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Abstract

Time series studies have provided strong evidence of an association between in-

creased levels of ambient air pollution and increased hospitalizations, typically at a

single lag of 0, 1, or 2 days after an air pollution episode. Two important scientific

objectives are to better understand how the risk of hospitalization associated with a

given day’s air pollution increase is distributed over multiple days in the future and

to estimate the cumulative short-term health effect of an air pollution episode over

the same multi-day period. We propose a Bayesian hierarchical distributed lag model

that integrates information from national health and air pollution databases with prior

knowledge of the time course of hospitalization risk after an air pollution episode. This

model is applied to air pollution and health data on 6.3 million enrollees of the US

Medicare system living in 94 counties covering the years 1999–2002. We obtain es-

timates of the distributed lag functions relating fine particulate matter pollution to

hospitalizations for both ischemic heart disease and acute exacerbation of chronic ob-

structive pulmonary disease, and we use our model to explore regional variation in the

health risks across the US.

KEY WORDS: Distributed lag model; air pollution; environmental epidemiology; time

series, cardiovascular disease, respiratory disease
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1 Introduction

Time series studies of air pollution and health in the United States and around the world

have provided consistent evidence of an adverse short-term effect of ambient air pollution

levels on mortality and morbidity (Health Effects Institute, 2003; Pope and Dockery, 2006).

In particular, multi-site studies, which combine information from many locations using na-

tional or regional databases, have produced robust and consistent results demonstrating an

adverse health effect of particulate matter (PM) and ozone. The National Morbidity, Mor-

tality, and Air Pollution Study (NMMAPS) in the US and the Air Pollution and Health: A

European Approach (APHEA) study in Europe are prominent examples of such multi-site

studies (Bell et al., 2004; Peng et al., 2005; Katsouyanni et al., 2001; Samoli et al., 2003).

More recently, the Medicare Air Pollution Study (MCAPS) showed a strong association

between fine particulate matter (PM less than 2.5 µm in aerodynamic diameter) and hos-

pitalization for cardiovascular and respiratory diseases in 204 US counties (Dominici et al.,

2006).

The majority of previous time series studies of the health effects of PM have generally

employed single lag models that use a fixed exposure lag of ` days, assuming that all of

the effect of air pollution on health is realized exactly ` days in the future. For example,

ambient PM levels are often compared with hospitalization rates on the same day (` = 0)

or the following day (` = 1). While such an assumption might be plausible for modeling a

given individual’s response, it is less realistic for describing population level associations.

An alternative approach is to use a distributed lag model which allows the effect of a

single day’s increase in air pollution levels to be distributed over multiple days after the

increase and is a more informative tool for characterizing the time course of hospitalization

risk. Distributed lag models provide an estimate of the distributed lag function, which

describes the change in the relative risk in a multi-day period after a given day’s increase in

air pollution. In particular, it might be reasonable to assume that at the population level,
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an increase of PM on a given day leads to an increase in hospitalizations which is distributed

smoothly over multiple days into the future.

Distributed lag models have been used for decades in economics (Almon, 1965; Leamer,

1972; Shiller, 1973) and have been applied more recently in the area of environmental epi-

demiology. Schwartz (2000) used both unconstrained and constrained (polynomial) dis-

tributed lag functions to estimate the effects of particulate matter on daily mortaliy. Zanobetti

et al. (2000) extended some this work and developed the generalized additive modeling

methodology. Bell et al. (2004) and Huang et al. (2005) studied the relationship between

ozone and daily mortality in the US and applied both single lag and constrained distributed

lag models.

Previous applications of distributed lag models have generally studied air pollution and

health data at individual locations. Typically, a distributed lag model is fit to the data and

the estimated distributed lag function is then smoothed across lags using a polynomial or

nonparameteric smoother (e.g. Almon, 1965; Corradi, 1977; Zanobetti et al., 2000). Welty

et al. (2005) proposed a Bayesian model for estimating the distributed lag function in a

time series study of a single location. They introduce a prior distribution that constrains

the shape of the distributed lag function by allowing effects corresponding to early lags to

take a wide range of values while effects at more distant lags are constrained to be near

zero and correlated with each other. Through extensive simulation studies they showed that

their proposed approach is superior (in mean squared error) to the standard application

of penalized splines under several possible shapes of the true distributed lag function. In

a problem with potentially many parameters of interest, constraining the distributed lag

function in some manner is critical for reducing the size of the model space.

In addition to the distributed lag function, another important target of inference is the

cumulative health effect of an increase in air pollution levels over a multi-day period after

the increase. If the effect of air pollution on health is truly distributed over multiple days,
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then a relative risk estimate obtained by fitting a single lag model likely will be biased.

However, whether the bias is positive or negative is not clear and either possibility might be

considered plausible. For example, Schwartz (2000) found that single lag models substan-

tially underestimated the effect of PM on daily mortality and similar patterns have been

found in other studies (Zanobetti et al., 2002; Goodman et al., 2004; Roberts, 2005). An al-

ternative hypothesis, sometimes referred to as the “harvesting” or “mortality displacement”

hypothesis, claims that air pollution episodes deplete a frail pool of individuals and decrease

the number of susceptible people on future days (Schimmel and Murawski, 1976). Such a

phenomenon would lead to a distributed lag function that is negative for certain periods

and, when summed over the relevant time period after an air pollution episode, may result

in a cumulative effect that is smaller than relative risk estimates obtained from single lag

models (Zeger et al., 1999; Dominici et al., 2002b; Zanobetti et al., 2000).

