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A Monte Carlo Implementation of the
EM Algorithm and the Poor Man's
Data Augmentation Algorithms

GREG C. G. WEI and MARTIN A. TANNER*

The first part of this article presents the Monte Carlo implementation of the E step of the EM algorithm. Given the current
guess to the maximizer of the posterior distribution, latent data patterns are generated from the conditional predictive distri-
bution. The expected value of the augmented log-posterior is then updated as a mixture of augmented log-posteriors, mixed
over the generated latent data patterns (multiple imputations). In the M step of the algorithm, this mixture is maximized to
obtain the update to the maximizer of the observed posterior. The gradient and Hessian of the observed log posterior are also
expressed as mixtures, mixed over the multiple imputations. The relation between the Monte Carlo EM (MCEM) algorithm
and the data augmentation algorithm is noted. Two modifications to the MCEM algorithm (the poor man’s data augmentation
algorithms), which allow for the calculation of the entire posterior, are then presented. These approximations serve as diagnostics
for the validity of the normal approximation to the posterior, as well as starting points for the full data augmentation analysis.

The methodology is illustrated with two examples.

KEY WORDS: Bayesian inference; Multiple imputation; Simulation

1. INTRODUCTION

The EM algorithm (Dempster, Laird, and Rubin 1977)
is a powerful computational technique for locating a max-
imizer of a posterior distribution. Rather than attempt to
maximize a complicated posterior, the EM algorithm re-
quires a series of maximizations of functions. The EM
algorithm is best suited for situations where the construc-
tion of each function and each maximization is straight-
forward. In Section 3 of this article, we present the Monte
Carlo implementation of the E step of the EM algorithm,
thereby expanding the scope of application of the algo-
rithm. To compute the expectation of the log-posterior,
latent data patterns are generated from the conditional
predictive distribution, given the current guess to the max-
imizer of the posterior. The expected value of the log-
posterior is then updated as a mixture of augmented log-
posteriors, mixed over the generated latent data patterns
(multiple imputations). The gradient and Hessian of the
observed log posterior are similarly expressed as mixtures,
mixed over the generated latent data patterns. The rela-
tionship between the Monte Carlo EM (MCEM) algorithm
and the data augmentation algorithm (Tanner and Wong
1987) is then noted. The multiple imputations in the data
augmentation algorithm are drawn from the current ap-
proximation to the predictive distribution, and the cor-
responding values in the MCEM algorithm are drawn from
the conditional predictive distribution, conditional on the
current approximation to the maximizer of the observed
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posterior. This observation suggests two modifications of
the MCEM algorithm, the poor man’s data augmentation
algorithms, which allow for the estimation of the entire
posterior. In Section 4, the methodology is illustrated in
the context of regression analysis with censored data.

2. THE EM ALGORITHM

The EM algorithm (Dempster et al. 1977) is an iterative
method for the computation of the maximizer of the pos-
terior density. Before proceeding to describe the algo-
rithm, we review basic terminology related to the algo-
rithm. The basic idea behind the EM algorithm is to
augment the observed data y by a quantity z, which will
be referred to as latent data. It is assumed that, given both
y and z, it is straightforward to calculate and maximize
the expectation of the augmented log-posterior log(p (6 |
¥, z)). To obtain the maximizer of the observed posterior
p(0 | y), one first computes the expectation of log(p (0 |
y, z)) with respect to the conditional predictive distribu-
tion p(z | y, 69), where 69 is the current approximation
to the mode of the observed posterior. This is known as
the E step. In the M step, one obtains the maximizer of
this conditional expectation. The conditional predictive
distribution is then updated using the new maximizer and
the algorithm is iterated. [Regarding issues of conver-
gence, see Dempster et al. (1977), Wu (1983), and Boyles
(1983).]

