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Summary

Distributed lag models relate lagged covariates to a response and are a popular statistical model used in

a wide variety of disciplines to analyze exposure-response data. However, classical distributed lag models

do not account for possible interactions between lagged predictors. In the presence of interactions between

lagged covariates, the total e↵ect of a change on the response is not merely a sum of lagged e↵ects as is

typically assumed. This article proposes a new class of models, called high degree distributed lag models,

that extend basic distributed lag models to incorporate hypothesized interactions between lagged predictors.

The modeling strategy utilizes Gaussian processes to counterbalance predictor collinearity and as a dimen-

sion reduction tool. To choose the degree and maximum lags used within the models, a computationally

manageable model comparison method is proposed based on maximum a posteriori estimators. The models

and methods are illustrated via simulation and application to investigating the e↵ect of heat exposure on

mortality in Los Angeles and New York.
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1. Introduction

Given projected increases in global temperatures as a result of climate change (IPCC, 2007), investigating the

potential impact of such increases on public health is receiving escalated attention. Numerous studies have

linked high temperatures to excess mortality (O’Neill and others , 2003; Kovats and Hajat, 2008; Anderson

and Bell, 2009) and more recently such impacts have been projected into the future (Li and others , 2011;

Peng and others, 2011). When investigating the e↵ect of heat on mortality (or, likewise, morbidity), it has

been hypothesized that the e↵ects of heat may extend over multiple days and that consecutive days of

heat may be more harmful than individual hot days. The distributed lag (DL) model is a common tool

to investigate this hypothesis and various studies have used it to relate high heat exposure over long time

periods to spikes in mortality or hospitalizations (Hajat and others, 2005; Anderson and Bell, 2009).

Basic distributed lag models relate a response at time t, say Yt, to temporally lagged covariatesXt, Xt´1, . . .

via,

gpEpYtqq “ ↵ ` z

1
t� `

Mÿ

`“0

✓`Xt´` (1.1)

where gp¨q is an appropriate link function and z

1
t is a vector of confounding covariates with associated

coe�cients �. In nearly all cases, Yt is follows a distribution in the exponential family but this is not

necessary. The basic DL model in (1.1), however, can not directly examine whether the e↵ect of multiple

days of heat go beyond an additive e↵ect. For example, one social hypothesis is that individuals adjust their

behavior for avoiding excessive heat on day t based on the heat on day t ´ 1 (e.g. if it was raining on day

t ´ 1, resulting in a cool day, then more people may head outdoors on day t than had day t ´ 1 been sunny

(hot), suggesting an interaction between lagged e↵ects). Under this hypothesis, the e↵ect of two consecutive

days of high heat on public health may not simply be the sum of the e↵ect of high heat on day t and the

e↵ect of high heat on day t ´ 1 due to the adjustment in behavior. Motivated by the epidemiological need

to investigate hypotheses about lagged interactions in heat-mortality studies, this article proposes a class
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of models, called high degree DL models (HDDLMs), that extend the basic DL model to incorporate such

hypothesized lagged interactions up to a given order �.

Extending DL models to account for high degree interactions presents a number of interesting statistical

modeling challenges. For example, if tXt´`uM`“0 exhibit strong autocorrelation (high collinearity), then the

variance of the estimates of t✓`uM`“0 in (1.1) are inflated, rendering it di�cult to detect significance. This

collinearity issue is well documented with various solutions having been put forward such as averaging over

temporal windows (Ca↵o and others, 2011), constraining the coe�cients to follow a function (Schwartz,

2000) or building strong prior contraints (Welty and others, 2009). For HDDLMs, not only are first order

predictors tXt´`u included but also higher order interactions which can magnify collinearity problems. To

counter-balance collinearity, this article relies on and extends the Gaussian process (GP) prior of Heaton

and Peng (2012) to construct a predictive process prior to enforce a priori correlation among higher order

interaction coe�cients. This predictive process prior also restricts the dimension of the parameter space for

problems that consider a high degree of interactions.

As with all DL models, choosing how many temporal lags to include is an important aspect. The majority

of previous approaches simply fix the lag length based on a priori knowledge and fit the associated model.