The NMMAPS, APHEA, and MCAPS studies all make clear the substantial advantages

of the multi-site approach to assessing the short-term health risks of air pollution. Combining

information across locations improves the precision of relative risk estimates and allows for

the examination of variation in estimates across locations. Hence, there is a need for new

methodology to allow the application of distributed lag models to reap the same benefits.

We introduce a Bayesian hierarchical distributed lag model for estimating the distributed

lag function relating particulate matter air pollution exposure to hospitalizations for cardio-

vascular and respiratory diseases. We describe a specific prior distribution for constraining

the distributed lag function and we propose an hierarchical structure for combining infor-

mation about the shape of the distributed lag function across multiple locations. We also

show a connection between our Bayesian hierarchical distributed lag model and penalized

spline modeling. We apply our model to a national database of PM2.5 measurements and

hospitalizations in the United States covering the years 1999–2002. The results include

estimates of the national and county-specific distributed lag functions that reflect the con-
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tributions of all relevant sources of information as well as their uncertainties. We also obtain

estimates of the cumulative effect of PM2.5 on hospitalizations in a two week period after

an increase in levels and compare them with estimates obtained from single lag models.

In addition to providing national estimates for the health risks of PM, our model can be

used to explore variation in the risks across regions of the country and an assessment of

this variation can potentially relate health risks to different sources of PM air pollution.

Finally, we provide the R code used for fitting this model on the website for this paper at

http://www.biostat.jhsph.edu/rr/BHDLM/.

2 Hierarchical Distributed Lag Model

Given time series data y1, y2, . . . on an outcome such as daily hospitalization counts, and

corresponding time series data x1, x2, . . . on an exposure such as ambient air pollution levels,

a log-linear Poisson distributed lag model of order L specifies

yt ∼ Poisson(µt)

log µt =
L−1∑
`=0

θ` xt−` (1)

for t ≥ L − 1. The vector of coefficients θ = (θ0, θ1, . . . , θL−1), as a function of the lag

number (` = 0, . . . , L − 1), is what we call the distributed lag function. This function is

sometimes referred to as the impulse-response function because it describes the effect on the

outcome series of a single impulse in the exposure series (Chatfield, 1996). For example, if

we have an exposure series of the form x0 = 1, x1 = 0, x2 = 0, . . . , i.e. a spike at t = 0,

then the log-relative risk (over L days) associated with that spike is ξ =
∑L−1

`=0 θ`. We define

100× (exp(10ξ)− 1) to be the cumulative percent increase in hospitalizations over an L day

period associated with a 10 µg/m3 increase in pollution (a standard increment for reporting

particle air pollution relative risks).
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2.1 County-specific model

Our approach begins with a model for the county-specific air pollution and hospitalization

data. This model relates day-to-day changes in air pollution levels to day-to-day changes in

hospitalization rates for a given county, controlling for other time-varying factors that might

confound the relationship of interest.

Let the vector yc = (yc1, yc2, . . . , ycT ) represent the daily time series of hospitalization

counts for county c and let the vector dc be the daily time series of the numbers of people at

risk. The matrix Xc represents the exposure of interest and includes the corresponding time

series of air pollution levels and lagged versions of that series. Xc is of dimension T × L,

where L is the order of the distributed lag model. In our setup, the first column of Xc is

the original air pollution time series (lag 0), the second column is the original series lagged

by one day (lag 1), etc. For each county c we also observe p other time-varying covariates

which are combined in a T × p matrix Zc. Then for county c, our county-specific log-linear

Poisson model is of the form

yc | Xc, Zc ∼ Poisson(µc(θc, βc))

log µc(θc, βc) = Xcθc + Zcβc + log dc

(2)

where c = 1, . . . , n and each of the n counties are assumed to be mutually independent. The

length L vector of parameters θc is the distributed lag function and parameters in βc are

nuisance parameters.

In the county-specific model (2), we incorporate into Zc certain time-varying factors that

might confound the relationship between air pollution and hospitalization (Kelsall et al.,

1997; Dominici et al., 2002a). In particular, we include average daily temperature, dew

point temperature, and indicators for the day of the week. We also include a smooth func-

tion of time to adjust for seasonal variation that is common to both the air pollution and

hospitalization time series. This smooth function of time is modeled using natural splines

and the natural spline basis is included in Zc. Further details regarding the approaches
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to confounding adjustment in time series studies of air pollution and health can be found

in Peng et al. (2006) and Welty and Zeger (2005).

2.2 Constraining the distributed lag function and combining in-

formation

The rationale behind our approach to constraining θc is that the effects of air pollution

at early lags are not well understood because of our lack of knowledge about biological

mechanisms and the time course of the disease process within the population. In addition,

competing hypotheses mentioned previously about the shape of the distributed lag function

suggest that fewer constraints should be placed at early lags. At longer lags it is reasonable

to believe that the effects of air pollution on the outcome should approach zero smoothly,

particularly since we are primarily interested in short-term effects.