More formally, define the Q function as

0, 0,) = f log(p(8] 2, ) p(z | 0, y) dz,  (2.1)

where Z denotes the sample space for the latent data z.
By Jensen’s inequality, it follows that if  is chosen such
that 0(0, 6,) = Q(6,, 6,), then log(p (8| y)) will be greater

© 1990 American Statistical Association
Journal of the American Statistical Association
September 1990, Vol. 85, No. 411, Theory and Methods

699



700

than or equal to log(p(6, | y)). In this way, given the
current approximation to the maximizer of the observed
posterior (8©), the E step of the EM algorithm is defined
by computing Q(0, ) = [, log(p(0 | z, y))p(z | 69,
y) dz. The M step then consists of maximizing the Q func-
tion with respect to 6 to obtain the update 6¢+Y,

3. THE MONTE CARLO IMPLEMENTATION AND
THE RELATIONSHIP TO DATA AUGMENTATION

34 The MCEM Algorithm

To perform the integration in (2.1), we propose to use
the method of Monte Carlo to obtain the MCEM algo-
rithm. In particular, Equation (2.1) motivates the follow-
ing scheme: Given the current approximation to the
maximizer 09, (a) generate a sample z®, . . . , 2 from
the current approximation to the conditional predictive
distribution p(z | 69, y) and (b) update the current ap-
proximation to Q;,,(0, V) to be the mixture of aug-
mented log-posteriors of 6, mixed over the latent data
patterns from (a).

011(8, 69 = 2 log(p(0] 29, ). (3.1)

1
m;
The M step then consists of maximizing the right side of
(3.1). The conditional predictive distribution is then up-
dated using the new maximizer, and the algorithm is it-
erated.

Remark 1. The often-referred-to “EM-type” algo-
rithm is obtained when m is equal to 1 and z®» = % is
some “good” summary of p(z | ¥, y), such as a mode
or expected value. The iterative EM-type algorithm con-
sists of forming log(p(d | Z, y)), maximizing this function
over ¢, and then computing the updated Z using p(z |
0@*V,y). When log(p(@| z, y)) is linear in z, the EM and
EM-type algorithms [with E(p(z |6?,y)) = 2] both yield
the maximizer of the observed posterior.

Remark 2. Rubin (1987) referred to the quantities
zW, ., 2™ as multiple imputations.

Remark 3. A referee has pointed out that Monte Carlo
may also be used to locate the maximizer of the augmented
posterior (see Diggle and Gratton 1984). Optimization of
the augmented posterior in high-dimensional problems
may best be handled by using conjugate gradient or even
quasi-Newton methods (see Fletcher 1980).

Remark 4. This algorithm is modified for the calcu-
lation of maximum likelihood estimates, rather than
posterior modes, by adopting a flat prior. Note that a
particular specification of the prior may complicate or sim-
plify the M step.

Two important considerations regarding the implemen-
tation of this Monte Carlo algorithm are the monitoring
convergence of the algorithm and the specification of m.
Regarding the specification of m, it is noted that it is
inefficient to start with a large value of m when the current
approximation to the maximizer may be far from the true
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value. Rather, it is recommended that one increase m as
the current approximation moves closer to the true max-
imizer. One may monitor the convergence of the algorithm
by plotting (or simply examining a table of ) 6©) versus the
iteration (7). After a certain number of iterations, the plot
will reveal that the process has stabilized; that is, there
will be random fluctuation about the § = § line. At such
a point, one may terminate the algorithm or continue with
a larger value of m that will further decrease the system
variability.

3.1.1. Derivatives in the Context of the MCEM Algo-
rithm. The gradient (score function) and Hessian (ob-
served Fisher information) of the observed log posterior
are both of use in accelerating the EM algorithm (Hartley
1958; Louis 1982; Meilijson 1989), and the Hessian is of
use in specifying the variance—covariance matrix of the
normal approximation to the observed posterior. The gra-
dient of the observed log posterior is given by

f D log(p(0 |y, Z))p
, Do

(see Louis 1982; Meilijson 1989). Given asample z©, . . . ,
z( from the current approximation to the conditional
predictive distribution p(z | 69, y), the current approxi-
mation to the gradient is given by

1 2 D log(p(6]2?, y))
m 3 Do

The Hessian of the observed log posterior is given by

(z]y,0)dz

(3.2)

LDZ log(g(zgly, Z))p(z |y, ) dz
+J'Z<D10g(PI§Z|y’Z))) (z|y,0)dz

_ UD log<p1§f)|y, 2) 21y, 0) dz]2

(see Louis 1982; Meilijson 1989). Given the sample of
latent data patterns, the current approximation to the Hes-
sian is given by

2 D?log(p(8 ]y, 1))
~ D20

<3

j=1

L I oo

Wei (1989) presented a least squares estimate of the first
term in (3.3).

