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Abstract

This paper expresses the transition probabilities of a nonstationary
Markov chain by means of models involving wavelet expansions and
then, given part of a realization of such a process, proceeds to esti-
mate the coefficients of the expansion and the probabilities themselves.
Through choice of the number of and which wavelet terms to include,
the approach provides a flexible method for handling discrete-valued
observations in the nonstationary case. In particular the method ap-
pears useful for detecting abrupt or steady changes in the structure
of Markov chains. The method is illustrated by means of data sets
concerning music, rainfall and sleep. In the examples both direct and
shruken estimates are computed. The approach is implemented by
means of programs for fitting generalized linear models. The goodness
of fit and the presence of nonstationarity are assessed both by change
of deviance and graphically via periodogram plots.

1 Introduction

This work presents empirical analyses of nonstationary Markov chain mod-
els, based on wavelet expansions, for time series data sets taken from musi-
cology, meteorology and sleep research, respectively. A basic goal is looking
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for time varying characteristics of the various series, such as trend and/or
changing (seasonal) effects. The work proceeds from an initial analysis of
the transition probabilities into the coefficients of a wavelet expansion. This
is followed by an estimation of the coefficients and a synthesis to obtain es-
timates of the transition probabilities themselves. The fitted characteristics
may be used to assess stationarity, eg. detecting points of change amongst
other things. Through choice of the number of and just which wavelet terms
to include in the linear predictor the approach provides a flexible method
for handling sequences of discrete state valued observations amongst other
possibilities.

The work may be viewed as involving a nonlinear model within a regression-
type setup. Specifically transition probabilities, P,;(t), of movement from
state a to state b are expressed as functions of a linear predictor of ¢, by
means of models involving wavelet expansions and link functions. Gener-
alized linear model methodology and computing programs are employed in
the empirical analyses.

The next section provides pertinent basic background on Markov chains,
wavelets, the model and its analysis. Section 3 describes the data sets,
Section 4 presents the results of the analyses and the paper ends with some
general discussion.

2 Background

2.1 The Markov Chain Case

Consider a nonstationary Markov chain. Suppose time is discrete, t = 1,2, ...
and that the chain has A states indexed by the labels a, b. Let P,;(¢) denote
the conditional probability of being in state b at time ¢, given that the pro-
cess was in state a at time ¢ — 1. Let Py(¢) denote the marginal probability
of being in state b at time ¢. The process may be denoted Y (1), t = 1,2, ...
with Y(t) € {1,..., A}. It will be supposed that the state of the process has
been observed at the T successive times, t = 1,2, ...,7T .

In many cases a set of parameters, reduced from the full set { P5(¢), P.s(t)},
is required, particularly if A is not small and the amount of data is limited.
The approach adopted here is to employ a linear parametrization of some
function of the P’s, e.g. to write

logit{ Pus()} = > Bujutbin(t), (1)
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with the #’s unknown parameters to be estimated. At the next step this
expression is substituted into a likelihood function and the unknowns esti-
mated by maximizing a likelihood. There may be a further step of shrinkage.
In the expansion (1), the ¥’s are the functions of some wavelet basis, as dis-
cussed below.

A likelihood function, on which estimates can be based, may be set down
as follows. Define Y,(0) = 1, if the chain starts in state @ and Y,(0) = 0
otherwise, with >~ Y,(0) = 1, EY,(0) = P, = Prob{Y,(0) = 1}. Similarly,
define Y3(¢) = 1, if the process is in state a at time ¢ — 1 and in state b at
time ¢, and Y,;(t) = 0 otherwise and lastly define Y;(¢) = 1, if in state b at
time ¢, Y3(¢) = 0 otherwise.

Given the data and parametric forms for P,(t), P,() the likelihood is

A T A A
LTI P2~ TT IT IT Pasctyeer), (2)
a=1 t=1a=1b=1
where the y,, yap refer to observed data values (as opposed to employing
the notation Y,, Yy for the corresponding random quantities).

In the case that A = 2 things simplify. With 7(t) = Pi1(t), Pi2(t) =
1 — (1), m2(t) = Paa(t), Par(t) = 1 — mo(2) the likelihood is

PO PO, {m (021 O1 =y (1)) Oma ()2 O1 = mo(0)] 2O}, (3)

In a variety of cases, eg. T large, the first two terms, may be neglected.
This will be done in the work presented. The estimation criterion becomes

I () O — g ()] D7 Oy (10221 = y() 2D 79220}, (4)