For the distributed lag function θc, we assume

θc | µ, η, σ2
η ∼ N (µ, σ2

η Ω(η)) (3)

where µ = (µ0, µ1, . . . , µL−1) is a national average distributed lag function which describes,

on average across all counties, the health risk spread over L days after a unit increase in

pollution on a given day. The covariance matrix Ω is parametrized by the vector η =

(η1, η2) where η1 controls the rate at which the variance of the distributed lag function

coefficients taper to zero and η2 controls the rate at which neighboring coefficients become

more correlated. Specifically, we assume that the variance of θc,` tapers to zero exponentially

as a function of `, so that

Var(θc,`) = σ2
η exp(−η1 `)

for ` = 0, 1, 2, . . . , L − 1. We further assume that the covariance of neighboring coefficients

at lags `1 and `2 is proportional to

Cov(θc,`1 , θc,`2) ∝ [1− exp(−η2 `1)][1− exp(−η2 `2)],
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so that neighboring coefficients at large lags have a correlation close to 1. The parameter σ2
η

is the prior variance of θc,0, the first distributed lag coefficient.

The matrix Ω(η) describes the natural variation or heterogeneity across counties of the

county-specific distributed lag functions θc. With the formulation of Ω(η) used here we

assume a priori that there will be more variation across counties in the coefficients corre-

sponding to early lags and less variation in the coefficients corresponding to longer lags.

Here, we specifically take advantage of the multi-site context by exploring the variation in

the shapes of the county-specific distributed lag functions. Such natural variation may exist,

for example, because of varying composition of particulate matter across the country.

We assume that the national average distributed lag function µ is distributed as

µ | γ, σ2
γ ∼ N (0, σ2

γ Ω(γ)), (4)

where Ω has the same form as in (3) but is parametrized by the vector γ = (γ1, γ2) and σ2
γ

is the prior variance of µ0, the national average effect at lag 0.

2.2.1 Hyperprior specification

To complete the model specification, the parameters η and γ are each assumed to have

uniform hyperprior distributions over a fixed range. The ranges of the η and γ parameters

allow for an unconstrained distributed lag function as well as some heavily constrained and

smooth distributed lag functions (details of the ranges are given in Appendix B). Exploratory

analyses indicated that there was little information in the data to jointly estimate ση and

σγ as well as η and γ (see e.g. Schmidt et al., 2007). Therefore, we set ση and σγ to be

approximately 10 times the square root of the variance of the maximum likelihood estimate

of µ0. These values of ση and σγ ensure that even for highly constrained models (i.e. large

values of η or γ), the prior has little influence over the coefficients corresponding to the

early lags. Sensitivity analysis indicates that the relevant posterior distributions are not

substantially affected as long as the values of ση and σγ are not too small.

9



We implement a Gibbs sampler to obtain samples from the posterior distributions of the

unknown parameters µ, γ, η, and θc for c = 1, . . . , n. Full details of the sampling procedures

can be found in Appendix B.

2.3 Two-stage distributed lag models

One approximation to our distributed lag model is to use a two-stage approach where at the

first stage, a distributed lag function is estimated independently for each location using log-

linear Poisson regressions. At the second stage, the individual distributed lag functions can

be combined using a Normal approximation to the Poisson likelihood for θc and by further

assuming a second level Normal distribution for θc with mean µ and second level covariance

matrix Ψ. The Normal approximation to the likelihood takes the form θ̂c | θc ∼ N (θc, Σ̂c),

where θ̂c and Σ̂c are estimates of the distributed lag function and covariance matrix from

the first stage county-specific regression.

The two-stage approach has been used in previous studies and is attractive for its compu-

tational simplicity. For comparison, in our analysis we implemented an alternate distributed

lag model where the estimates were obtained using the two-stage approach. This model

specifies for a given county c

log E [Y c
t ] = θc

0 x̄c
t,0−2 + θc

1 x̄c
t,3−6 + θc

2 x̄c
t,7−13 + other predictors

where x̄c
t,0−2 = 1

3

∑2
`=0 xc

t−`, x̄c
t,3−6 = 1

4

∑6
`=3 xc

t−`, and x̄c
t,7−13 = 1

7

∑13
`=7 xc

t−` are simply

running means of the specified lengths. This model is constrained at the county level in

the sense that the effects of pollution at lags 0–2, lags 3–6, and lags 7–13 are restricted to

be constant, respectively, so that the distributed lag function resembles a step function. A

variant of this model was used by Bell et al. (2004). Posterior samples for the parameters

µ and Ψ in this model were obtained using the Two-level Normal independent sampling

estimation software of Everson and Morris (2000).
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2.4 Connection to penalized splines

Our Bayesian hierarchical distributed lag model can be reformulated as a penalized spline

model where the prior distributions in (3) and (4) induce a special type of penalty for

constraining the county-specific distributed lag functions and combining information across

counties. To show this connection, we will use the two-stage approximation of our model to

allow the computations to be written in closed form.