3.1.2.  The Genetic Linkage Model. We consider the
genetic linkage model examined in Dempster et al. (1977),
Louis (1982), Rao (1973), and Tanner and Wong (1987).
The model is a multinomial with four categories, having
observed counts of y = (y;, ¥, ¥3, y4) = (125, 18, 20,
34) and cell probabilities specified by (1/2 + 6/4, (1 —

( D log(p (8] y, z)) )2
D6

<D log(p(6]y, z1))

uMs

D6
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Table 1. MCEM History—Linkage Data

Iteration Theta

.5833
.6222
.6192
.6321
.6153
.6259
.6238
.6245

.6270
.6265
1 .6264
12 .6270

—_
W ONOUThAWN —

0)/4,(1 — 0)/4, 6/4). The observed data y are augmented
by splitting the first cell of the multinomial into two cells,
one having probability 1/2, the other having probability
6/4. In this way, the augmented data set is given by x =
(x1, Xz, X3, X4, Xs5), Where x; + X, = 125, %3 = y,, x4 =
y3, and x5 = y,. Note that the augmented log-posterior
[for a uniform prior on (0, 1)] is equal to (x, + xs) log(6)
+ (x3 + x,) log(1 — ) + C. Given the current ap-
proximation to the maximizer of the observed posterior
(69), the Monte Carlo E step is given by (a) draw z@,
z®@ ..., z" from the distribution Bi(125, 8©/(0® +
2)) and (b) form Q,,,(6, 6©) = 1/m 27, log(p(8 | 27,
y))- In the M step maximize Q;,, over 6 to obtain §¢+D.
Note that Q;,,(6, 0©) can be written as (ave + xs) log(6)
+ (x; + x,) log(l — ), where ave = 1/m Z7-, z0).

Table 1 presents the history of an implementation of the
MCEM algorithm for this problem. The algorithm was
initiated with § = .4 and m was taken to be 10 (1,000) for
iterations 1-8 (9-12). The true maximizer of the observed
posterior is equal (to four places) to .6268. As can be seen
from the table, for m = 10, the process seems to stabilize
by the eighth iteration to yield a value of the maximizer
correct to two decimal places. From the results of itera-
tions 9-11, the maximizer is determined (to three decimal
places) to be .627.

3.2 The Relation to Data Augmentation

At this point, it is instructive to note the relationship
between the Monte Carlo implementation of the EM al-
gorithm and the data augmentation algorithm (Tanner and
Wong 1987). The data augmentation algorithm is an it-
erative method for the computation of the entire posterior
density, rather than just a maximizer. Given the current
approximation g;(6) to the observed posterior p(8 | y),
the data augmentation algorithm specifies that one (a)
generate a sample z®, . .., z™ from the current ap-
proximation to the predictive distribution p(z | y) and (b)
update the current approximation to p(6 | y) to be the
mixture of augmented posteriors of ¢, given the aug-
mented data from (a), that is, g,.,(0) = 1/m 2%, p(0 |
z"), y). Steps (a) and (b) are then iterated. Tanner and
Wong (1987) presented regularity conditions under which
the algorithm converges. The zU”’s from the final iteration
facilitate the computation of the expectation of any func-

tional of the parameters. The case when m = 1 s of special
interest. See Gelfand and Smith (1990).

