
Biostatistics 778: Advanced Statistical Computing

Homework 2

Due date: 2007-12-04

Problems

1. Obtaining the observed information from EM. Let f(y | θ) be the joint density of the observed
data and let g(y, z | θ) be the joint density of the augmented or complete data. Let the
observed score function be

S(y | θ) =
∂

∂θ
log f(y | θ)

and the complete data score function be

S(y, z | θ) =
∂

∂θ
log g(y, z | θ).

Finally, let the complete data information matrix be

Iy,z(θ) =
∂

∂θ∂θ′ log g(y, z | θ).

Prove the following statements:

S(y | θ) = Ez|y [S(y, z | θ)]

and

Iy(θ)
∆=

∂

∂θ∂θT
log f(y | θ)

= Ez|y [Iy,z(θ)]− Ez|y

[
S(y, z | θ)S(y, z | θ)′

]
+ S(y | θ)S(y | θ)′

.

In each case the expectation is taken with respect to the conditional distribution of the missing
data z given the observed data y. Assume the necessary conditions so that integral and
derivative can be interchanged.

2. EM algorithm. Hierarchical models are sometimes used to “combine evidence” in a meta-
analysis or multi-site study. For example, when studying air pollution and health, it is com-
mon to estimate the association between daily changes in air pollution and some health
outcome for many cities separately and then combine the estimates across cities via an hier-
archical model. This approach simplifies things because you do not have to combine the data
all together in a single analysis, but rather break the analysis into 2 separate parts.

Suppose we have estimates β̂1, . . . , β̂n and associated variance estimates σ̂2
1, . . . , σ̂

2
n, i.e.

Var(β̂i) = σ̂2
i ,

where i is an index for locations and β̂i is the estimate of the log relative risk of air pollution on
hospitalization for chronic obstructive pulmonary disease. A useful summary is the “national
average effect” µ which tells us, on average for the entire United States, a unit increase in
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air pollution is associated with a (100 × µ)% increase in hospital admissions. Assume the
following hierarchical model:

β̂i ∼ N (βi, σ̂
2
i )

βi ∼ N (µ, τ2)

where βi is the “true” log relative risk for city i and β̂i is our estimate of it. The parameter τ2

is sometimes called the heterogeneity variance and describes the amount of variation in the
“true” log relative risks (i.e. the βis).

Use the EM algorithm to obtain estimates of µ and τ as well as empirical Bayes estimates of
β1, . . . βn. First derive the EM iterations and then write a program to compute the estimates
from the data. Use Louis’s method to obtain standard errors for µ and τ . Data for your
program will be provided on the course website. Write up a brief summary describing your
analysis.

3. Rejection/Importance sampling. Let Yi ∼ Exponential(β) for i = 1, . . . , n (with mean 1/β) and
let β have a half-Normal (σ) prior distribution, i.e. the prior density of β is

π(β | σ) =

√
2

πσ2
exp(−β2/2σ2)

for β > 0.

Write a function named postsample which takes an input vector y, a sample size N, and a
value for the parameter σ and uses rejection sampling to simulate a sample of size N from the
posterior distribution of β | y1, . . . , yn. Specifically, produce a sample of size 1,000 for σ = 0.5
and the following ys:

20.100306 2.272066 3.796734 2.265275 3.480183

Write a function named postmean which takes as input

• a posterior sample from the distribution of β | y1, . . . yn,

• a lower bound for σ, and

• an upper bound for σ,

and uses importance sampling/reweighting to plot the posterior mean of β as a function of σ.
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