An exception is Heaton and Peng (2012) who treat the maximum lag as an additional parameter and

estimate it by sampling from its posterior distribution but note the computational complexity in doing

so. As a computationally e�cient alternative, this article proposes a method for choosing maximum lags

using maximum a posteriori (MAP) estimators within information criterions. Because prior constraints are

essential for handling collinearity, using MAP estimators (rather than MLEs) within information criterion

properly incorporates necessary prior constraints into classical model comparison criterion.

To summarize, the primary contributions of this article are to (i) extend basic DL models to include inter-

actions between lagged predictors, (ii) propose a prior structure that, not only deals with strong collinearity

in the predictors, but also o↵ers dimension reduction, (iii) propose a computationally e�cient approach

to estimating maximum lags and (iv) illustrate the usefulness of the proposed methods for investigating
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heat e↵ects on mortality. Section 2 describes the modeling strategy for higher degree DL models. Section

3 describes techniques for parameter estimation. Section 4 evaluates the proposed modeling strategy using

simulation. Section 5 illustrates the methods by quantifying the risk of high temperatures on mortality and

Section 6 concludes and outlines further extensions.

2. Methodology

2.1 Model Definition

Let Yt denote a response variable of interest observed at time t P Z and let Xt denote a covariate which is

(potentially) associated with Yt. Throughout this article, Yt is related to tXt´` : ` “ 0, 1, . . . u via a high

degree distributed lag model of degree � P t1, 2, . . . u (denoted DL�) which is defined as,

gpEpYtqq “ ↵ ` z

1
t� `

M1ÿ

`“0

✓`Xt´` `
M2ÿ

`1“0

M2ÿ

`2“`1

✓`1`2Xt´`1Xt´`2 ` ¨ ¨ ¨

`
M�ÿ

`1“0

¨ ¨ ¨
M�ÿ

`�“`p�´1q

✓`1¨¨¨`�Xt´`1 ¨ ¨ ¨Xt´`� (2.2)

where gp¨q is a link function (e.g. identity, log, logit, etc.), ↵ is an intercept, zt is a vector of confounding

covariates with associated coe�cients �, ✓p1q “ p✓0, . . . , ✓M1q1 is the vector of first degree (linear) lagged

e↵ects, ✓p2q “ p✓00, ✓01, . . . , ✓M2M2q1 is the vector of second degree (quadratic) lagged e↵ects, and (in an

obvious extension of notation) ✓piq is the vector of ith-degree lagged e↵ects for i “ 1, . . . , �. As with typical

regression models, DL� models will rarely be considered for � ° 3 because of the large increase in the number

of parameters for such high degree DL models. However, because the HDDLM framework presented below

extends to any degree � P t1, 2, . . . u, general DL� models are considered in this section.

In traditional distributed lag models ✓p1q is termed the “distributed lag function” and quantifies the linear

relationship between Yt and the lagged covariates Xt´`. Due to higher degree terms in (2.2), ✓p1q will be

referred to here as the “first degree distributed lag surface.” Likewise, ✓piq will be referred to as the ith degree

distributed lag surface and quantifies the e↵ect of ith degree polynomials and ith degree DL interactions on

Yt. That is, the first degree DL surface ✓p1q represents main e↵ects and ✓piq for i ° 1 represent interaction
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e↵ects. For example, ✓01 represents the added e↵ect on Yt due to an interaction between Xt and Xt´1. We

note that when � ° 1, the interpretation of the coe�cients t✓piqu becomes muddled due to the presence of

interactions. Because of this, rather than attempting to interpret specific coe�cients, interpretation for DL�

models should focus on the change in Yt due to a change in the X’s. For example, by what percent does

the expected value of Yt change if Xt changes by 1? This method of interpretation captures the cumulative

e↵ect (main e↵ect and interactions) of a change in the X’s on Yt. See the example in Section 5 for further

explanation and illustration.

