BINARY NUMBERS

The arithmetic used by computers differs in some ways from the arithmetic
used by people. The most important difference is that computers perform opera-
tions on numbers whose precision is finite and fixed. Another difference is that
most computers use the binary rather than the decimal system for replesentmo
numbers. These topics are the subject of this appendix.

A.1 FINITE-PRECISION NUMBERS

While doing arithmetic, one usually gives little thought to the question of how
many decimal digits it takes to represent a number. Physicists can calculate that -
there are 107® electrons in the universe without being bothered by the fact that it
requires 79 decimal digits to write that number out in full. Someone calculating
the value of a function with pencil and paper who needs the answer to six signifi-
cant digits simply keeps intermediate results to seven, or eight, or however many
are needed. The problem of the paper not being wide enough for seven-digit
numbers never arises.

With computers, matters are quite different. On most computers, the amount
of memory available for storing a number is fixed at the time that the computer is
designed. With a certain amount of effort, the programmer can represent numbers
two, or three, or even many times larger than this fixed amount, but doing so does
not change the nature of this difficulty. The finite nature of the computer forces
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680 BINARY NUMBERS APP. A

us to deal only with numbers that can be represented in a fixed number of digits.
We call such numbers finite-precision numbers.

In order to study properties of finite-precision numbers, let us examine the set
of positive integers representable by three decimal digits, with no decimal point
and no sign. This set has exactly 1000 members: 000, 001, 002, 003, ..., 999.

With this restriction, it is impossible to express certain kinds of numbers, such as

1. Numbers larger than 999.
2. Negative numbers.

3. Fractions.

4. Irrational numbers.

5

Complex numbers.

One important property of arithmetic on the set of
respect to the operations of addition, subtraction, and multiplication. In other
words, for every pair of integers i and j, i +], i —j, and i X j are also integers.:
The set of integers is not closed with respect to division, because there exist
values of i and j for which i/j is not expressible as an integer (e.g., 7/2 and 1/0).

Finite-precision numbers are not closed with respect to any of these four basic
erations, as shown below, using three-digit decimal numbers as an example:

op
600 + 600 = 1200 (too large)
003 —-005=-2 (negative)
050 x 050 = 2500 (too large)
007/002=3.5" (not an integer)

The violations can be divided into two mutually exclusive classes: operations
whose result is larger than the largest number in the set (overflow error) or
smaller than the smallest number in the set (underflow error), and operations
whose result is neither too large nor too small but 1s simply not a member of the
set. Of the four violations above, the first three are examples of the former, and
the fourth is an example of the latter. :

Because computers have finite memories and therefore must of necessity per-
form arithmetic on finite-precision numbers, the results of certain calculations will
be, from the point of view of classical mathematics, just plain wrong. A calculat-
ing device that gives the wrong answer even though it is in perfect working condi-
tion may appear strange at first, but the error is a logical consequence of its finite
nature. Some computers have special hardware that detects overflow errors.

The algebra of finite-precision numbers is different from normal algebra. As

an example, consider the associative law:

a+b-c)=(@+b)—c
Let us evaluate both sides for a =700, b =400, ¢ =300. To compute the left-

hand side, first calculate (b —¢), which is 100, and then add this amount to 4,

all integers is closure with
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SEC. A.l | FINITE-PRECISION NUMBERS 681

yielding 800. To compute the right-hand side, first calculate (a + b), which gives
an overflow in the finite arithmetic of three-digit integers. The result may depend
on the machine being used but it will not be 1100. Subtracting 300 from some
number other than 1100 will not yield 800. The associative law does not hold. -
The order of operations is important. :

As another example, consider the distributive law:

ax(b-c)y=axb—aXxc

Let ub evaluate both sides for a =5, b =210, ¢ =195. The left-hand side is
5.x 15, which yields 75. The right-hand side is not 75 because a X b overflows.
Judging from these examples, one might conclude that although computers
are general-purpose devices, their finite nature renders them especially ‘unsuitable
for doing arithmetic. This conclusion is, of course, not true, but it does serve to
illustrate the importance of understanding how computers work and what limita-

tions they have.