When consideration below turns to estimation, it is useful to note that this
has the form of a likelihood based on independent Bernoullis with y1 (%), y2(?)
taking on the values 0 or 1 depending on whether the process is in state 1
or state 2 at time ¢t. In consequence the log of the criterion is the sum of a
term in 71(¢) and one in 7(¢) each corresponding to a binomial distribution.
Standard statistical packages, allowing generalized linear model fitting of
Binomials, may now be employed to compute estimates of the §’s of (1).
A variety of properties of maximum likelihood estimates have been devel-
oped for Markov chains in the large sample case. For example, Billingsley
(1961) developed consistency and asymptotic normality results for a sta-
tionary finite dimensional parameter Markov chain. Foutz and Srivastava



(1979) and Ogata (1980) derived the large sample distribution of the maxi-
mum likelihood estimate in the stationary ergodic case. Bishop et al (1975)
suggested some methods for assessing empirically whether a Markov chain
is stationary. Fahrmeir and Kaufmann (1987), Kaufmann (1987) indicated
how nonstationary Markov chain models might be included within the gen-
eralized linear modelling methodology. Details of this are provided below.
Coe and Stern (1982) presented empirical analyses involving nonstationary
Markov chain models. McCullagh and Nelder (1989), Section 8.4.3, dis-
cussed the Coe and Stern work.

Consideration now turns to some wavelet methodology basic to the model
being studied.

2.2 Wavelets

Wavelets are contemporary tools, alternative to existing basis systems such
as sines and cosines, Walsh functions, etc.

The basic fact about wavelets is that they are localized in time (and
space), contrary to what happens with the trigonometric functions used in
Fourier analysis. This behavior makes wavelets ideal for the analysis of non-
stationary signals, particularly those with transients or singularities. Fourier
bases are localized in frequency but not in time; small changes in some of the
observations may induce substantial changes in almost all the components of
a Fourier expansion, a fact that does not hold for basic wavelet expansions
and can be a real disadvantage.

Depending on the situation the functions of a wavelet basis may be
orthogonal or not. In developing orthonormal bases it is convenient to start
with a father wavelet or scaling function ¢, such that

o(t) = V23 lrp(2t — k) (5)

for some coefficients, I, and normalized via [ ¢(t)dt = 1. A mother wavelet
© is then obtained through

P(t) = V2D hed(2t — k), (6)

where

by = (=1)Fty_y, (7)

The equations (5) and (6) are called dilation equations. The coefficients
lr, hr are low-pass and high-pass filters, respectively and appear in the



so-called quadrature mirror filters used in fast algorithms to compute the
wavelet transform.

Often ¢(t) and the [, are such that these functions generate an orthonor-
mal system for Ly(R). It can be denoted {¢;, r(¥)} U {¥;x(t)};i>jo,k, With
bin(t) = 272427t — k) and o 1(1) = 2/%p(27t — k) for § > jo with
Jo the so called coarsest scale. Some further properties may hold for these
wavelets, such as the admissibility condition [ (¢)dt = 0, or that the first
(r — 1) moments of 7 vanish, for some r > 2. In this case the degree of
smoothness of 1 is given by r. For details see Daubechies (1992).

For any f € Ly(R), one may consider the expansion

F) =" ardiow(t) + D Birtin(t), (8)
k i2io k
where the wavelet coeflicients are given by
ar = [ F06sx0dt, B = [ F004(00d1 (9)

following the orthonormality.
An estimate of the function f(¢) takes the form

F@) = D ardior(t) + DD Binthin(t), (10)

where the ay, Bjk are estimates of the ay, 3 of (8).
Several issues are of interest here:

(i) the choice of the wavelet basis,

(ii) the choice of a shrinkage policy,

(iii) the choice of the parameters appearing in the shrinkage scheme,
(iv) the estimation of the scale parameter (noise level).

A brief discussion of these follows. For further details see for example
Morettin(1997) and Mallat(1998).

(i) Concerning the choice of the wavelet basis, some possibilities are: the
Haar functions, compactly supported wavelet bases (Daubechies, 1992),
complex wavelets (Morlet, or modulated Gaussian), Mexican hat (second
derivative of Gaussian, but is not an orthogonal system), etc.



The problem and the form of the signal to be analysed may suggest
a particular basis. In the examples to be presented principally the Haar
expansion will be used having in mind its simplicity of interpretation and
the detection of temporal changes. The Haar expansion is based on the
choices

o) = 1,0 < ¢ <1, (11)

1, 0<t<1/2
o) = {—1, 1/2<t<1 (12)

The expansion is then, more simply

27-1

J
ft) = a + Z > Birt(t). (13)

0 k=0
for some J. It may be remarked that in this case the fitted values simply
correspond to assuming the function is constant at the finest resolution
employed.