The model in Equation (2.2) is able to capture non-linear relationships between Y and X. For example,

assuming � “ 3, the most simplistic form for (2.2) is to let Mi “ 0 for i “ 1, . . . , � leading to the (non-linear

in Xt yet linear in the coe�cients) model gpEpYtqq “ ↵`z

1
t�`✓0Xt`✓00X2

t `✓000X3
t . The class of non-linear

functions captured by DL� models are constrained to be polynomials. The distributed lag non-linear models

of Gasparrini and others (2010) are able to capture more general non-linear lagged e↵ects but they do not

directly incorporate interactions between lagged e↵ects as is done here.

When considering a modeling strategy for the coe�cients in (2.2) above, several issues immediately come

to the forefront. First, the covariates in (2.2) may exhibit collinearity which result in inflated variances

(standard errors) of the parameter estimates. Second, the dimensionality of the parameter space grows

quickly with Mi. For example, if � “ 3 and Mi “ 5 for i “ 1, . . . , 3 (a moderately small lag structure)

then P “ 117 coe�cients would need to be estimated. For a more realistic lag structure of Mi “ 14 for

i “ 1, . . . , 3, P “ 966. And, third, any prior knowledge regarding the distributed lag surfaces ✓p1q, . . . ,✓p�q is

meager.

To develop a modeling strategy for the DL surfaces ✓piq that deals with these issues, note that ✓piq can be

viewed as a surface over the set of points Li “ tp`1, . . . , `iq1 : `1 § `2 § ¨ ¨ ¨ § `i § Miu. The indices of each

element of ✓piq indicate the “location” of a point on a surface over Li. In a slight change of notation from

above, let ✓piq “ t✓`ij : j “ 1, . . . , dimp✓piqqu and `ij P Li for all j such that `ij indicates the location of ✓ on

Li. For example, if ✓`3j “ ✓012 then `ij “ p0, 1, 2q P L3. From this viewpoint, modeling ✓piq is equivalent to
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modeling a nonlinear surface on Li. Gaussian processes (GPs) are a well suited tool for modeling non-linear

surfaces (see Heaton and Peng, 2012). The appeal of a GP prior specification for ✓piq is the ability to flexibly

fit a wide variety of surfaces while accounting for collinearity through the use of a priori correlation between

the coe�cients thereby enforcing smoothness in the DL surfaces and borrowing of information across lags

to reduce standard errors. However, for the DL� models considered here, GP priors do not directly relieve

the issue related to dimensionality of the parameter space in (2.2). In this regard, we propose the Gaussian

predictive process of Banerjee and others (2008) as an elegant solution.

Consider a knot vector ✓‹
piq “ t✓`‹

ij
u such that dimp✓‹

piqq § dimp✓piqq where `

‹
ij denotes the lag “location”

of the jth knot on Li. Let ✓

‹
piq follow a zero-mean Gaussian process with covariance function �2

iM⌫ip¨; iq

where �2
i is the common variance andM⌫p¨; q is the isotropic Matern correlation function with smoothness ⌫

and decay parameter  . In other words, let ✓‹
piq „ N p0,Varp✓‹

piqqq where 0 is the zero vector and Varp✓‹
piqq “

t�2
iM⌫ip}`‹

ij ´ `

‹
ik}; iquj,k is the variance matrix. The model for ✓piq is given by the predictive process

(Banerjee and others, 2008) interpolator,

✓piq “ Covp✓piq,✓
‹
piqqVar´1

´
✓

‹
piq

¯
✓

‹
piq (2.3)

where Covp✓piq,✓‹
piqq “ t�2

iM⌫ip}`ij ´ `

‹
ik}; iq : j “ 1, . . . , dimp✓piqq; k “ 1, . . . , dimp✓‹

piqqu is the covariance

of ✓piq and ✓

‹
piq under the GP prior. As a brief aside, we note that other correlation functions could be used

here but the Matérn class is the most common due to its flexibility.

Importantly, notice that the dimension of ✓piq in (2.3) is now dimp✓‹
piqq because the knot vector ✓

‹
piq

completely determines the DL surface. Intuitively, the predictive process in (2.3) models ✓piq by a linear

basis function expansion where the basis functions are given in the matrix Covp✓piq,✓‹
piqqVar´1p✓‹

piqq and

the associated coe�cients are represented by the knot vector ✓

‹
piq. This dimension reduction achieved by a

basis function expansion is useful in DL modeling for a few reasons. First, and most obviously, the number

of parameters required to estimate the ith degree DL surface is reduced from dimp✓piqq to dimp✓‹
piqq. And,

second, in the presence of high collinearity among the Xt, the parameter estimates are correlated so as to

borrow information across lags to stabilize estimation and reduce standard errors.
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2.2 Constraining the DL Surfaces

Distributed lag surfaces are often subject to constraints. For example, when considering the first degree

distributed lag surface ✓p1q “ p✓0, . . . , ✓M1q1, a common assumption is for ✓j Ñ 0 smoothly as j Ñ M1.