Let θ̂c and Σ̂c be the maximum likelihood estimates of the distributed lag coefficients and

the corresponding covariance matrix for county c. We will assume a Normal distribution for

θ̂c so that the estimated distributed lag function θ̂c can be modeled as a linear combination

of basis functions, θ̂c = Uαc + ε, where ε ∼ N (0, Σ̂c). U is a L × k basis matrix and αc

is a k-vector of coefficients. The penalized spline solution solves the following optimization

problem

min
αc

(θ̂c − Uαc)
′Σ̂−1

c (θ̂c − Uαc) + α′
cD

−1αc,

where D−1 is a penalty matrix which we assume incorporates a scalar penalty parameter.

Since the penalty term α′
cD

−1αc is proportional to the minus log-density of a Normal dis-

tribution, we can rewrite the problem as

θ̂c | Uαc ∼ N (Uαc, Σ̂c)

αc ∼ N (0, D) (5)

where the solution is the posterior mode of αc under the Normal prior in (5).

Given (3) and (4), we can write the marginal distribution of θc as

θc ∼ N (0, Ω(η) + Ω(γ)) (6)

where we have absorbed σ2
η and σ2

γ into Ω(η) and Ω(γ), respectively, to reduce the clutter.

The distribution for αc in (5) implies that Uαc ∼ N (0, UDU ′). Based on our previous

notation, θc = Uαc, so the (inverse) penalty matrix D must satisfy UDU ′ = Ω(η) + Ω(γ),
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which has the solution

Dη,γ = (U ′U)−1U ′(Ω(η) + Ω(γ))U(U ′U)−1. (7)

Now we have shown that our prior distribution on θc can be translated into a penalty matrix

for spline coefficients αc in a penalized spline problem. Given values of η and γ and using

the penalty matrix in (7), we can calculate the penalized spline coefficient estimates as

α̂c = Dη,γU
′(UDη,γU

′ + Σ̂c)
−1 θ̂c and the smoothed county-specific distributed lag function

for county c is Uα̂c.

Similar calculations demonstrate how penalized splines can be used to combine the

county-specific distributed lag functions θc across counties. Analogous to (5), we can write

the the second level of our hierarchical model as

θc | Wδ ∼ N (Wδ, Ω(η)) [c = 1, . . . , n]

δ ∼ N (0, H) (8)

where W is a spline basis matrix, δ is a vector of coefficients, and H is a penalty matrix in

the penalized spline problem. The distribution in (4) and the prior for δ in (8) imply that

we need to find a matrix H such that WHW ′ = Ω(γ). The solution for H has the form

Hγ = (W ′W )−1W ′Ω(γ)W (W ′W )−1 and we can subsequently solve for δ̂ = HγW
′(WHγW

′+

Ω(η))−1 θ̄, where θ̄ = (1/n)
∑n

c=1 θc.

One can see that if we replace the basis matrices U and W with the L × L identity

matrix, then we revert back to our original formulation and obtain the same answers as our

original Bayesian hierarchical model. Our model places a prior directly on the distributed

lag function, while the penalized spline approach places a prior on the corresponding spline

coefficients. In this application it seems more natural to assume a prior distribution for the

distributed lag function directly because prior information is available in that domain.
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3 Data

We apply our methods to national databases of hospitalization and ambient PM2.5 measure-

ments. The hospitalization data consist of daily counts of hospital admissions for the years

1999–2002 constructed from the National Claims History Files (NCHF) of the US Medicare

system, which contain the billing claims of all Medicare enrollees. Medicare enrollees make

up almost the entire US population over 65 years of age, or approximately 48 million people.

Each billing claim obtained from the NCHF contains the date of service, treatment, disease

classification (via International Classification of Diseases, Ninth Revision [ICD-9] codes),

age, gender, self-reported race, and place of residence (five digit ZIP code and county). The

daily counts for a given county were computed by summing the total number of hospitaliza-

tions with a primary diagnosis for a specific disease. For computing hospitalization rates, a

corresponding time series of the numbers of individuals at risk in each county for each day

was constructed.

The PM2.5 data were obtained from the US Environmental Protection Agency’s Air

Quality System database (formerly the AIRS database) which makes available data from a

national network of monitors. Before 1999, the EPA collected data on particulate matter

less than 10 µm in diameter (PM10), generally on a 1-in-6 day basis (i.e. for every six days,

one measurement of PM10 is made). Such a data collection pattern ruled out the use of

distributed lag models, which require data to be collected on consecutive days (although

daily PM10 data were collected for about 15 counties). Beginning in 1999, the EPA began

collecting PM2.5 data, generally on a 1-in-3 day basis, although there are over 100 counties

where measurements are taken everyday. With the emergence of the new PM2.5 monitoring

network, we can fit distributed lag models to data from more counties than previously

possible. Some counties contained more than one PM2.5 monitor, in which case we took a

10% trimmed mean of the daily values across monitors. In cases where there were less than

10 monitor readings, we dropped the lowest and highest values and averaged the remainder.
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Finally, temperature and dew point temperature data were assembled from the National

Climatic Data Center on the Earth-Info CD database and linked by county with the pollution

and hospitalization data.