(ii) By shrinkage is meant the replacement of an estimated coefficient, ﬁj7k,
by a shrunken value B;k = w(ﬁj7k/5jk)ﬁj7k, for some function w(.) with
0 < w(.) < 1,w(0) = 1 and with s, an estimated standard error of ;.

The function w(.) is meant to dampen down the variability of Bj,k- The
estimated function will be, in the Haar case,

F@)y = a4+ Y2 Bt (14)
ik

Various criteria have been suggested for the choice of w(.). For example
Blow and Crick(1959), using a mean squared error criterion, were led to the
function

w(w) = YIS + (e, (15)

with the I; Bessel functions. Tukey(1979) suggested the use of

wu) = (1= 1/u2);, (16)
which weights to zero any terms with |ﬁj7k| less than its standard error and

smoothly downweights larger values. This is the w(-) used in the examples
presented below.



Donoho and Johnstone(1994,1995,1998), motivated by considerations of
risk, work with multipliers of the form 5%(@;‘&), with A\, — o0 as n — oo,
e.g. A\, = s;kv/2logn. Here s; is the estimated standard deviation of Bj,k-
Specifically, they suggested the use of hard and soft thresholds, defined,
respectively by

by () = {m, if |z| > A (17)
and
@) =1 sign(a)lel = 2, it o] 5 2 (18)
for some A.

The first is of the type so called “kill or preserve”, while the second is “kill
or reduce”. The smooth policy may present larger biases, while the hard one
produces smaller biases but larger variances, see Bruce and Gao(1996). This
procedure damps down the terms considerably more rapidly than choices
(15) and (16). It remains to be learned when these various choices are
particularly appropriate and for which practical situations.

In practice ranges of values of 7,k in (1) need to be selected. Here
the various j, k terms will have varying weights, as a result of employing
shrinkage, and in a sense this alleviates the problem of choice of range for
7, k.

(iii) If one uses hard or soft thresholding, one has to choose the form of the
parameter A,. In some situations it may be level-independent, leading to the
so-called universal threshold of Donoho and Johnstone, in other situations
it may depend of the level j. In the general situation, one might set A;; =
s;xv/2logn, the threshold parameter depending on the level and location.
Other proposals are the SureShrink (Donoho and Johnstone,1995) and a
cross-validation procedure (Nason,1995).

(iv) In the case of (15) or (16), s; 1, an estimate of the standard deviation
of Bjka is needed. For a signal plus stationary noise model, Brillinger(1996)
bases such estimates on an estimate of the power spectrum of the errors.
In the present examples output from a standard generalized linear model
program may be used.

The present work will consider principally a logit link for the probabilities
and a wavelet-based regression function, as in (1). Of course other links than
the logit may be used.



In practice the time period of observation will be shrunk to the unit
interval working in terms of the variate t/7.

2.3 The Model and Its Implementation

Given a stretch of data from a two state Markov chain, with transition
probabilities P,;(t), in the empirical examples presented the estimation cri-
terion (4) will be used. What is then needed is a specific model for the
Ta(t), a =1,2.

Fahrmeir and Kaufmann (1987) and Kaufmann (1987) present a max-
imum likelihood approach for statistical inference concerning categorical-
valued time series possessing certain forms of Markov structure. The model
allows the inclusion of explanatory variables. These authors develop consis-
tency and asymptotic normality properties of the estimates amongst other
things. The model may be written:

Prob{Ya(t) = 1| Y(t—1), Y(t—2), ..} = ha(Z(t) B)

fora = 1,..,A—1,where Y(¢) = [Y,(#)],h: RA~" — RA=! is one-to-one,
and Z(t) a function of past observations and fixed explanatories. Higher-
order Markov chains are included by inserting interaction terms such as
Y. (t — 1)Ys(t — 2) into the linear predictor, Z(t)™ 3.

To be specific, consider the two state (A=2) and Haar wavelets case.
The model (1) may be written

Jo 291
Ta(t) = h{aa + > > Bajetbin(t)}, (19)
=0 k=0
a = 1,2 with h for example the inverse of the logit transform as in (1). This
model falls within the framework of the Fahrmeir-Kaufmann work. Further
the computations may be carried out via programs, such as Splus or Glim,
developed for the generalized linear model, in particular for the Binomial
case. Assuming that the preceding model is correct and that J, is finite,
the results of Fahrmeir and Kaufmann show that the usual large sample
standard error formulae are appropriate asymptotically.

The 5,4k, i.e. the standard error estimates for the Bajka will be required
in the formation of shrunken estimates. They are typically part of the output
of maximum likelihood programs. These values (and estimated covariances)
may be used to estimate the variances of derived estimates, eg. of the



transition probabilities of the Markov model. This is what has been done in
the examples presented below.