A.2 RADIX NUMBER SYSTEMS

An ordinary decimal number with which everyone is familiar consists of a
string of decimal digits and, possibly, a decimal point. The general form and its

‘usual interpretation are shown in Fig. A-1. The choice of 10 as the base for

exponentiation, called the radix, is made because we are using decimal, or base
10, numbers. When dealing with computers, it is frequently convenient to use
radices other than 10. The most important radices are 2, 8, and 16. The number
systems based on these radices are called binary, octal, and hexadecimal, res-

pectively.

100's 10's 1's A's .01's  .001's
place place place place place place
dn vae d2 d1 do . d..1 d_g d_3 d—k
n
Number =Y, dix10'
i=-k :

Figure A-1. The general form of a decimal number.

A radix k number system requires k different symbols to represent the digits 0
to k — 1. Decimal numbers are built up from the 10 decimal digits
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0123456789

In contrast, binary numbers do not use these ten digits. They are all constructed
exclusively from the two binary digits

01
Octal numbers are built up from the eight octal digits

01234567

For hexadecimal numbers, 16 digits are needed. Thus six new symbols are
required. It is conventional to use the uppercase letters A through F for the six
digits following 9. Hexadecimal numbers are then built up from the digits.

0123456789ABCDEF

The expression “binary digit” meaning a 1 or a 0 is usually referred to as a
bit. Figure A-2 shows the decimal number 2001 expressed in binary, octal,
decimal, and hexadecimal form. The number 7B9 is obviously hexadecimal,
because the symbol B can only occur in hexadecimal numbers. However, the
number 111 might be in any of the four number systems discussed. To avoid
ambiguity, people use a subscript of 2, 8, 10, or 16 to indicate the radix when it is
not obvious from the context.

Binary 1 1 1 1 1 0 1 0 0 0 1

Tx21041x29 4 1x28 4 1x27+1x286+0x25+1x294+0x2%+0x22+0x2"+1x00
1024 + 512 +256 +128 +64 +0 +16  +0 +.0 +0 +1

Octal 3 7 2 1

3x8%+7x82+2x8'+1x80 ' ' i
1536 + 448 + 16 +1 :

Decimal 2 0 0 ‘1

2x10%8+0x102+0x10"+1x10° - : _
2000 +0 +0 +1 ’

Hexadecimal 7 D 1 .

7x162+ 18 x16" + 1 x16°
1792 + 208 +1

Figure A-2. The number 2001 in binary, octal, and hexadecimal.

As an example of binary, octal, decimal, and hexadecimal notation, consider
Fig. A-3, which shows a collection of nonnegative integers expressed in each of
these four different systems. Perhaps some archaeologist thousands of years from
now will discover this table and regard it as the Rosetta Stone to late twentieth
century and early twenty-first century number systems.
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Decimal Binary Octal | Hex
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 3 3

5 101 5 5|
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1 17 F
16 10000 20 10
20 10100 24 14
30 11110 36 1E
40 101000 50 28
50 110010 62 32
60 111100 74 3C
70 1000110 |- 106 46
80 1010000 | 120 50
90 1011010 | 132 5A
100 11001000 | 144 64
1000 1111101000 | 1750 | 3E8
2989 | 101110101101 | 5655 | BAD

Figure A-3. Decimﬁl numbers and their binary, octal, and hexadecimal

equivalents.

A.3 CONVERSION FROM ONE RADIX TO ANOTHER

Conversion between octal or hexadecimal numbers and binary numbers is
easy. To convert a binary number to octal, divide it into groups of 3 bits, with the
3 bits immediately to the left (or right) of the decimal point (often called a binary
point) forming one group, the 3 bits immediately to their left, another group, and
so on. Each group of 3 bits can be directly converted to a single octal digit, 0 to 7,
according to the conversion given in the first lines of Fig. A-3. It may be neces-
sary to add one or two leading or trailing zeros to fill out a group to 3 full bits.
Conversion from octal to binary is equaily trivial. Each octal digit is simply
replaced by the equivalent 3-bit binary number. Conversion from hexadecimal to
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binary is essentially the same as octal-to-binary except that each hexadecimal
digit corresponds to a group of 4 bits instead of 3 bits. Figure A-4 gives some
examples of conversions.

