
Tutorial: Methods for Reproducible Research

Roger D. Peng

Department Biostatistics
Johns Hopkins Bloomberg School of Public Health

ENAR 2009

Replication

The ultimate standard for strengthening scientific evidence is
replication of findings and studies with independent

I multiple investigators

I data

I analytical methods

I laboratories

I instruments

Replication is particularly important in studies that can impact
broad policy or regulatory decisions.

Reproducible Research

Why do we need reproducible research?
I Many studies cannot be replicated

I No time
I No money
I Unique

I New technologies increasing data collection throughput; data
are more complex and extremely high dimensional

I Existing databases can be merged into new “megadatabases”

I Computing power is greatly increased, allowing more
sophisticated analyses

I For every field “X” there is a field “Computational X”
(de Leeuw’s Law)

Reproducible Research

Today, scientific papers published in journals represent the
advertising of the research (Claerbout)

Research Pipeline: Model for Reproducible Research

Computational
Results

Measured
Data Data

Analytic
Tables

Figures

Presentation code

Analytic codeProcessing code

Article

TextNumerical
Results

Reproducible Research

What is this reproducible research?

I Analytic data are available

I Analytic code are available

I Documentation of code and data

I Standard means of distribution

Who are the Players?

Authors

I Want to make their research reproducible

I Want tools for RR to make their lives easier (or at least not
much harder)

Readers

I Want to reproduce (and perhaps expand upon) interesting
findings

I Want tools for RR to make their lives easier

Theory...

...Methods?

Authors

I Just put stuff on the web

I Journal supplementary materials

I There are some central databases for various fields (e.g.
biology, ICPSR)

Readers

I Just download the data and figure it out

I Get the software and run it

Problems

Even in the best of cases

I Authors must undertake considerable effort to put data/results
on the web (may not have resource like a webserver)

I Readers must download data/results individually and piece
together which data go with which code sections, etc.

I Authors/readers must manually interact with websites

I There is no single document to integrate data analysis with
textual representations; i.e. data, code, and text are not linked

Literate Programming

The idea of a literate program comes from Don Knuth:

I An article is a stream of text and code

I Analysis code is divided into text and code “chunks”

I Each code chunk loads data and computes results

I Presentation code formats results (tables, figures, etc.)

I Article text explains what is going on

I Literate programs can be weaved to produce human-readable
documents and tangled to produce machine-readable
documents

Literate Programming

Literate programming is a general concept. We need

1. A documentation language (human readable)

2. A programming language (machine readable)

We will be using LATEX and R as our documentation and
programming languages.

I The system implementing the necessary machinery is called
Sweave, developed by Friedrich Leisch (member of the R
Core)

I Main web site: http://www.statistik.lmu.de/˜leisch/Sweave/

Alternatives to LATEX/R exist, suchas HTML/R (package
R2HTML) and ODF/R (package odfWeave).

Example of Literate Programming

I want to calculate the current time in R.

> time <- format(Sys.time(), "%a %b %d %X %Y")

The current time is Sun Mar 15 23:37:49 2009. The text and R
code are interwoven:

The time is Sun Mar 15 23:37:49 2009

Papers, dissertations, and presentations can be written using
literate programming.

Example of Literate Programming
Even books can be written!

Literate Programming: Pros and Cons

Advantages of switching to literate programming

I Text and code all in one place, in logical order

I Data, results automatically updated to reflect external changes

I Automatic “regression test” when building document

Some disadvantages

I Text and code all in one place; can make LATEX difficult to
read sometimes, especially if there is a lot of code

I Can substantially slow down the processing of documents
(although there are some tools to help there)

The make tool can be of great help but we will not discuss that
here.

Sweave

What is Sweave?

I Sweave is a function and also a command-line script that
comes with R (it is part of the utils package)

I The function can be invoked as Sweave()

I The command-line script is in the form R CMD Sweave

There is also Stangle

I Stangle()

I R CMD Stangle

But one thing at a time....

Basic Sweave Document: example.Rnw

\documentclass[11pt]{article}
\title{My First Sweave Document}
\begin{document}
\maketitle

This is some text (i.e. a ``text chunk'').