This is due to the physical intuition that Xt´` for ` " 0 should have a smaller e↵ect on Yt than Xt´` for

` « 0. By the same reasoning, the higher order distributed lag surfaces should decrease to zero as the lag

time increases. That is, ✓`ij Ñ 0 as maxp`ijq Ñ Mi where maxp`ijq is the maximum element of `ij (i.e.

maxp`ijq “ maxt`ij1, . . . , `ijiu).

To build the aforementioned constraints on DL surfaces into the model specification, consider introducing

a set of lag times Li ! Mi for i “ 1, . . . , � such that ✓`ij “ 0 if maxp`ijq ° Li. Write ✓piq “ p✓1
pi;1q,✓

1
pi;2qq1

where ✓pi;1q “ t✓`ij : maxp`ijq § Liu and ✓pi;2q “ t✓`ij : maxp`i;jq ° Liu. Conditioning the model for ✓piq

on Li reduces to finding the conditional distribution r✓pi;1q | ✓pi;2q “ 0s. Using properties of the multivariate

Gaussian distribution, the distribution r✓pi;1q | ✓pi;2q “ 0s is Gaussian with mean 0 and Varp✓pi;1q | ✓pi;2q “

0q “ �2
i pR11 ´ R12R

´1
22 R

1
12q where R11 “ Varp✓pi;1qq, R22 “ Varp✓pi;2qq and R12 “ Covp✓pi;1q,✓pi;2qq. Via

this conditioning, the coe�cients at higher lags are constrained (via a small prior variance) to be closer to

zero than those at smaller lags. Further detail on this constraint is provided in Heaton and Peng (2012) and

in the online supplementary materials.

Even though conditioning on Li reduces the dimension of the ith degree DL surface from dimp✓piqq to

dimp✓pi;1qq, dimension reduction for ✓pi;1q is still desired and may still be necessary to fit the DL� model. As

such, let ✓pi;1q be given by the predictive process interpolator after having conditioned on Li; that is, let

✓pi;1q “ Cov
´
✓pi;1q,✓

‹
piq | ✓pi;2q “ 0

¯
Var´1

´
✓

‹
piq | ✓pi;2q “ 0

¯
✓

‹
piq. (2.4)

Calculating the predictive process basis functions used in (2.4) is done by simple a three step process: (i) find

the joint covariance matrix Varpp✓1
pi;1q,✓

1‹
piq,✓

1
pi;2qq1q using the Gaussian process prior, (ii) find Varp✓pi;1q,✓‹

piq |

✓pi;2q “ 0q by properties of the multivariate Gaussian distribution and (iii) calculate the basis function

matrix Covp✓pi;1q,✓‹
piq | ✓pi;2q “ 0qVar´1p✓‹

piq | ✓pi;2q “ 0q. Notice also that by conditioning on ✓pi;2q “ 0, the
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predictive process knot locations t`‹
iku need not be distributed over Li “ tp`1, . . . , `iq1 : `1 § `2 § ¨ ¨ ¨ § `i §

Miu. Rather, the knot locations need only be distributed over the subset of Li given by tp`1, . . . , `iq1 : `1 §

`2 § ¨ ¨ ¨ § `i § Liu.