In Brillinger (1994,96) it is proposed to estimate the uncertainty of a
shrunken wavelet estimate of a mean function by acting as if the weights,
'zu(ﬁajk/sajk) are constant, (really more nearly constant), i.e. that the major
variability comes from the Bajk appearing. This is what has been done in
the examples presented below. It is also acted as if the J, were given.

It is important to assess the goodness of fit of models employed. In the
present case the model has two basic characteristics: Markov dependence
and nonstationarity described by wavelet expansions. It is a generalized lin-
ear model, so techniques proposed for that case may be considered. These
include: the final deviance and employing various types of residual analysis.
In particular, since temporal dependence is a basic concern, an examina-
tion of the periodogram of the residuals may prove insightful in considering
alternatives of stationary dependence.

To be specific the estimates may be found using the function glm() from
Splus. For the binomial case, glm() takes data in the form of a two column
matrix in which a 1 in the first column and 0 in the second denotes a success
and a 0 in the first column and 1 in the second denotes a failure. In the
case of estimating, say m1(), one sees from equation (4) that y11(¢) = 1
will be considered a success and y12(f) = 1 will be considered a failure.
However, y21(t) = 1 and y22(t) = 1 are neither a success nor a failure.
The function glm() can handle this type of situation by having 0 in both
columns in the row corresponding to time ¢. A problem arises when too
many such negligeable rows ocurr. If, for example one is using the function

1 to <t <1y
/ — b —
Vir(?) {—17 i1 <t <ty

and the rows corresponding to either times ty through ¢y, or t; through
1o are negligeable, then the corresponding coefficient 3,1 is not estimable.
Splus resolves this circumstance by assigning NA to the estimate of ;.
This presents a problem at the shrinkage step. In the examples presented
to resolve this problem wavelet terms corresponding to NA estimates are
removed from the regression matrix and the glm() fit reinitiated.

3 The Data Sets

Consideration now turns to applying the above modelling procedure to some
observational data sets of interest.



3.1 The Music Data

Markov processes have been used in finding structure in music, see for exam-
ple Pinkerton (1956), Hiller and Isaacson (1959), Jones (1981). For example
musicologists have tried to model melodies as k-th order Markov chains.
These methods have generally failed to capture the essence of melodies for
two reasons. Firstly, they miss the global structure of the music and secondly
because they assume stationarity, a characteristic that melodies definitely
do not seem to possess.

In Irizarry (1998) a stochastic composition is created using a 5-state
Markov model (big jump up, small jump up, no jump, small jump down,
big jump down) to generate the intervals between notes of the melody. A 5
by 5 transition probability matrix, estimated from simple melodies, is used.
It was noticed that, although the melody sounded fine for small stretches
of time, it lacked direction and seemed repetitive. Use of a nonstationary
transition probability matrix may “improve” such stochastic compositions.
In this work, as a preliminary study, a simple 2-state (jump, no jump) model
will be employed. A jump ocuring at time ¢ is related to a note starting
at that time. This representation is then equivalent to the rhythm of the
melody. Stretches with many consecutive notes can refer to as an intense
part of the melody.

The example to be considered is the first 128 measures of the rhythm of
the soprano line of J.S. Bach’s unfinished fugue, Contrapunctus XIV from
Die Kunst der Fuge. To begin, it is necessary to put such data into the form
considered in the paper. To this end temporal subdivisions of a measure
are set up. The smallest has been called a tatum, Bilmes (1993). In this
particular fugue the smallest subdivision of the beat is a sixteenth. However,
sixteenth notes are used only as embelishments so to be able to study the
structure of the piece in terms of the intense parts, here a tatum will be
defined to be an eighth-note and a two-state time series will be defined via
Y1) = { 2, if the beginni.ng of a note occurs in tatum ¢ (20)
1, no new note in tatum %.

There are then T' = 1024 observations in total. Figure 1 presents some data
from near the end of the piece. The event of a new note starting corresponds
to the level 2. One notices a number of stretches of constant level.

Questions that might be addressed here include: can wavelet analysis
usefully describe nonstationarity present? Is the piece Markov? Is it Markov
of some higher order?
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Soprano Rhythm of Contrapunctus XIV by J.S. Bach

> . — — [ R R - o —

105 110 115 120 125

Figure 1: Beginnings of notes for the Soprano line in Bach’s unfinished
fugue. Th e value 2 corresponds to a new note starting.

Brillinger and Irizarry (1998) and Irizarry (1998) contain more details
on the quantification and statistical analysis of music.