Example 1
Hexadecimal 1 9 4 8 . B 6
! —r A~ — —t— ——

Binary 0001100101001000.101101100
e M M e e e

Octal 1 4 5 1 0 . 5 5 4

Example 2

Hexadecimal 7 B A 3 . B C 4
—H— A A~ —

Binary 0111101110100011.101111000100
b i e i )

Octal 7 5.6 4 3 .5 7 0 4

Figure A-4. Examples of octal-to-binary and hexadecimal-to-binary conversion.

Conversion of decimal numbers to binary can be done in two different ways.
The first method follows directly from the. definition of binary numbers. The larg-
est power of 2 smaller than the number is subtracted from the number. The pro-
cess is then repeated on the difference. Once the number has been decomposed
into powers of 2, the binary number can be assembled with 1s in the bit positions
corresponding to powers of 2 used in the decomposition, and Os elsewhere.

The other method (for integers only) consists of dividing the number by 2.
The quotient is written directly beneath the original number and the remainder, 0
or 1, is written next to the quotient. The quotient is then considered and the pro-
cess repeated until the number O has been reached. The result of this process will
be two columns of numbers, the quotients and the remainders. The binary number
can now be read directly from the remainder column starting at the bottom. Fig-
ure A-5 gives an example of decimal-to-binary conversion.

Binary integers can also be converted to decimal in two ways. One method
consists of summing up the powers of 2 corresponding to the 1 bits in the number.
For example, ’ '

10110=2%+22 421 =16+4+2=722

In the other method, the binary number is written vertically, one bit per line, with
the leftmost bit on the bottom. The bottom line is called line 1, the one above it
line 2, and so on. The decimal number will be built up in a parallel column next
to the binary number. Begin by writing a 1 on line 1. The entry on line n consists
of two times the entry on line n — 1 plus the bit on line n (either O or 1). The entry
on the top line is the answer. Figure A-6 gives an example of this method of
binary to decimal conversion.
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SEC. A3

Quotients  Remainders

l

1492
746 0 \
373 0 N
186 1 N
93 0——
46 f—
23 O
11 1ﬁ
5 1
)
2 1
1 0
0 1 :
w YYYVYYY Y

10111010100 =1492;

Figure A-5. Conversion of the decimal number 1492 to binary by successive
halving, starting at the top and working downward. For example, 93 divided by
2 yields a quotient of 46 and a remainder of 1, written on the line below it.

Decimal-to-octal and decimal-to-hexadecimal conversion can be accom-
plished either by first converting to binary and then to the desired system or by
subtracting powers of 8 or 16.

A.4 NEGATIVE BINARY NUMBERS

Four different systems for representing negative numbers have been used in
digital computers at one time or another in history. The first one is called signed
magnitude. In this system the leftmost bit is the sign bit (0 is + and 1 is —) and
the remaining bits hold the absolute magnitude of the number. ~

The second system, called one’s complement, also has a sign bit with 0 used
for plus and 1 for minus. To negate a number, replace each 1 by a 0 and each 0
by a 1. This holds for the sign bit as well. One’s complement is obsolete.

The third system, called two’s complement, also has a sign bit that is O for
plus and 1 for minus. Negating a number is a two-step process. First, each 1 is
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1 1

k—»— 14+2x% 1499{2999 ~———— Result

1+2x%x749=1499
1+2x%x374=749
0+2x%x187 =374
1+2x%x93=187
1+2x46=93
0+2x23=46
T+2x11=23
1+2x5=11 '
1+2x2=

0+2x1=

1+2x0=1 -« Start here

Figure A-6. Conversion of the binary number 101110110111 to decimal by suc-
cessive doubling, starting at the bottom. Each line is formed by doubling the one
below it and adding the corresponding bit. For example, 749 is twice 374 plus
the 1 bit on the same line as 749.

replaced by a 0 and each 0 by a 1, just as in one’s complement. Second, 1 is
added to the result. Binary addition is the same as decimal addition except that a
carry is generated if the sum is greatér than 1 rather than greater than 9. For
example, converting 6 to two’s complement is done in two steps:

00000110 (+6) |
11111001 (-6 in one’s complement)
11111010 (—6 in two’s complement)

“If a carry occurs from the leftmost bit, it is thrown away.