To generate a sample of latent data, given the current
guess to the posterior, Tanner and Wong (1987) suggested
the following: (al) generate 6 from g;(6) and (a2) generate
z fromp(z| ¢, y), where ¢ is the value of the parameter
generated in (al). Note that the multiple imputations in
the data augmentation algorithm are drawn from the cur-
rent approximation to p(z | y). In the MCEM algorithm
the multiple imputations are drawn from p(z | 89, y),
where 6@ is the current approximation to the maximizer
of the observed posterior.

3.3 The Poor Man’s Data Augmentation
(PMDA) Algorithms

3.3.1. PMDA 1. The final observation in the pre-
ceding section suggests a simple modification to the
MCEM algorithm that yields an estimate of the entire pos-
terior, rather than just a maximizer and the curvature at
this point to specify a normal approximation to the ob-
seérved posterior. Equation (2.4) of Tiemey, Kass, and
Kadane (1986) implies that p(z | y) = p(z |y, §)(1 +
O(n1)), where § is the mode of the observed posterior.
This equation suggests that having obtained the mode of
the observed posterior (8), the following noniterative al-
gorithm (the PMDA algorithm) will yield an approxima-
tion to the observed posterior. The algorithm is called a
“poor man’s” version of the data augmentation algorithm
because it is intended for those who cannot afford to sam-
ple from p(z | y). (a) Generate a sample z®, . . ., z™
from the conditional predictive distribution p(z | 8, y).
(b) Approximate the observed posterior by the mixture of
augmented posteriors of #, mixed over the latent data
patterns from (a).

m

p(@|zD, ). (3.4)

1
m =
In this way, in large samples, Equation (3.4) will provide
a refinement to the normal approximation of the observed
posterior. In small samples, Equation (3.4) may be used
as a diagnostic to the normal approximation. In particular,
if evidence of skewness or multimodality is detected in
(3.4), then the normal approximation to the observed pos-
terior may be misleading. In such a case, one may wish
to proceed to the full data augmentation algorithm using
(3.4) as a starting point (g, ) for the algorithm. In general,
PMDA can provide a good starting point for the data
augmentation algorithm.

3.3.2. PMDA 2. Equation (3.4) is an approximation
because the multiple imputations are sampled from p(z |
8, y) rather than from p(z|y). If p(z|y)is straightforward
to evaluate as a function of z, the observed posterior is
easily calculated by using the technique of importance
sampling (Ripley 1987). To calculate the observed pos-
terior, given a sample z®, z®@, . .., z™ from p(z | 8,
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y), assign the weights

w = 271Y)
op(29]6,y)

to the imputations. That is, replace Equation (3.4) with

3.5)

m

2 wip(@]29,y)
j=1

2w

j=1

In practice, p(z") | y) may be difficult to compute and
a second-order approximation to p (z | y) is available. Note
that p(z | y) = J,p(z10,y)p(01y) dod = E(p(z |0,
¥))- This observation suggests that one may use equation
(2.5a) of Tierney et al. (1986) to obtain a second-order
approximation to p(z | y) to be used in place of p(z | y)
in Equation (3.5) above. To motivate this approximation,
note that the —nh* function of Tierney et al. [1986; they
typically take —nh* to be the sum of the log-posterior
distribution (—nh) and the log of the function that is in-
tegrated against the posterior| in the present context is
given by —nh* (0, z) = log(p(0|y, 2)) + log(p(z|y)).
In this way, the maximizer of function —nrh* (6, z()) with
respect to 6 is equal to the corresponding maximizer of
log(p(01y, z")). Similarly, the —nh function of Tierney
et al. (1986) in the present context is given by —nh(6, z)

= log(p(0 | y, 2)) — log(p(z | 0, y)) + log(p(z | y)).