3.2 The Snoqualmie Falls Rain Data

For the present work Peter Guttorp provided daily data concerning whether
or not at least 0.01 inches of rain had occurred at Snoqualmie Falls, Wash-
ington, for each day for the period 1963 to 1977. That is for 15 years. He
had analyzed the January data, Guttorp (1995), and in particular fit 2-state
stationary Markov chains of orders 1 and 2. Guttorp restricted considera-
tion to January values in order to obtain realizations of an approximately
stationary process. In the present work all the days and months, are studied.

The data for the year 1963 is graphed in Figure 2 with Y = 1 when no
rain and Y = 2 when rain. One sees stretches of both wet and dry days.

Questions of interest include: Is the seasonal, that is annual, effect chang-
ing? Are there some changes in the structure of the series?

3.3 An Example From Sleep Research

Mello et al (1996) investigated the sleep-awake behavior of a boy from the
age of five weeks to four years. The procedure consisted of recording waking
and sleep states via direct observation by his mother or eventually by a maid.
When carried out the measurements were done at intervals of 10 minutes.
The values 2 and 1 were assigned to the sleep and awake states, respectively.
In the present work only the data for the age of five weeks to six weeks, are

11



Snoqualmie Falls Rain in 1963
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Figure 2: The Rain Data. The value 2 corresponds to a day with rain and
1 to none.

studied. There are T" = 2016 values. Figure 3 shows the plot of a segment
of the data. Once again stretches of constancy may be noted with the child
asleep and awake for approximately egual lengths of time. Examination of
the data, for example by periodogram analysis, shows a period of 24 hours.

Sleep Data

> o o N ——

T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time in Days

Figure 3: Sleep Data. The value 2 corresponds to the child being asleep, 1
to awake.

Questions of interest include: Is a simple Markov process an acceptable
model? Is the 24 hour periodicity changing in character?

12



4 Results of Fitting the Markov Chain Models

4.1 The Music Data

Figure 1 provided a segment of some baroque music. In this type of music
it is common to have notes starting on the beat (tatums 1,3,5,7 in the 8
tatums within a measure), rather than the subdivisions of the beat (tatums
2,4,6,8). Further more it is more likely that a note starts on a strong beat
(tatums 1 and 5) rather than a weak beat (tatums 3 and 7). The terms
YasTas(t), ... in the model below are “beat” explanatories inserted to handle
this phenomenon. Specifically write

Tqs(t) =1 when t mod 4 =1
Taw(t) =1 when t mod 4 =3
Tasd(t) = 1 when t mod 4 =0 or 2

with s referring to strong, w referring to weak and sd to subdivision. [RAFA
- what’s that?] The model fit is the following

Jo 27-1
Wa(t) = h{E : E : ﬁa]kwjk(t) + 7as$as(t) + H/awwaw(t) + 7a5d$asd(t)} (21)
7=1 k=0
¢ = 1,2 with h the inverse of the logit transform and with J;,Js = 3.
Estimated P11(t) Estimated P12(t)
1.0 1.0
% os W % o8
% oe 2 o
> 0.2 k7 0.2
e 0.0 = 0.0
=3 w =3 w s w s w s w s w =3 w =3 w
Time in tatums Time in tatums
Estimated P21(t) Estimated P22(1)
1.0 1.0
% o.8 % o.8
% oe 2 o6
‘E 0.4 ‘é o.a
= 0.0 = 0.0
s w s w s w s w s w s w s w s w

Time in tatums Time in tatums

Figure 4: Estimated transition probabilities for the music data. S refers to
a strong beat and W to a weak one.

Figure 4 uses the data of measures 47 and 48 of the piece and provides the
transition probabilities as estimated by substituting the maximum likelihood
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Estimated Wavelet Linear Predictor for pil(t)

1.5

0.5
0.0
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Time in measures

Estimated Wavelet Linear Predictor pi2(t)
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o}
o}

Time in measures

Figure 5: Fitted values of the linear predictor for the music data. Marginal
12 s.e. limits are included.

estimates of the 3, v into (21). In the plot S refers to a strong beat and W
to a weak one. There is an apparent effect.

Figure 5 provides the wavelet part of the linear predictor. Figure 5
is useful for examining the nonstationarity of the data as in particular it
includes marginal £2 s.e. limits about the beat level. In the present case,
as was anticipated from the context, there is evidence of nonstationarity
transition probabilities. At the same time various values are within, or
nearly within, the +2 s.e. limits suggesting that improved estimates might
be obtained via shrinkage.

Estimated Wavelet Linear Predictor for pil(t) Using Shrinkage

o r
oo

o
o

Shrinkage Estimate
]
]

B
)

Time in measures

Estimated Wavelet Linear Predictor pi2(t) Using Shrinkage

1.0
0.5

0.0

-0.5

Shrinkage Estimate

-1.0

Time in measures

Figure 6: The shrunken linear predictors for the music data and marginal
+2 s.e. limits.