The fourth system, which for m-bit numbers is called excess 2“’“1, represents
a number by storing it as the sum of itself and 27!, For example, for 8-bit
numbers, m = 8, the system is called excess 128 and a number is stored as its true
.value plus 128. Therefore, —3 becomes -3 + 128 = 125, and -3 is represented by
the §-bit binary number for 125 (01111101). The numbers from —128 to +127
map onto O to 255, all of which are expressible as an 8-bit positive integer.
Interestingly enough, this system is identical to two’s complement with the sign
bit reversed. Figure A-7 gives examples of negative numbers in all four systems.

Both signed magnitude and one’s complement have two representations for
zero: a plus zero, and a minus zero. This situation is undesirable. The two’s com-
plement system does not have this problem because the two’s complement of plus
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N N -N -N -N -N

decimal binary signhed mag. 1’s compl. 2’s compl. | excess 128
1 00000001 10000001 11111110 11111111 01111111

2 00000010 10000010 11111101 11111110 01111110

3 00000011 10000011 11111100 11111101 01111101

4 00000100 10000100 11111011 11111100 01111100

5 00000101 10000101 11111010 11111011 01111011

6 | 00000110 10000110 11111001 11111010 01111010

7 00000111 10000111 11111000 11111001 01111001

8 00001000 10001000 11110111 11111000 | - 01111000

9 00001001 10001001 11110110 11110111 01110111

10 00001010 10001010 11110101 11110110 01110110
20 | 00010100 10010100 11101011 11101100 01101100
30 00011110 10011110 11100001 11100010 01100010
40 00101000 10101000 11010111 11011000 01011000
50 00110010 10110010 11001101 11001110 01001110
60 00111100 10111100 11000011 11000100 01000100
70 01000110 11000110 10111001 10111010 00111010
80 01010000 11010000 10101111 10110000 00110000
90 01011010 11011010 10100101 10100110 00100110
100 01100100 11100100 10011011 10011100 00011100
127 01111111 11111111 10000000 10000001 | = 00000001
128 Nonexistent Nonexistent Nonexistent 10000000 00000000

zero is also plus zero. The two’s comp
ferent singularity. The bit pattern consi
complement. The result is to make the range o

Figure A-7. Negative 8-bit numbers in four systems.

lement system does, however, have a dif-

sting of a 1 followed by all 0s is its own

f positive and negative numbers

unsymmetric; there is one negative number with no positive counterpart.
The reason for these problems is not hard to find: we want an encoding Sys-

tem with two properties:

1. Only one representation for zero.

2. Exactly as many positive numbers as negative numbers.

The problem is that any
and only one zero has an o
number of bit patterns.
one bit pattern too few, no matter what represent

set of numbers with as many positive as.negative numbers

dd number of members, whereas m bits allow an even

There will always be either one bit pattern t00 many Or
ation is chosen. This extra bit
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pattern can be used for —0 or for a large negative number, or for something else,
but no matter what it is used for it will always be a nuisance.

A.5 BINARY ARITHMETIC

The addition table for binary numbers is given in Fig. A-8.

Addend 0 0 1 1
Augend +0 +1 +0 +1
Sum 0 1 0

]

Carry 0 0
Figure A-8. The addition table in binary.

Two binary numbers can be added, starting at the rightmost bit and adding the
corresponding bits in the addend and the augend. If a carry is generated, it is car-
ried one position to the left, just as in decimal arithmetic. In one’s complement
arithmetic, a carry generated by the addition of the leftmost bits is added to the
rightmost bit. This process is called an end-around carry. In two’s complement
arithmetic, a carry generated by the addition of the leftmost bits is merely thrown
away. Examples of binary arithmetic are shown in Fig. A-9.

Decimal 1's complement 2's complement
10 . 00001010 - 00001010
+ (-3) 11111100 11111101
+7 1 00000110 1 00000111
carry 1 discarded
00000111

Figure A-9. Addition in one’s complement and two’s complement.