This analysis was necessarily restricted to the counties for which daily data on PM2.5 were

available. The included counties were further constrained to have a population over 200,000

and PM2.5 data spanning at least one full year. The resulting study population resided in

94 counties and consisted of of 6.3 million Medicare enrollees living on average 6 miles from

a PM2.5 monitor. The locations and populations of the 94 counties are shown in Figure 1.

For all of the counties used in this analysis, there were occasional missing PM2.5 values.

With the exception of the year 1999, when monitors in some counties were just beginning to

come into service, the missingness tended to be sporadic and seemingly at random. Rather

than treat the missing PM2.5 values specially or implement an imputation scheme, we chose

to simply drop missing observations and analyze only the days for which observations were

available. One issue that arises by taking this approach is that when fitting a distributed

lag model of order L, a single missing value in the exposure series propagates to create L

missing observations in the health effects model. Fortunately, the number of missing PM2.5

values was small enough so that this propagation did not cause a serious problem. There

were few, if any, missing values in the hospitalization and meteorological data.

4 Results

We applied the Bayesian hierarchical distributed lag model (BHDLM) to the 94 counties

with Medicare, air pollution, and weather data described in Section 3. The data for each

county spanned T = 1, 461 days (the 4 years from 1999 to 2002) and we chose to examine

two specific causes of hospitalization: chronic obstructive pulmonary disease with acute

exacerbation (COPDAE) and ischemic heart disease. These outcomes were chosen because

they represent common respiratory and cardiovascular diseases and have been shown in
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previous studies to be strongly associated with PM2.5 exposure. Figure 2 shows boxplots

of the daily hospitalization rates for COPDAE and ischemic heart disease in each of the 94

counties. Figure 3 shows corresponding boxplots of the daily (log) PM2.5 data.

For the distributed lag function, we chose to fit a model with a maximum lag of two weeks,

so that L = 14 in (1). Since we were primarily interested in examining the short-term effects

of PM2.5, care had to be taken to ensure that L was not so large that longer-term effects

were implicitly included in the model. For comparison we also applied the step function

distributed lag model (Step DLM) described in Section 2.3 where the model is fit using the

two-stage approach.

The national average distributed lag functions estimated by the BHDLM for COPDAE

and ischemic heart disease are shown in Figure 4. Each of these plots shows the posterior

mean for µ plotted as a function of lag for each outcome as well as pointwise 95% posterior

intervals for each lag coefficient. At each lag the plotted coefficient can be interpreted as the

percent increase in hospitalization for a 10 µg/m3 increase in PM2.5. For COPDAE, Figure 4

suggests that PM2.5 is associated with two “waves” of admissions, with the first arriving 1

day after the increase and the second arriving a few days later. For ischemic heart disease,

there is about a 0.24% increase in admissions on the same day, followed by an approximately

0.35% decrease in admissions on the following day. At lag 2, the relative risk jumps to a

0.6% increase in admissions, beyond which the distributed lag function for ischemic heart

disease is essentially zero.

The joint marginal posterior distributions for γ1 and γ2, which control the tapering and

smoothness of µ, are shown in Figure 5 for both COPDAE and ischemic heart disease. Large

values of γ1 indicate a strong tapering of the lag coefficients towards zero while large values

of γ2 indicate a very smooth distributed lag function. The data for both outcomes prefer

a large value for γ1, indicating strong variance tapering, but for ischemic heart disease the

marginal distribution for γ2 is shifted somewhat higher than that of COPDAE.
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The county-specific Bayesian distributed lag functions for COPDAE and ischemic heart

disease are are shown in Figures 6 and 7, respectively. Each figure shows the posterior

mean and pointwise 95% posterior intervals of θc for the largest 25 counties in the study.

For COPDAE, the estimated county-specific distributed lag functions are a mix of shapes

including large immediate effects (Sacramento CA, Broward FL), somewhat smaller delayed

effects (Los Angeles CA, Franklin OH, Pinellas FL), and more moderate effects spread out

over a longer period of time (Bronx NY, Palm Beach FL, Salt Lake UT). Ischemic heart

disease appears to exhibit somewhat less heterogeneity in the shapes of the distributed lag

functions with most of the effects occurring at lags 0–2. In Fairfax VA and Pinellas FL

counties appears to be some evidence of mortality displacement.

Figure 8 shows the posterior mean and 95% posterior intervals of the cumulative effect of

PM2.5 on both outcomes from four different models. For each outcome we plot the estimate

originally reported in the MCAPS study for a single lag model applied to 204 US coun-

ties (Dominici et al., 2006), the estimate obtained from a single lag model applied to the 94

counties used in this study (for the exposure lag we chose lag 0 for COPDAE and lag 2 for

ischemic heart disease, the same lags used in MCAPS), the estimate obtained from using the

two-stage approach, and the estimate obtained from our Bayesian hierarchical distributed

lag model (BHDLM).

