 � Tÿ
1
2

X
w

t
T

� �
�t sinx0t

u3 � Tÿ
3
2

X
w

t
T

� �
�tt cosx0t

u4 � Tÿ
3
2

X
w

t
T

� �
�tt sinx0t

�23�

is asymptotically multivariate normal with zero mean and variance matrix

U � pf���x0�
U0 0 U1 0
0 U0 0 U1

U1 0 U2 0
0 U1 0 U2

0BB@
1CCA

Expanding q0T �x� in the ®rst two terms of its Taylor series, about x0 we can write

Tÿ
1
2q0T �x0� � ÿT

3
2�x̂T ÿ x0�Tÿ2q00T � ~xT � j ~xT ÿ x0j � jx̂T ÿ x0j �24�

Notice that, calculating the derivative and repeated use of Lemmas 1 and 2, we
can show that

Tÿ
1
2q0T �x0� � ÿW1B0u1 � W1A0u2 � W0B0u3 ÿ W0A0u4 � op�1� �25�

Since T j ~xT ÿ x0j converges to zero in probability, taking the second derivative,
we have by repeated use of Lemmas 1 and 2

Tÿ2q00T � ~xT � � 1
2�A2

0 � B2
0��W 2

1 ÿ W0W2� � op�1� �26�
Using (24), (25) and (26), we can express the vector of standardized estimates as a
linear combination of the vector u, de®ned by equation (23), plus a quantity
converging to 0 in probability.

fT 1
2�ÂT ÿ A0�; T 1

2�B̂T ÿ B0�; T 3
2�x̂T ÿ x0�g0 � Au� op(1)

with
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A �
B2
0W2 � A2

0�W2 ÿ W 2
1

W0
� ÿ A0B0W 2

1

W0
ÿB2

0W1 A0B0W1

ÿ A0B0W 2
1

W0
A2
0W2 � B2

0 W2 ÿ W 2
1

W0

� �
A0B0W1 ÿA2

0W1

ÿB0W1 A0W1 B0W0 ÿA0W0

0BB@
1CCA

By Assumption 2, we know that all the denominators in the components of A are
not 0. This implies that Au is asymptotically multivariate normal with variance
matrix AUA¢. By computing AUA¢, we obtain the variance expression (14). This
proves Theorem 2 for the one sinusoidal case.

Taking derivatives of qT(x), we notice the @qT(x)/@xk do not depend on xl

when l ¹ k. Furthermore, under condition (13), the x̂k;T are asymptotically
independent; see, for example, Brillinger (1981). Theorem 2 now follows for the
general case.
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