To complete the model specification, prior distributions are required for the intercept ↵, the variance

parameters t�2
i u and the parameters of the Matérn correlation functions t⌫i, iu. For ↵, assume a vague

prior distribution where ↵ „ N p0, s2↵q where s2↵ is fixed at a “large” value. We let �2
i „ IGpa�, b�q where

IGpa, bq denotes the inverse gamma distribution with shape parameter a and scale b (e.g. if X „ IGpa, bq

then EpXq “ b{pa´1q for a ° 1). For the studies in Section 4 and 5 below, a� “ 2, b� “ 1 and s2↵ “ 1002. The

parameter ⌫i controls the smoothness of the parameter surface ✓piq. Estimating this smoothness parameter

is a notoriously di�cult problem even for observed spatial surfaces (Gneiting and others, 2012); hence, we

fix ⌫i “ 3 for all i which allows for the resulting DL surfaces to each be twice di↵erentiable. In early stages

of this work, we tried to estimate t iu but found that t iu was not identifiable (the prior and posterior

were, for practical purposes, equal). This finding shouldn’t be too surprising given work by Zhang (2004)

who showed that for the isotropic Matérn class of covariance functions, weakly consistent estimators for �2
i

and  i do not exist. The implication of this is that t iu can be fixed a priori without sacrificing flexibility

so long as �2
i is assigned a vague prior (see also Du and others, 2009; Zhang and Wang, 2010). Hence, t iu

is treated as fixed a priori and a discussion of the choice of t iu is deferred to Section 3.3.

3. Estimation

3.1 Estimating the DL Surfaces

Let Y “ pY1, . . . , YT q1 denote a vector of response variables measured at T time periods. Assume, for the

time being, that the set of lag times tLi † Miu�i“1 is known. Let X denote the T ˆ ∞
i dimp✓pi;1qq matrix of

lagged explanatory variables and their interactions according to model (2.2). For example, the tth row of X



Higher Degree Distributed Lag Models 9

would be pXt, . . . , Xt´L1 , X
2
t , XtXt´1, . . . , X�

t´L�
q. From (2.2), the DL� model for Y is given by,

g pEpY qq “ ↵1T ` Z� ` X✓ (3.5)

where 1T is a length T vector of ones,Z is the design matrix of confounding variables and ✓ “ p✓1
p1;1q, . . . ,✓

1
p�;1qq1

is the concatenated vector of distributed lag surfaces. By the predictive process specification for ✓ in (2.4),

✓ “ B✓

‹ where B is block diagonal with ith block Covp✓pi;1q,✓‹
piq | ✓pi;2q “ 0qVar´1p✓‹

piq | ✓pi;2q “ 0q and ✓

‹

is the concatenated vector of predictive process coe�cients. Inserting ✓ “ B✓

‹ into (3.5) leads to,

gpEpY qq “ ↵1T ` Z� ` D✓

‹ (3.6)

where D is the T ˆ ∞
i dimp✓‹

piqq design matrix for the DL� model. For brevity, let P “ ∞
i dimp✓‹

piqq be

the total number of predictive process knots used to define the distributed lag surfaces such that D has

dimension T ˆ P .

Conditional on the set of maximum lags tLiu, a DL� model contains P ` � ` 1 parameters given by

✓

‹, t�2
i u�i“1, and the common intercept ↵. Given that the DL� model in (3.6) is a generalized linear model,

inference for p↵,✓‹, t�2
i uq can be done in a straight forward fashion from a frequentist or Bayesian viewpoint.

From the frequentist view, the maximum likelihood estimate ✓̂‹ for ✓‹ is subject to the regularization criteria

imposed by the priors ✓‹
piq „ N p0,Varp✓‹

piq | ✓pi;2q “ 0qq. From the Bayesian view, draws of p↵,✓‹, t�2
i uq are

obtained from the posterior using well-established Markov chain Monte Carlo (MCMC) techniques (see, e.g.,

Gamerman and Lopes, 2006).

3.2 Estimating the Maximum Lags

Traditionally, Li is fixed a priori (see Welty and Zeger, 2005; Welty and others, 2009; Gasparrini and others,