The estimates of the cumulative effects for COPDAE and ischemic heart disease are

remarkably similar across models. The MCAPS point estimate was reported as 0.91 with

a 95% posterior interval of (0.18, 1.64) and posterior mean from the BHDLM model was

0.84 (−2.06, 3.78). One can see from the difference in posterior intervals from the “MCAPS”

and the “Single lag” estimates that the loss of 110 counties in this study only results in

a small loss of efficiency in the estimate of the single lag effect. In the distributed lag

model, the increased number of parameters introduced (even in the 3-parameter “Step DLM”

model) results in a substantial increase in the variance of the cumulative effect estimate. For
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the ischemic heart disease outcome, the estimate from the BHDLM is 0.66 (−1.55, 2.89)

compared to the MCAPS estimate of 0.44 (0.02, 0.86). This higher effect was also captured

by the step-function distributed lag model but the estimate from the BHDLM appears to

exhibit less variance in its estimate.

One concern raised by applying our Bayesian distributed lag model is the possibility that

placing constraints on the parameters corresponding to longer lags would somehow introduce

bias in estimates of parameters corresponding to shorter lags. To investigate this concern

we estimated the national average distributed lag function using both our BHDLM and a

completely unconstrained two-stage model and plotted both estimates in Figure 9. One can

see that for ischemic heart disease, the estimates at lags 0–3 for both models are very similar,

after which the BHDLM estimates are all close to zero. For COPDAE the estimates for lags

0–2 are relatively close; after lag 3 the BHDLM estimates become much more smooth than

the unconstrained estimates. For both outcomes it appears that imposing constraints on the

longer lags does not substantially bias the estimates at shorter lags in the sense that estimates

at shorter lags are similar to those that would have been obtained using an unconstrained

model.

4.1 Regional variation

One significant advantage of our analysis is that it provides the opportunity to examine

variation in the county-specific distributed lag functions across locations and regions. In

particular, regional variation in the composition of PM2.5 may correspond with variation in

the estimated distributed lag functions if the concentrations of most toxic constituents of

the PM mixture vary across locations (Bell et al., 2007; Lippmann et al., 2006). Variation

in the estimated relative risks may also indicate regional variation in the susceptibilities in

the underlying populations to exposure to PM2.5.

We compared the estimated county-specific distributed lag functions for 53 counties in
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the Northern region of the US (defined as having latitude > 36.5) with 41 counties in the

Southern region of the US to see if there were any systematic differences. Given the N

posterior samples of the county-specific distributed lag functions θc, we calculated regional

averages

θ
(i)
R =

1

nR

∑
c∈IR

θ(i)
c

for each of the posterior samples i, where R indicates the region (North or South) and IR

is the index set for the counties in region R. The posterior mean θ̄R was then computed by

averaging θ
(i)
R over the posterior samples.

Figure 10 shows θ̄north−θ̄south, the difference between the Northern and Southern regional

average distributed lag functions. The negative differences in Figure 10(a) indicate a stronger

association between PM2.5 and COPDAE in the South than in the North. These differences

appear to extend to approximately a 3–4 day lag after which the difference quickly disappears.

For the ischemic heart disease outcome the reverse appears to be true, with Figure 10(b)

indicating that counties in the North experience a stronger association between PM2.5 and

admissions for ischemic heart disease.

Examination of the cumulative effects for the North and South show a clear regional

difference. For each posterior sample we calculated ξ
(i)
R =

∑L−1
`=0 θ

(i)
R,` and plotted the joint

posterior distribution of the North and South cumulative effects in Figure 11. For COPDAE,

the bulk of the posterior mass is above the dashed line indicating the relation y = x, providing

evidence of a larger cumulative effect of PM2.5 in the South, with a posterior probability

P(ξsouth > ξnorth | data) = 0.93. For ischemic heart disease, the posterior mass is concentrated

below the line y = x, indicating a larger effect in the North with P(ξnorth > ξsouth | data) =

0.95.

As shown in Figure 1, the majority of the Northern and Southern counties are in the

eastern portion of the country and hence the North/South comparison is largely a comparison

of counties in the northeast and industrial midwest with counties in the southeast and south-
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central regions. The major constituents of PM pollution in the northeastern region include

sulfate and ammonium, which originate largely from power generation sources, while PM

in the southeastern region generally contains more silicon, an element related to crustal

material and mechanical processes (Bell et al., 2007). Also, the change in latitude from the

North to the South covers a wide range of temperatures and climates which may alter the

susceptibilities of populations to air pollution exposure.

5 Discussion

We have proposed a Bayesian hierarchical distributed lag model (BHDLM) for combining

constrained distributed lag functions and for estimating the distributed lag between day-to-

day changes in ambient air pollution levels and day-to-day changes in hospitalization rates.

The model uses a prior distribution that constrains the time course of the short-term health

effects of air pollution and combines information from multiple locations. We have applied

the model to a national air pollution and hospitalization database for United States residents

enrolled in Medicare, examining the relationship between PM2.5 exposure and hospitalization

for ischemic heart disease and COPD with acute exacerbation.