Let the maximizer of p(0 | y, z()) and p(6| y) be denoted
as 0* and 0, respectively. (Note that the latter maximizer
is prov1ded as output from the MCEM algorithm and the
former maximizer is typically easy to obtain.) In this way,
equation (2.5a) of Tierney et al. (1986) yields the second-
order approximation

(3.6)

()
p(z0) | y) o (det 37y 2 ) 1y, 29)

S@1y. 20 PG 'y, 0),

where 2* is minus the inverse Hessian of log(p (0] y, z("))
evaluated at 0* Plugging this approximation into Equa-
tion (3.5), we have

| y Z(l)
___L_’____

= [det 2*]1/2 (0 | ) Zm)

3.3.3.  The Genetic Linkage Example (continued). To
illustrate the PMDA algorithms, consider the following
small-sample data set for the genetic linkage model: (14,
0, 1, 5). [See Tanner and Wong (1987) for the full data
augmentation analysis of these data.] The MCEM algo-
rithm was run with m = 5,000 for 15 iterations, yielding
0 = .9034. Using this value of 0, 5,000 samples were drawn
from the conditional predictive distribution p(z | y, 6).
Figure 1 presents the mixture of augmented posteriors,
mixed over these PMDA 1 imputations (dotted line),
along with the exact observed posterior (solid line) and
~ the PMDA 2 mixture (dashed line). As can be seen from
the figure, in this case PMDA 1 successfully recovers the
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Figure 1. True Posterior and the PMDA Estimates.

highly skewed shape of the observed posterior. PMDA 2
is even more congruent with the true observed posterior.

In practice, the magnitude of the error of the first-order
approximation will not be known. Having obtained
PMDA 1, one may wish to “check” it against PMDA 2.
If they are in accord, there may be little reason to doubt
the validity of either approximation. If they are in discord,
it is not clear whether the error in PMDA 2 can be ne-
glected. Alternatively, one may wish to proceed to the
implementation of the full data augmentation algorithm
using PMDA 2 [see Eq. (3.6)] as a starting point (i.e.,
80(0)] for the data agumentation algorithm. Tanner and
Wong (1987) gave conditions under which the data aug-
mentation algorithm converges to be observed posterior.
The error in the data augmentation algorithm (due to the
Monte Carlo variation) is easily quantified.

4. REGRESSION ANALYSIS WITH CENSORED DATA

As a second example, we consider the motorette data
set reported in Crawford (1970) and analyzed in Schmee
and Hahn (1979). The data represent the results of tem-
perature-accelerated life tests on electrical insulation in 40
motorettes, when 10 motorettes were tested at each of
four temperatures in degrees Centigrade (150°, 170°, 190°,
and 220°). Motorettes were on study for different periods
depending on temperature, resulting in a total of 17 failed
and 23 unfailed units. Following Schmee and Hahn (1979),
the model used to analyze these data is u; = p, + p,v; +
og (i = 1, ..., 40), where ; = log(ith failure time), v,
= 1,000/(T; + 273.2), T, is the ith level of temperature,
and the errors are assumed to follow a standard normal
distribution. V will be used to denote the design matrix
for this data set.

Before proceeding with the MCEM and PMDA algo-
rithms, two questions must be addressed. For this prob-
lem, what is the functional form of the augmented
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posterior p(0 | z, y)? What is the conditional predictive
distribution p(z | 0, y)?

Regarding the form of the augmented posterior, it is
well known that the marginal posterior distribution can be
factored exactly into the product of the marginal density
of o2 and the conditional density of p given ¢?. Moreover.
for the prior p(a?, p) * o2, the marginal of ¢* is that ot
the distribution of the random variable ((n — p)s?)/
(xt.-»). where x? is a chi-squared random variable with
degree of freedom, v, whereas the conditional marginal
posterior distribution of p is a multivariate normal distri-
bution (given ¢?) centered at the least squares estimate of
p for the augmented data set (Box and Tiao 1973).

In answer to the second question, the conditional pre-
dictive distribution for a right-censored observation (u,)
is the conditional normal distribution ¢(s)/(1 — ®(z;)),
where ¢(s) and ®(s) are the density and cdf of the standard
normal distribution, respectively, and z, is the value z,, =
(u, — vip)/o. Regarding the implementation of the M
step, it is noted that

Z (w; — Vp)'(u, — V)
m(n + 2)

and p = (V'V)"'WV'(2", u,)/m, where u, is the ith aug-
mented data set, maximize the O function given in Equa-
tion (3.1).