Here is a code chunk
<<>>=
set.seed(1)
x <- rnorm(100)
mean(x)
@
\end{document}

Processing a Sweave Document

create 'example.tex'
In R
library(utils)
Sweave("example.Rnw")

On the command line
R CMD Sweave example.Rnw

Usual LaTeX processing
One of the following will work
texi2dvi example.tex ## Create DVI file
latex example.tex
texi2dvi --pdf example.tex ## Create PDF file
pdflatex example.tex

What R CMD Sweave Produces: example.tex

\documentclass[11pt]{article}
\title{My First Sweave Document}
\usepackage{Sweave}
\begin{document}
\maketitle
This is some text (i.e. a ``text chunk'').
Here is a code chunk
\begin{Schunk}
\begin{Sinput}
> set.seed(1)
> x <- rnorm(100)
> mean(x)
\end{Sinput}
\begin{Soutput}
[1] 0.1088874
\end{Soutput}
\end{Schunk}
\end{document}

The Resulting PDF Document

A Few Good Notes

Code chunks begin with

<<>>=

and end with

@

All R code goes in between.

Code chunks can have names, which is useful when we start
making graphics (more later).

<<loaddata>>=
R code goes here
@

By default, the code in a code chunk will be echoed, as will the
results of the computation (if there is something to print).

Note on Processing Sweave Documents

It’s important to remember that the order is

1. example.Rnw

2. example.tex

3. example.pdf

The .tex file is not something that we care about and should not
edit (always edit the .Rnw file). It is merely an intermediary
between the Sweave document and the PDF.

Basic Sweave Document: example2.Rnw

\documentclass[11pt]{article}
\title{My First Sweave Document}
\author{Roger D. Peng}
\begin{document}
\maketitle
\section{Introduction}
This is some text (i.e. a ``text chunk'').
Here is a code chunk
<<simulation,echo=false>>=
set.seed(1)
x <- rnorm(100)
mean(x)
@
\end{document}

Result

Basic Sweave Document: example3.Rnw

\documentclass[11pt]{article}
\title{My First Sweave Document}
\begin{document}
\maketitle

\section{Introduction}
This is some text (i.e. a ``text chunk'').
Here is a code chunk but it doesn't print anything!
<<simulation,echo=false,results=hide>>=
x <- rnorm(100); y <- x + rnorm(100, sd = 0.5)
mean(x)
@
\end{document}

Result

Inline Text: example4.Rnw

\documentclass[11pt]{article}
\begin{document}
\section{Introduction}

<<computetime,echo=false>>=
time <- format(Sys.time(), "%a %b %d %X %Y")
rand <- rnorm(1)
@
The current time is \Sexpr{time}. My favorite random
number is \Sexpr{rand}.
\end{document}

Inline Text

Graphics: example5.Rnw

\documentclass[11pt]{article}
\begin{document}
\section{Introduction}
Let's first simulate some data.
<<computetime,echo=true>>=
x <- rnorm(100); y <- x + rnorm(100, sd = 0.5)
@
Here is a scatterplot of the data.
<<scatterplot,fig=true,width=8,height=4>>=
par(mar = c(5, 4, 1, 1), las = 1)
plot(x, y, main = "My Data")
@
\end{document}

What Sweave Produces

\documentclass[11pt]{article}
\usepackage{Sweave}

\begin{document}

\section{Introduction}
Let's first simulate some data.
\begin{Schunk}
\begin{Sinput}
> x <- rnorm(100)
> y <- x + rnorm(100, sd = 0.5)
\end{Sinput}
\end{Schunk}

What Sweave Produces (cont’d)

Here is a scatterplot of the data.
\begin{Schunk}
\begin{Sinput}
> par(mar = c(5, 4, 1, 1), las = 1)
> plot(x, y, main = "My Data")
\end{Sinput}
\end{Schunk}

\includegraphics{example5-scatterplot}

\end{document}

Graphics

Figures

\documentclass[11pt]{article}

\begin{document}
\section{Introduction}

Let's first simulate some data.

<<simulation,echo=true>>=
x <- rnorm(100); y <- x + rnorm(100, sd = 0.5)
@

Figures (cont’d)

Figure~\ref{plot} shows a scatterplot of the data.

\begin{figure}
<<scatterplot,fig=true,width=8,height=4>>=
par(mar = c(5, 4, 1, 1), las = 1)
plot(x, y, main = "My Data")
@
\caption{Scatterplot}
\label{plot}
\end{figure}

\end{document}

Getting the Code Out

Sometimes it is easier to have all the R code in a separate file by
itself, without all of the LATEX markup. We can use Stangle to do
that.

In R
> Stangle("example5.Rnw")
Writing to file example5.R

On the command line
amelia:> R CMD Stangle example5.Rnw
Writing to file example5.R

Then we can call source("example5.R") to run all the code in
the file.