The model that we have proposed allows us to summarize information contained in

national databases and quantify how the risk of hospitalization due to air pollution exposure

changes over short periods of time after an air pollution episode. Our model builds on

the work of Welty et al. (2005) and Zanobetti et al. (2000) by smoothing distributed lag

function estimates across lags and by providing a method for combining these functions across

locations where we assume more variability for parameters corresponding to shorter lags and

less variability for parameters corresponding to longer lags. In addition, the hierarchical

model lets us examine the range of shapes in the county-specific distributed lag functions, as

shown in Figures 6 and 7. We have established that our methodology is related to penalized

spline modeling with a special type of penalty and this connection, along with evidence from
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simulation studies conducted by Welty et al. (2005), creates a basis for understanding the

statistical properties of our approach.

The national average distributed lag functions for COPDAE and ischemic heart disease

indicate different time courses for the effect of PM2.5 on hospitalizations for these disease cat-

egories. The effect of PM2.5 on COPDAE admissions appears to be spread over a longer time

period than the effect on ischemic heart disease admissions. The nature and characteristics

of acute exacerbations of COPD are known to be heterogeneous across people (Sapey and

Stockley, 2006) and exacerbations are often a cause of hospitalization after initial treatment

outside the hospital has failed (Seemungal et al., 2000). We found little evidence that the

effect of an increase in PM2.5 levels on hospitalizations for ischemic heart disease extends

beyond 2 days. In addition, the shape of the distributed lag function for ischemic heart dis-

ease suggests some weak evidence of mortality displacement. Cardiovascular effects of PM

are thought to be generally related to neurogenic and inflammatory processes (Pope et al.,

2003). The results from our analysis suggest that for ischemic heart disease in particular,

the biological mechanism involved has a relatively short time course, with the bulk of people

admitted to the hospital within two days of an increase in PM2.5 levels.

When estimating the cumulative effect of PM2.5 on either health outcome, there ap-

pears to be a bias-variance trade off involved in choosing between applying a single lag or

distributed lag model. Even with the national databases used here, estimation of the dis-

tributed lag function resulted in a substantial increase in the variance of the cumulative

effect compared to risk estimates from single lag models. While one might consider the sin-

gle lag model’s restriction to fixed lag effects a limitation (and potentially a source of bias),

one must also consider the dramatic increase in precision that the model provides. If the

cumulative short-term effect of an increase in air pollution levels is the sole parameter of

interest, the benefits of the distributed lag model’s greater flexibility may not outweigh the

cost of incurring much greater variability in the resulting estimate.
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We should be careful not to overinterpret the findings of our analysis. Even with the

constraints imposed by the prior, the uncertainty of the estimates in Figure 4 is still large,

particularly for coefficients corresponding to early lags. In addition, Medicare data are

collected for administrative purposes and disease diagnoses are known to be subject to some

missclassification. However, such missclassification would only bias our results if the daily

pattern of diagnosis and coding varied in a way that was correlated with PM2.5 levels.

One limitation of our application of the BHDLM is the reliance on the Poisson distribution

in the county-specific model in (2). While previous time series studies of air pollution and

health have suggested that there is relatively little overdispersion in the residuals, a more

flexible alternative might be to use a generalized Poisson model as in Fuentes et al. (2006).

Another point of discussion concerns the prior distributions used in this application. We

have placed uniform hyperprior distributions on η and γ which place equal prior weight

on models which may not be equally plausible. Nevertheless, the posterior distributions in

Figure 5 suggest that there is some information in the data to choose between these models.

Also, the specific use of an exponential decay in the variance of the lag coefficients does affect

the resulting shape of the estimated distributed lag function somewhat. We have explored

alternative decay functions such as a half-Normal and power law and our analyses indicate

that these alternatives do not affect the substantive conclusions of the investigation.

Our model did not include any interactions between levels of PM2.5 on different days

or with averages of PM2.5 levels over several days. It is plausible that such interactions

exist and if so, estimates from our model would likely be biased. In our initial exploratory

analyses models containing simple interactions were fit and we generally found little evidence

to support their inclusion. Nevertheless, the development of a more structured approach to

the estimation of interactions as well as the development of appropriate prior distributions

is an important direction for future work.

The principal benefit of the distributed lag model is its ability to estimate the shape of
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the distributed lag function relating increases in air pollution to health outcomes in short

periods of time after an air pollution episode. Our model provides a useful parametrization

that can easily incorporate prior knowledge and be applied to large multi-site databases.

Over time, as more data become available from national databases, our model could be

applied to track the health effects of particulate matter. While the results of our analysis are

interesting and suggest some possible hypotheses, more focused studies (perhaps involving

compositional data on PM2.5 or susceptible sub-populations) will have to be conducted to