14



Figure 6 is the same as the previous figure, but with the shrunken es-
timates. Using this estimate and the beat factor useful estimates of the
transition probabilities may be constructed. [DO IT?]

The overall fit of the model (21) is assessed in two fashions: via the
final deviances and via the periodograms of the residuals. The results are
given for both states 1 and 2 in Table 1 and Figure 7 respectively. The
final deviances are 348.4 and 617.4 with degrees of freedom 355 and 649 .
Neither provides evidence for lack of fit. For state 1 the change of deviance in
moving from the stationary to the beat model is 114.5 and in moving to the
wavelet model the change is 29.2 with 7 degrees of freedom with 2 degrees
of freedom. Consistently with Figure 5 one has evidence of nonstationarity.
There is corresponding evidence in the case of state 2.

The second way overall fit is assessed in this work is via the periodogram
of the deviance residuals. This statistic is sensitive to a variety of types of
stationary temporal dependence. The periodograms are graphed in Figure 7
for the two states. The graphs include marginal approximate 95% confidence
limits. There is no strong suggestion of remaining temporal dependence.

ANODEYV Table - Music State 1

Source ‘ Deviance ‘ DF
Stationary Model 492.1 364
Adding Beat 377.6 362
Wavelet Model 348.4 355

ANODEYV Table - Music State 2

Source ‘ Deviance ‘ DF
Stationary Model 697.0 658
Adding beat 664.6 656
Wavelet Model 617.4 649

Table 1: Deviances resulting from fitting the stationary, then the
nonstationary model (21) to the music data.

In the present case there were some difficulties of estimation of the co-
efficients of the type refered to at the end of Section 2.3.

15



State 1 Periodogram
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Figure 7: Periodograms of the deviance residuals of the wavelet fits to the
music data. Marginal approximate 95% confidence limits are indicated.

4.2 The Snoqualmie Falls Rainfall Data

Markov chain analyses of rainfall data were carried out in Coe and Stern
(1982) for example. These authors fit first and second order Markov models
to the two-state process of {no rain, rain} for four sites scattered about the
world. Amongst other models, in the present notation, they fit

L

logit(my(t)) = o, + Z[ﬁagsin(Qwﬁt/ZSGG)—I—'yagcos(27r€t/366)] (22)
=1

L = 4,a = 1,2 and with ¢ in days. They assessed the order of the chain
via the change in deviance.

In the present paper the model fit to the Snoqualmie Falls rainfall data,
an initial stretch of which was graphed in Figure 2, is

Tq(t) = h{o, + ZL:[Bal(t) sin(27€t/365.25) + Cyy(t) cos(2mlt/365.25)]} (23)
=1

with
Ba(t) =Y Bajebjn(t), Ca(t) = Vajuthjn(t) (24)
Ik ik
It allows the amplitudes of the seasonal terms are allowed to depend on
time. The values L = 1, J1,J; = 4 and Haar wavelets were employed.
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Estimated P11(t) Estimated P12(t)
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Figure 8: The wavelet-based transition probability estimates obtained from
the model (23,24) for the rainfall data.

Figure 8 shows the transition probability estimates for the case of . = 1.
They fluctuate in a seasonal fashion as was to be expected. The chances of
remaining in a state appear high and of changing state, low for both states
1 and 2. This fits with the idea that the North West Coast weather shows
persistence on a time scale of days. One sees some suggestions of changes
in structure.

Estimated Amplitude rhol(t)

Estimate
0000pRpR
NAOOONAD

1965 1970 1975

Time in years

Estimated Amplitude rho2(t)

Estimate
0000pRpRR
NAOQOONAM

1965 1970 1975
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Figure 9: Wavelet-based estimates of p,(t) = /Bn(t)? + C,(t)? of the
model (23,24) for the rainfall data. Marginal +2 s.e. limits are included.

Figure 9 provides estimates p,(t) = \/Ba(t)2 +Cu(t)?, a = 1,2 of the
amplitudes. There are no strong suggestions that the amplitude is varying
with time
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Figure 10: The result of fitting the model (23,24) and then applying shrink-
age for the rainfall data.

Figure 10 provides the transition probability estimates when shrinkage
is included. It is to be compared with Figure 8. The estimates show some
changes of shape of the seasonal effect. Had the shrinker put to 0 all co-
efficients less than twice their standard error there would have been little
change from Figure 8 to Figure 10.