If the addend and the augend are of opposite signs, overflow error cannot
occur. If they are of the same sign and the result is of the opposite sign, overflow
error has occurred and the answer is wrong. In both one’s and two’s complement
arithmetic, overflow occurs if and only if the carry into the sign bit differs from
the carry out of the sign bit. Most computers preserve the carry out of the sign bit,
but the carry into the sign bit is not visible from the answer. For this reason, a
special overflow bit is usually provided.
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FLOATING-POINT NUMBERS

In many calculations the range of numbers used is very large. For example, a
calculation in astronomy might involve the mass of the electron, 9 X 10728 grams,
and the mass of the sun, 2 X 103 grams, a range exceeding 10%. These numbers

could be represented by

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0.0000000000000000000000000009
20000000_0000OOOOOOOOOOOOOOOOOOOOO0.0000000000000000000000000000

and all calculations could be carried out keeping 34 digits to the left of the
decimal point and 28 places to the right of it. Doing so would allow 62 significant
digits in the results. On a binary computer, multiple-precision arithmetic could be
used to provide enough significance. However, the mass of the sun is not even

known accurately to five significant digits, let alone 62. In fact few measure-

ments of any kind can (or need) be made accurately to 62 significant digits.
Although it would be possible to keep all intermediate results to 62 significant
digits and then throw away 50 or 60 of them before printing the final results,
doing this is wasteful of both CPU time and memory.

What is needed is a system for representing numbers in which the range of
expressible numbers is independent of the number of significant digits. In this
appendix, such a system will be discussed. It is based on the scientific notation
commonly used in physics, chemistry, and engineering. ’

691
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B.1 PRINCIPLES OF FLOATING POINT

One way of separating the range from the precision is to express numbers in
the familiar scientific notation

n=fx10¢

where fis called the fraction, or mantissa, and e is a positive or negative integer
called the exponent. The computer version of this notation is called floating
point. Some examples of numbers expressed in this form are

3.14 =0314 x10' =3.14 x10°
0.000001 =0.1 x107° =10 x10°°
1941 =0.1941 x 10* =1.941x 103

The range is effectively determined by the number of digits in the exponent and
the precision is determined by the number of digits in the fraction. Because there
is more than one way to represent a given number, one form is usually chosen as
the standard. In order to investigate the properties of this method of representing
numbers, consider a representation, R, with a signed three-digit fraction in the
range 0.1 < | fl< 1 or zero and a signed two-digit ex ;aonent These numbers range
in magnitude from -+0.100 x 10‘99 to +0.999 x 10+9 a span of nearly 199 orders
of magnitude, yet only five digits and two signs are needed to store a number.,
Floating-point numbers can be used to model the real-number system of
mathematics, although there are some important differences. Figure B-1 gives a
grossly exaggerated schematic of the real number line. The real line is divided up

into seven regions: ,
1. Large negative numbers less than —0.999 x 10°°.
Negative numbers between —0.999 x 10%° and —0.100 x 107,

Small negative numbers with magnitudes Iess than 0.100 x 107°.

Small positive numbers with magnitudes less than 0.100 x 1077,

Positive numbers between 0.100 x 1072 and 0.999 x 10%.

2
3
4. Zero.
5
6
7

Large positive numbers greater than 0.999 x 10%.

One major difference between the set of numbers representable with three
fraction and two exponent digits and the real numbers is that the former cannot be
used to express any numbers in regions 1, 3, 5, or 7. If the result of an arithmetic
operation yields a number in regions 1 or 7—for example, 109 x 109 = 10'2°—
overflow error will occur and the answer will be incorrect. The reason is due to
the finite nature of the representation for numbers and is unavoidable. Similarly,
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3 5
) Negative Positive
31n underflow underflow
Negative Expressible Zero Expressible Positive
overflow negative numbers positive numbers overflow
—_—A N —A N —A— — J{‘ - ) e A—
ger . e LL R AT ! | ! e e e f—————
£ 1099 —10—100 o . —100 ‘ 99
ing 10 10 0. 10 10

Figure B-1. The real number line can be divided into seven regions.

a result in regions 3 or 5 cannot be expressed either. This situation is called
underflow error. Underflow error is less serious than overflow error, because 0
is often a satisfactory approximation to numbers in regions 3 and 5. A bank bal-
ance of 107192 dollars is hardly better than a bank balance of 0.