Table 2 presents the history of an implementation of the
MCEM algorithm for these data. The algorithm was ini-
tiated with p, = —4.931, p, = 3.747, and ¢? = .0247.
The value of m was equal to 50 (5,000) for iterations 1-
14 (15-18). From the final three iterations, it can be seen
that the maximum posterior estimates of p,, p,, and ¢?
are —5.96,4.28, and .0589, respectively. [The correspond-
ing estimates under a flat prior are —6.02, 4.31, and .067,
respectively. These values agree with the corresponding
figures given in Aitkin (1981).]

To illustrate the PMDA algorithms, we will examine the

62 =

Table 2. MCEM History—Motorette Data

0-2
Iteration Do 2 (% 100)
1 -5.27 3.93 3.36
2 —-5.61 4.10 4.07
3 —5.64 4.12 4.65
4 -5.77 4.18 5.08
5 —5.81 4.20 5.31
6 -5.84 4.22 5.41
7 -5.85 4.23 5.62
8 —5.86 4.23 5.70
9 -5.94 4.27 5.72
10 —5.88 4.24 5.82
11 -5.97 4.29 5.93
12 -5.88 4.24 5.80
13 -5.78 4.19 5.77
14 -5.94 4.27 5.67
15 -5.97 4.28 5.84
16 —5.96 4.28 5.89
17 —5.96 4.28 5.89
18 —5.96 4.28 5.89

703
25
20
D 15
€
n
§
;
y 10
5
0 1 1 = ™ T
0.0 0.05 0.10 0.15 0.20 0.25 0.30
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Figure 2. Data Augmentation and PMDA Estimates.

o2 marginal. Note that an estimate of p(s? | y) based on
Equation (3.4) is readily available since

p(a?|y) = fp(oz,ply) dp = %El p(a, p|u)dp

o s 19s2
2 o P (‘ _2> ’

=1 o

o

where s? is the least squares estimate of ¢ for the ith
augmented data set, due to the inverse chi-squared con-
ditional normal factorization.

Figure 2 presents PMDA 1 (short dashed line), PMDA
2 (long dashed line), and the data augmentation estimate
(solid line) of the marginal based on m = 5,000. Clearly,
the normal approximation to the marginal does not seem
appropriate in this case. [In fact, the normal approxima-
tion is not appropriate even on the log(c) scale.] PMDA
1 gives a hint of the skew in the marginal posterior. PMDA
2 does, however, represent an improvement.

In this example, there is a noticeable discrepancy be-
tween PMDA 1 and PMDA 2. In practice, having noticed
such a discrepancy, one may want to run several iterations
of the data augmentation algorithm, using PMDA 2 [see
Eq. (3.6)] as a starting point for the data augmentation
algorithm.

5. WHAT'S OUT THERE?

Several algorithms are available that make use of the
data augmentation principle: augment the data to facilitate
the analysis. The EM and MCEM algorithms provide a
minimal amount of information to the data analyst. These
algorithms yield the location of the normal approximation
to the posterior distribution. Modifications by Louis (1982)
and Meilijson (1989) allow for the specification of the scale
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of the normal approximation in the EM context. The
PMDA algorithms, in contrast, approximate the entire
posterior distribution, thus allowing for nonquadratic log-
posteriors. The sampling importance resampling (SIR)
algorithm (Rubin 1987) is a noniterative algorithm for the
estimation of the entire posterior. It is most efficient when
a good approximation to the posterior (importance func-
tion) is available. At the upper end are the data augmen-
tation algorithm and the Gibbs sampler. [Regarding the
Gibbs sampler, see Geman and Geman (1984), Li (1988),
and Gelfand and Smith (1990).] The latter two algorithms
are iterative and can be shown to converge to the true
posterior distribution under mild regularity conditions.
They allow for the calculation of the posterior distribution
of any functional of the parameters, for example, the con-
tent and boundary of the highest posterior density region
(Wei 1989). In this regard, it is noted that the PMDA
algorithms can provide good starting points to the SIR,
data augmentation, and Gibbs sampler algorithms.

[Received June 1989. Revised January 1990.]
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