ANODEYV Table - Rain State 1

Source ‘ Deviance ‘ DF
Constant Coefficient Model ‘ 3001.6 ‘ 2606

Wavelet Model 2970.8 2576
ANODEYV Table - Rain State 2
Source ‘ Deviance ‘ DF

Constant Coefficient Model 3194.9 2862
Wavelet Model 3168.3 2832

Table 2: Deviances resulting from fitting the constant seasonal model and
the model (23,24) to the rainfall data.

The deviances resulting from fitting the model with constant B, (¢), C,(?)
and the model (23,24) are given in Table 2. The changes in deviance in going
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Figure 11: The periodogram of the deviance residuals for the rainfall data.
Marginal approximate 95% confidence intervals are indicated.

between the models are 30.8, 26.6 each with degrees of freedom 30. Neither
suggests that bringing time variation of the present type into the seasonal
improves the fit.

The periodograms of the residuals, given in Figure 11, Neither shows
evidence of remaining temporal dependence.

4.3 The Sleep Data

The following models are fit to the sleep data, part of which appears in
Figure 3,

L
74(t) = h{a, + Z[Bal sin(2mlt) + Cyy cos(2mlt)]}, (25)
=1

L
T4(t) = h{a, + Z[Bal(t) sin(2mlt) + Cyy(t) cos(2mlt)]} (26)
=1
In the latter the coefficients are represented by wavelet expansions as in
(25). The values I = 1, J1,.J; = 6 were employed.

Figure 12 provides the estimated transition probabilities. The 24 hour
period of the fitted probabilities is clear. Also it is apparent that the child
tends to remain in the sleep or awake state it already occupies.

Figure 13 presents the wavelet-based estimates of time varying ampli-
tudes of the sine and cosine terms. No evidence of substantial nonstation-
arity appears.
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Figure 12: Wavelet-based transition probability estimates obtained for the
period 24 hr sleep model.
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Figure 13: Wavelet-based estimates of the amplitudes, p,(t), of the period
24 components of the sleep data. Marginal £2 s.e. limits are included.
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Figure 14: The results of fitting the model (26) to the sleep data and then
applying shrinkage.

Figure 14 provides the results of shrinking the estimates to the constant
coefficient estimates after fitting the time varying amplitude model. The
result is of much more regular appearance.

ANODEYV Table - Sleep State 1

Source ‘ Deviance ‘ DF
Constant Coefficient Model ‘ 640.4 ‘ 899

Wavelet Model 615.6 869
ANODEYV Table - Sleep State 2
Source ‘ Deviance ‘ DF

Constant Coefficient Model 715.9 1111
Wavelet Model 697.4 1081

Table 3: Deviances obtained when modelling the sleep data.

The deviances found are listed in Table 3. The changes in deviance in-
volved in moving from the constant coefficient to the time varying model are
24.8 and 18.5 respectively each with 30 degrees freedom. Neither provides
any evidence of for the inclusion of time varying coefficients, B,,C,. Nor
do the periodograms of Figure 15 suggest remaining temporal dependence.
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Figure 15: Periodograms of the residuals of the fit of the sleep model. Also
included are marginal approximate 95% confidence limits.

In summary ...

4.4 A Continuous Wavelet Fit

The Haar wavelets involve jump discontinuities. They can be expected to be
particularly useful when abrupt changes are taking place. However it seems
worth recording the results of employing the sombrero function. This will
be done for the rain data. The sombrero function is given by

(22 — 1)6_952/2 (27)

Figure 16 is to be compared with Figure 8. The visible changes have
now become smooth, rather than abrupt, as was to be anticipated. Figure
17 is ...

5 Discussion

In the work practical experience has gained with wavelet-based models for
the Markov chain data. In particular a variety of departures from sta-
tionarity have had an opportunity to show themselves. Principally Haar
wavelelts were employed, because of simplicity of interpretation and to high-
light abrupt changes. The initial estimates computed were maximum likeli-
hood, but in an attempt to improve upon them shrinkage has been employed.
Covariates may be inclued in the analysis simply, and this was done in the
music example.
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Figure 16: The estimated amplitudes for the linear predictor when the som-
brero function is employed.
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Figure 17: The results of employing the sombrero function in estimating the
transition probabilities for the rain data.
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The examples presented are all for the case of a process with two states,
but extensions to the higher-order case are immediate. a Extensions to
chain-type processes remembering further back in time are also indicated.

The shrinkage might have been made automatic by inclusion of a penalty
term in the log likelihood.

6 Acknowledgements

We thank Peter Guttorp for providing the Snoqualmie Falls data and Luiz
Menna-Barreto for providing the sleep data. The work was supported in
part by the NSF Grants DMS-9625774 and INT-9600251, the CNPq Grant
910011/96-6 and the FAPESP Grant 97/11631-7.