:;cel Another important difference between floating-point numbers and real
as numbers is their density. Between any two real numbers, x and y, is another real
ing number, no matter how close x is to y. This property comes from the fact that for
the any distinct real numbers, x and y, z =(x +y)/2 is a real number between them.
1ge The real numbers form a continuum.
ers Floating-point numbers, in contrast, do not form a continuum. Exactly
179,100 positive numbers can be expressed in the five-digit, two-sign system used,
of above, 179,100 negative numbers, and 0 (which can be expressed in many ways),
sa for a total of 358,201 numbers. Of the infinite number of real numbers between

up —10+1%0 and +0.999 x 10%, only 358,201 of them can be specified by this nota-

' tion. They are symbolized by the dots in Fig. B-1. It is quite possible for the
‘ result of a calculation to be one of the other numbers, even though it is in region 2
or 6. For example, +0.100 X 10 divided by 3 cannot be expressed exactly in our
system of representation. If the result of a calculation cannot be expressed in the
number representation being used, the obvious thing to do is to use the nearest
number that can be expressed. This process is called rounding.

The spacing between adjacent expressible numbers is not constant throughout
region 2 or 6. The separation between +0.998 x 10°° and +0.999 x 10% is vastly
more than the separation between +0.998 x 10° and +0.999 x 10°. However,
when the separation between a number and its successor is expressed as a percen-
tage of that number, there is no systematic variation throughout region 2 or 6. In
other words, the relative error introduced by rounding is approximateiy the same
for small numbers as large numbers. '
ee Although the preceding discussion was in terms of a representation system
be with a three-digit fraction and a two-digit exponent, the conclusions drawn are
valid for other representation systems as well. Changing the number of digits in
the fraction or exponent merely shifts the boundaries of regions 2 and 6 and
to ‘changes the number of expressible points in them. Increasing the number of digits
‘0 the fraction increases the density of points and therefore improves the accuracy

tic
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of approximations. Increasing the number of digits in the exponent increases the
size of regions 2 and 6 by shrinking regions 1, 3, 5, and 7. Fi gure B-2 shows the
approximate boundaries of region 6 for floating-point decimal numbers for vari-
ous sizes of fraction and exponent. '

Digits in fraction | Digits in exponent | Lower bouhd Upper bound
3 1 10712 10°-
3 2 107102 10%°
3 3 1 0—1 002 | 1 0999
3 4 1 0—1 0002 1 09999
4 1 10713 10°
4 2 107108 10%
4 3 A 0—1 003 10999
4 4 1~O—1 0003 1 09999
5 1 10714 10°
5 2 107104 10%
5 3 1 0—1 004 q 0999
5 4 10—1 0004 1 09999

10 3 10-—1 009 ’ 1 0999
20 3 10-—1019 10999

Figure B-2. The approximate lower and upper bounds of expressible (unnor-
malized) floating-point decimal numbers. '

A variation of this representation is used in computers. For efficiency,
exponentiation is to base 2, 4, 8, or 16 rather than 10, in which case the fraction
consists of a string of binary, base-4, octal, or hexadecimal digits. If the leftmost
of these digits is zero, all the digits can be shifted one place to the left and the
exponent decreased by 1, without changing -the value of the number (barring
underflow). A fraction with a nonzero leftmost digit is said to be normalized.

Normalized numbers are generally preferable to unnormalized numbers,
because there is only one normalized form, whereas there are mahy unnormalized
forms. Examples of normalized floating-point numbers dre given in Fig. B-3 for
two bases of exponentiation. In these examples a 16-bit fraction (including sign
bit) and a 7-bit exponent using excess 64 notation are shown. The radix point is to
the left of the leftmost fraction bit—that is, to the right of the exponent. ‘

B.2 IEEE FLOATING-POINT STANDARD 754

Until about 1980, each computer manufacturer had its own floating-point for-
mat. Needless to say, all were different. Worse yet, some of them actually did
arithmetic incorrectly because floating-point arithmetic has some subtleties not
obvious to the average hardware designer.