Tangled Output

###
chunk number 1: computetime
###
x <- rnorm(100); y <- x + rnorm(100, sd = 0.5)

###
chunk number 2: scatterplot
###
par(mar = c(5, 4, 1, 1), las = 1)
plot(x, y, main = "My Data")

Setting Global Options: example6.Rnw

Sometimes, we want to set options for every code chunk that are
non-default values. We can use \SweaveOpts to do that.

\SweaveOpts{option1=value1,option2=value2,...}

For example, we may want to suppress all code echoing and results
output

\SweaveOpts{echo=false,results=hide}

The call to \SweaveOpts goes in the preamble.

Setting Global Options: example6.Rnw

\documentclass[11pt]{article}
\SweaveOpts{echo=false}

\begin{document}
\section{Introduction}
<<computetime,echo=true>>=
x <- rnorm(100); y <- x + rnorm(100, sd = 0.5)
@

Here is a scatterplot of some simulated data.\\

<<scatterplot,fig=true,width=8,height=4>>=
par(mar = c(5, 4, 1, 1), las = 1)
plot(x, y, main = "My Data")
@
\end{document}

Setting Global Options

Making Tables with xtable: example7.Rnw

\documentclass[11pt]{article}
\begin{document}
\section{Introduction}
<<fitmodel>>=
library(datasets)
data(airquality)
fit <- lm(Ozone ~ Wind + Temp + Solar.R, data = airquality)
@

Here is a table of regression coefficients.\\

<<xtable,results=tex>>=
library(xtable)
xt <- xtable(summary(fit))
print(xt)
@
\end{document}

Tables

Summary of Options

Output

I results: verbatim (default), tex, hide

I echo: true (default), false

I eval: true (default), false

Figures

I fig: true, false (default)

I width: width of plot (passed to plot device)

I height: height of plot (passed to plot device)

Package vignettes

I A Sweave style vignette is a .Rnw file that contains chunks of
code that are evaluated by R at ’R CMD build’ time or on
demand by the user with the Sweave command.

I The code contained in those chunks should show a typical
workflow i.e. the commands (+ output) issued by a user
during a typical interactive session with the package.

I The vignette should preferably demonstrates how to use the
package to accomplish a non-trivial task. Why is this package
important?

I Vignettes are just like standard Sweave documents but also
include

\VignetteIndexEntry{Name of Vignette}

in the preamble

See also the writing R extensions manual.

Package Directory Structure

Vignettes go in the inst/doc directory of the package

amelia:> ls
./ .git/ NAMESPACE inst/ src/
../ DESCRIPTION R/ man/ tests/
amelia:> ls inst/doc
./ Sweave.sty combined.bib filehash.pdf
../ asa.bst filehash.Rnw

R CMD build will automatically try to build the vignette for you.

Finding Vignettes in R

> vignette()

Vignettes in package 'Matrix':

Comparisons Comparisons of Least Squares calculation speeds
(source, pdf)

Design-issues Design Issues in Matrix package Development
(source, pdf)

Intro2Matrix 2nd Introduction to the Matrix Package (source,
pdf)

Introduction Introduction to the Matrix Package (source,
pdf)

sparseModels Sparse Model Matrices (source, pdf)

Viewing Vignettes in R

Launch vignette in (default) PDF viewer
vignette("filehash")

Look at code in default text editor
v <- vignette("filehash")
edit(v)

Caching Computations

The cacheSweave package (on CRAN) can be used to cache
long-running computations when developing a Sweave document

<<longcomputation,cache=true>>==
Run MCMC sampler
result <- runmcmc(N = 10000)
@

<<traceplot,fig=true>>=
Make trace plot of the parameter values
plot(result)
@

Processing Documents with cacheSweave

In R
library(cacheSweave)

Set cache directory (default is ".")
setCacheDir("cache")

Process document
Sweave("mydocument.Rnw", driver = cacheSweaveDriver)

cacheSweave Caveats

Some caveats when using cacheSweave

I If the data/code changes, you will need to re-run cached code
chunks

I Dependencies aren’t checked, so if code in a cached chunk
depends on computations in previous chunk that have
changed, this inconsistency won’t be detected (the weaver
package tries to do this)

I Chunks that have side effects generally cannot be cached
(e.g. plotting)

Reproducible Research Pipeline (Modified)

Computational
Results

Measured
Data

Analytic
Tables

Figures

Presentation code

Analytic codeProcessing code

Article

TextNumerical
Results

Data

Reader

Author

Database