7 References

Billingsley, P. (1961), Statistical Inference for Markov Processes, University
of Chicago Press, Chicago.

Bilmes, J. (1993), Timing is of the Essence, Masters Thesis, MIT.

Bishop, Y. M., Fienberg, S. E. and Holland, P. W. (1975), Discrete Multi-
variate Analysis, MIT Press, Cambridge.

Blow, D. M. and Crick, F. H. C. (1959), “The Treatment of Errors in the
Isomorphous Replacement Metod”, Acta Crystalographica, 12, 794-
802.

Brillinger, D. R. (1994), “Some River Wavelets”, Fnvironmetrics, 5, 211-
220.

Brillinger, D. R. (1996), “Some Uses of Cumulants in Wavelet Analysis”,
J. Nonparametric Statistics, 6, 93-114.

Brillinger, D. R. and Irizarry, R. (1998), “An Investigation of the Second-
and Higher-Order Spectra of Music”, Signal Processing, 39, 161-179.

Bruce, A. G. and Gao, H-Y. (1994), S+ Wavelets: User’s Manual, StatSci,
Seattle, WA.

Bruce, A. G. and Gao, H-Y. (1996), “Understanding Waveshrink: Variance
and Bias Estimation”, Biometrika, 83, 727-745.

24



Chiann, C. (1997), Wavelet Analysis in Time Series, Ph.D thesis, Univer-
sity of Sdo Paulo (in Portuguese).

Chiann, C. and Morettin, P. A. (1998), “A Wavelet Analysis for Time
Series”, To appear, J. Nonparametric Statistics.

Coe, R. and Stern, R. D. (1982), “Fitting Models to Daily Rainfall Data”,
J. Applied Meteorology, 21, 1024-1031.

Daubechies, 1. (1992), Ten Lectures on Wavelets, Philadelphia: STAM.

Donoho, D. L. and Johnstone, I. M. (1994), “Ideal Spatial Adaptation by
Wayvelet Shrinkage”, Biometrika, 81, 425-455.

Donoho, D. L. and Johnstone, I. M. (1995), “Adapting to Unknown Smooth-
ness via Wavelet Shrinkage”, Journal of the American Statistical As-
sociation, 90, 1200-1224.

Donoho, D. L. and Johnstone, I. M. (1998), “Minimax Estimation via
Wavelet Shrinkage”, Ann. Statist., 26, ?7-7.

Fahrmeir, L. and Kaufmann, H. (1987), “Regression Models for Non-Stationary
Categorical Time Series”, J. Time Series Analysis, 8, 147-160.

Foutz, R. V. and Srivastava, R. C. (1979), “Statistical Inference for Markov
Processes when the Model is Incorrect”, Adv. Appl. Prob, 11, 737-749.

Guttorp, P. (1995), Stochastic Modelling of Scientific Data, London: Chap-
man and Hall.

Hiller, L. and Isaacson L. (1959), Fzperimental Music, New York: McGraw-
Hill

Irizarry, R. (1998), Statistics and Music: Fitting a Local Harmonic Model
to Musical Sound Signals. Ph. D. Thesis, University of California,
Berkeley.

Jones, K. (1981), “Compositional Applications of Stochastic Processes”,
Computer Music Journal, 5, 381-396.

Kaufman, H. (1987), “Regression Models for Nonstationary Categorical
Time Series: Asymptotic Estimation Theory”, Ann. Statist, 15, 79-
98.

25



Mallat, S. (1998), A Wavelet Tour of Signal Processing, San Diego: Aca-
demic Press.

Mello, L., Isola, A., Louzada, F. and Menna-Barreto, L. (1996), “A Four-
Year Follow-up Study of the Sleep-Wake Cycle of an Infant”, Biological
Rhythm Research, 27, 291-298.

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models (Second
Edition), London: Chapman and Hall.

Morettin, P. A. (1997), “Wavelets in Statistics”, Reviews of the Institute
of Mathematics and Statistics, University of Sdo Paulo, 3, 211-272.

Nason, G. P. (1995), “Wavelet Function Estimation using Cross-Validation”,
In Wavelets and Statistics, 261-280 (Antoniadis, A. and Oppenheim,

G., editors), New York, Springer-Verlag, Lecture Notes in Statistics
103.

Ogata, Y. (1980), “Maximum Likelihood Estimates of Incorrect Markov
Models for Time Series and the Derivation of AIC”, J. Applied Prob,
17, 59-72.

Pinkerton, R. (1956), "Information Theory and Melody,” Scientific Amer-
ican, 194, 77-84.

Tukey, J. W. (1979), “ Introduction to the Dilemmas and Dificulties of
Regression”, Report, Statistics Dept., Princeton University.

26