. the
i the
Jari-

CY’
ion
ost
the

ng

IS,
ed
for
an

to

id
ot

SEC. B.2 IEEE FLOATING-POINT STANDARD 754 695

Example 1: Exponentiation to the base 2
o2 gt '
o l 2—31 o5

0

g6 g8 g0 12 pl4 oo
] -7 ' o0 ‘ 2—11] 2—13l 2—15'
Unnormalized: 0 1010100 0 0 0 0 0 0000
Sign Excess 64 Fraction is 1 x 272+ 1 x 273
+1x

2
0 11011 =2
+ _exponent is 2715, 4 x 2716

+1x276) =432
8464 =20

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

20 (1 5 27124 1 x 2710 1 x 271

Normalized: 0 1001001 1 101100000000000 =20 xZH Ix22e1x 2!
"} — — - :

Sign Excess 64 Fractionis 1 x 271 +1x272 +1x27) =432

£ exponentis Fxod+1x28

73-64=9
Example 2: Exponentiation to the base 16
}si 1672 1678 167
Unnormalized: 0 1000101 0000 0000 0001 1011 =165 (1x 1672 Bx 167 =432
g{_} L__\F_—J o —

Sign Excess 64 Fractionis 1 x 162 + Bx 167

+ exponentis
69-64=5

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Normalized: 0 1000011 0001 1011 0000 0000 =16%(1x 167"+ Bx167) =432
Sign Excess 64 Fraction is 1 x 167" + Bx 1672

+ exponent is

67-64=3

Figure B-3. Examples of normalized floating-point numbers.

in the late 1970s IEEE set up a committee to stand-
al was not only to permit floating-point
data to be exchanged among different computers but also to provide hardware
designers with a model known to be correct. The resulting work led to IEEE
Standard 754 (IEEE, 1985). Most CPUs these days (including the Intel, SPARC,
and TVM ones studied in this book) have floating-point instructions that conform
to the IBEE floating-point standard. Unlike many standards, which tend to be
wishy-washy compromises that please no one, this one is not bad, in large part
because it was primarily the work of one person, Berkeley math professor Wil-
liam Kahan. The standard will be described in the remainder of this section.

The standard defines three formats: single precision (32 bits), double preci-
sion (64 bits), and extended precision (80 bits). The extended-precision format is
intended to reduce roundoff errors. It is used primarily inside floating-point arith-
metic units, so we will not discuss it further. Both the single- and double-
precision formats use radix 2 for fractions and excess notation for exponents. The
formats are shown in Fig. B-4.

Both formats start with a sig
and 1 being negative. Next comes the exponent, using excess

To rectify this situation,
ardize floating-point arithmetic. The go

n bit for the number as a whole, 0 being positive
127 for single




FLOATING-POINT NUMBERS

Bits 1 8 23
Fraction

AN
Sign Exponent

(a)

Bits 1 11 52
l ‘ Exponent Fraction

N Sign
(b)

Figure B-4. IEEE floating-point formats. (a) Single precision. (b) Do_uble precision.

precision and excess 1023 for double precision. The minimum (0) and maximum
(255 and 2047) exponents are not used for normalized numbers; they have special
uses described below. Finally, we have the fractions, 23 and 52 bits, respectively.

A normalized fraction begins with a binary point, followed by a 1 bit, and
then the rest of the fraction. Following a practice started on the PDP-11, the
authors of the standard realized that the leading 1 bit in the fraction does not have
to be stored, since it can just be assumed to be present. Consequently, the stan-
dard defines the fraction in a slightly different way than usual. It consists of an
implied 1 bit, an implied binary point, and then either 23 or 52 arbitrary bits. If all
23 or 52 fraction bits are Os, the fraction has the numerical value 1.0; if all of them
are 1s, the fraction is numerically slightly less than 2.0. To avoid confusion with
a conventional fraction, the combination of the implied 1, the implied binary
point, and the 23 or 52 explicit bits is called a significand instead of a fraction or
mantissa. All normalized numbers have a significand, s, in the range 1 <5 < 2.

The numerical characteristics of the IEEE floating-point numbers are given in
Fig. B-5. As examples, consider the numbers 0.5, 1, and 1.5 in normalized
single-precision format. These are represented in hexadecimal as 3F000000,
3F800000, and 3FC00000, respectively.