obtain more precise information about the biological mechanisms involved.
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Figure 1: Locations of 94 U.S. counties which have daily data for particulate matter < 2.5 µm
in diameter for 1999–2002.
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Figure 2: Boxplots of daily hospitalization rates (per 10,000 people) for COPDAE and
ischemic heart disease for 94 U.S. counties, 1999–2002.
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Figure 3: Boxplots of the daily log10 PM2.5 values for 94 U.S. counties, 1999–2002.
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Figure 4: National average distributed lag functions for (a) COPD with acute exacerbation
and (b) ischemic heart disease from the Bayesian hierarchical distributed lag model applied to
94 U.S. counties, 1999–2002. Each plot shows the posterior mean (white line) and pointwise
95% posterior intervals (shaded gray region) for each lag coefficient.
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intervals) showing the effect of PM2.5 on hospitalization for COPD with acute exacerbation.
Only the largest 25 counties (by population) are shown here, with the largest county (Los
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intervals) showing the effect of PM2.5 on hospitalization for ischemic heart disease. Only the
largest 25 counties (by population) are shown here, with the largest county (Los Angeles,
CA) in the top left corner.
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Figure 8: Estimates and 95% posterior intervals for the cumulative effect of PM2.5 (a) COPD
with acute exacerbation and (b) ischemic heart disease. Estimates for “MCAPS” and “Single
lag (94 counties)” come from single lag models applied to the original MCAPS study and to
the 94 counties used in this study, respectively (lag 0 for COPDAE and lag 2 for ischemic
heart disease); the “Step DLM” estimates come from a 14-day distributed lag model using
a step function (county-specific estimates are pooled using the two-stage approach); the
“BHDLM” estimates come from applying the Bayesian hierarchical distributed lag model
using a 14-day distributed lag.
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Figure 9: Comparison of distributed lag functions estimated by the BHDLM (white) and by
the two-stage approach using the estimated coefficients obtained from unconstrained county-
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B Details of Gibbs Sampler

We implement a hybrid Gibbs sampler to sample from the posterior distributions of η, γ,

θc (c = 1, . . . , n), and µ. Briefly, the full conditionals for η, γ, and θc for c = 1, . . . , n are

sampled using a Metropolis-Hastings rejection step and the full conditional for µ is sampled

in closed form. All calculations were done using R version 2.4.1 (R Development Core Team,

2006). We describe the procedures for sampling from the full conditional distributions below.

1. Sampling θc. In order to sample from the full conditional for θc we implement a

Metropolis-Hastings rejection scheme. Sampling from the full conditional for θc re-

quires evaluting the likelihood for county c with both θc and the nuisance parameters

in βc. Rather than assume a prior distribution for the many nuisance parameters in

βc, we evaluate the profile likelihood Lp(θc) = maxβc
Lf (θc, βc), where for each given

value of θc, we maximize the full Poisson likelihood Lf with respect to βc, holding θc

fixed. In the Metropolis-Hastings step taken to sample from the full conditional for θc,

we use the profile likelihood for θc to calculate the acceptance ratio for the proposal.

The proposal distribution for sampling from the full conditional of θc is constructed

by first estimating θc in a county-specific log-linear Poisson regression model to obtain

θ̂c and its estimated covariance matrix Σ̂c. If we assume as in the two-stage approach

that θ̂c | θc ∼ N (θc, Σ̂c), we can compute the conditional distribution of θc given θ̂c

and the current values of µ and γ and use this conditional distribution as a proposal

distribution, i.e.

θ∗
c | θ̂c, µ, γ ∼ N (µ + B1(θ̂c − µ), σ2

γ(I −B1)Ω(γ)) (9)

where B1 = σ2
γΩ(γ) [Σ̂c + σ2

γΩ(γ)]−1. Given the proposal distribution in (9), the full

conditional for θc is then proportional to

p(θc | ·) ∝ Lp(θc)ϕ(θc | µ, σ2
ηΩ(η))
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where ϕ(θc | µ, σ2
ηΩ(η)) is the multivariate normal density with mean µ and covariance

matrix σ2
ηΩ(η) and Lp(θc) is the profile likelihood for θc.

2. Sampling µ. The full conditional for µ is proportional to

p(µ | ·) ∝

{
n∏

c=1

ϕ(θc | µ, σ2
ηΩ(η))

}
ϕ(µ | 0, σ2

γΩ(γ))

= N (B2 θ̄, (I −B2) σ2
γΩ(γ))

where B2 = σ2
γΩ(γ) [σ2

γΩ(γ) + σ2
ηΩ(η)/n]−1 and θ̄ = 1

n

∑
θc.

3. Sampling η and γ. We put uniform priors on both η = (η1, η2) and γ = (γ1, γ2) and

hence the full conditionals for η and γ are

p(η | ·) ∝
n∏

c=1

ϕ(θc | µ, σ2
ηΩ(η))

and

p(γ | ·) ∝ ϕ(µ | 0, σ2
γΩ(γ)).

In order to preserve numerical stability, we placed upper and lower bounds on each

parameter so that both η1 and η2 were restricted to be in the range [0.2, 0.8] while

γ1 and γ2 were restricted to be in the range [0.05, 0.75]. These bounds were chosen

based on previous work and some exploratory analysis. Upper bounds that were much

larger than these values often produced covariance matrices that were not invertible.

We subsequently used uniform proposal distributions (restricted to the appropriate

ranges) and a Metropolis-Hastings rejection step to sample from the full conditionals

of η and γ.

The Gibbs samplers for each hospitalization outcome were each run for 40,000 iterations

with 10,000 iterations discarded as burn-in. Acceptance percentages for the Metropolis-

Hastings steps were tuned to be between 10–30%. Convergence of the chains was diagnosed

by estimating Monte Carlo standard errors of the parameters using the method of batch

means described in Jones et al. (2006).
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