One of the traditional problems with floating-point numbers is how to deal
with underflow, overflow, and uninitialized numbers. The IEEE standard deals
with these problems explicitly, borrowing its approach in part from the CDC
6600. In addition to normalized numbers, the standard has four other numerical
types, described below and shown in Fig. B-6.

A problem arises when the result of a calculation has a magnitude smaller
than the smallest normalized floating-point number that can be represented in this
system. Previously, most hardware took one of two approaches: just set the result
to zero and continue, or cause a floating-point underflow trap. Neither of these is
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SEC. B.2 IEEE FLOATING-POINT STANDARD 754
ltem Single precision Double precision .

Bits in sign 1 1
Bits in exponent 8 11
Bits in fraction 23 52
Bits, total 32 64
Exponent system Excess 127 Excess 1023
Exponent range -126 to +127 -1022 to +1023
Smallest normalized number 27126 o-1022
Largest normalized number approx. 2128 approx. 21024
Decimal range approx. 1078 10 10% approx. 107308 15 10%08 {
Smallest denormalized number, approx. 1074 approx. 107324

Figure B-5. Characteristics of IEEE floating-point numbers.

‘Normaliz'ed + O<Exp< Max Any bit pattern
Denormalized | £ 0 Any nonzero bit pattern :
Zero | £ 0 0
Infinity | £ 111...1 0
Not a number | £ 111..1 Any nonzero bit pattern

Sign bit

really satisfactory,

have an exponent of 0 and a fractio
e left of the binary point now becomes a 0. Denormalized

implicit 1 bit to th

numbers can be distinguished from normalized ones because t
mitted to have an exponent of 0.

The smallest normalized single precision number h
fraction, and represents 1.0 X 27
exponent and all 1s in

~ is almost the same thing.
23 bits of significance, versus 24 for all normalized numbers.

As calculations further decrease this result, the exponent st
first few bits of the fraction become zero
number of significant bits in the fraction.

Figure B-6. [EEE numerical types.

so IEEE invented denormalized numbers. These numbers

n given by the following 23 or 52 bits. The
he latter are not per-

as a 1 as exponent and 0 as
2 . )
126~ The largest denormalized number has a 0 as o

the fraction, and represents about 0.9999999 x 2“]26, which

One thing to note however, is that this number has only

ays put at 0, but the
s, reducing both the value and the
The smallest nonzero denormalized
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number consists of a 1 in the rightmost bit, with the rest being 0. The exponent
represents 27126 and the fraction represents 272> so the value is 279 This
scheme provides for a graceful underflow by giving up significance instead of
jumping to O when the result cannot be expressed as a normalized number.

Two zeros are present in this scheme, positive and negative, determined by
the sign bit. Both have an exponent of 0 and a fraction of 0. Here too, the bit to
the left of the binary point is implicitly O rather than 1.

Overflow cannot be handled gracefully. There are no bit combinations left.
Instead, a special representation is provided for infinity, consisting of an exponent
with all 1s (not allowed for normalized numbers), and a fraction of 0. This
number can be used as an operand and behaves according to the usual mathemati-
cal rules for infinity. For example infinity plus anything is infinity, and any finite
number divided by infinity is zero. Similarly, any finite number divided by zero
yields infinity. v

What about infinity divided by infinity? The result is undefined. To handle
this case, another special format is provided, called NaN (Not a Number). It too,
can be used as an operand with predictable results. '

PROBLEMS

1. Convert the following numbers to IEEE single-precision format. Give the results as
eight hexadecimal digits.

a.9

b. 5/32
c.—5/32
d.6.125

2. Convert the following IEEE single-precision floating-point numbers from hex to
decimal:

a. 42E48000H
b. 3F880000H
c. 00800000H
d. C7FO0000H

The format of single-precision floating-point numbers on the 370 has a 7-bit exponent
in the excess 64 system, and a fraction containing 24 bits plus a sign bit, with the
binary point at the left end of the fraction. The radix for exponentiation is 16. The
order of the fields is sign bit, exponent, fraction. Express the number 7/64 as a nor-

malized number in this system in hex.

@

4. The following binary floating-point numbers consist of a sign bit, an excess 64, radix
2 exponent, and a 16-bit fraction. Normalize them.

a. 0 1000000 0001010100000001