2010). This approach may be e↵ective for selecting L1; however, little information, if any, is available for

the maximum lag of higher order DL surfaces. Hence, selecting reasonable values for Li where i ° 1 is more

di�cult. In order to obtain a balance between estimating tLiu (which is computationally burdensome) and

fixing tLiu (which may be inaccurate based on a lack of a priori information), this article proposes the
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following method for estimating tLiu based on maximum a posteriori (MAP) estimators. Let,

p↵̂tLiu, ✓̂
‹
tLiu, t�̂2

i;tLiuuq “ max
p↵,✓‹,t�2

i uq
LH `

↵,✓‹, t�2
i u | tLiu,Y ,X

˘
r↵s

“
✓

‹ | t�2
i u

‰ �π

i“1

“
�2
i

‰
(3.7)

be the MAP estimator for p↵,✓‹, t�2
i uq conditional on tLiu (hence, each is a function tLiu), where r¨s denotes

a prior density function and LHp¨q denotes the likelihood function. For the studies in Sections 4 and 5 below,

let pL1, . . . , L�q “ pL̂1, . . . , L̂�q where,

pL̂1, . . . , L̂�q “ min
pL1,...,L�q

AICp↵̂tLiu, ✓̂
‹
tLiu, t�̂2

i;tLiuuq (3.8)

such that pL̂1, . . . , L̂�q are the values for tLiu that minimize the Akaike information criterion (AIC) evaluated

at the MAP estimators.

By using MAP estimators, the prior constraints on each parameter (particularly the prior constraints

for ✓

‹) are accounted for in the minimization done in (3.8). Alternatively, other criterions such as BIC

could be substituted into (3.8) but the important point is to evaluate the likelihood at the MAP estimates

p↵̂tLiu, ✓̂‹
tLiu, t�̂2

i;tLiuuq so that the prior constraints are appropriately accounted for.

3.3 Decay Parameter and Knot Selection

Because the primary function of inducing a priori correlation into DL� models is to control for collinearity

by enforcing smoothness in the DL surface, the choice of  i should be based on the amount of collinearity

present in the X 1s. Let Xpiq be the columns of X associated with the ith degree DL surface ✓pi;1q. From

the model setup in Section 3.1, each column of Xpiq is associated with a lag location given by `ij where

j “ 1, . . . , dimp✓pi;1qq. Hence, the empirical correlations between each column of Xpiq coupled with the

distances }`ij1 ´ `ij2} for all j1 ‰ j2 define an empirical variogram. The approach here is to choose  i based

on a fit to this empirical variogram. In this way, the a priori correlation for ✓pi;1q is tied to the correlation in

theX 1s. That is, if theX 1s display a high degree of correlation then ✓pi;1q will have high a priori correlation to

counter-balance the collinearity. While this is an intuitive default specification for choosing t iu, theoretical

and empirical studies by Zhang (2004), Du and others (2009) and Zhang and Wang (2010) indicate that
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fixing t iu in this manner will not sacrifice the flexibility of the GP prior to fit a given surface even if fixed

at the “wrong” values. We do note, however, choosing  i based on the correlation in the X’s is not always

appropriate. That is, there may be situations where the autocorrelation in the X’s is small yet smoothing

the coe�cients is still desired.

An important issue related to DL� models is choosing the knots t`‹
ijui,j to specify the predictive process.

Poor location of knots will lead to more error in the predictive process approximation of the parent process.

For this reason, the knot locations t`‹
ijuj should be well dispersed over tp`1, . . . , `iq1 : `1 § `2 § ¨ ¨ ¨ § `i § Liu

in order to learn about the ith DL surface across this set. The strategy used here is to first select a surface-

specific reduction factor ri P r0, 1q that reduces the dimension of ✓piq by 100 ˆ ri%. Values of ri near 0

will result in more knot locations (less dimension reduction) and, potentially, less error in recovering the

DL surface but at the cost of computation and degrees of freedom. In contrast, values of ri near 1 will

have fewer knots (more dimension reduction) yet more error in estimating the DL surface. Given a choice

of ri, rdimp✓piqq ˆ p1 ´ riqs knots are chosen (where r¨s denotes the ceiling) using a space filling design over

tp`1, . . . , `iq1 : `1 § `2 § ¨ ¨ ¨ § `i § Liu. By using a space-filling design, we ensure the knot locations are well

dispersed over the original domain. The choice for ri is investigated further via simulation study in Section

4 to arrive at some guidance for choosing ri.

4. Simulation Study

4.1 Simulation Outline

Twenty-five sets of 3rd degree DL coe�cients t✓piqu3i“1 were simulated independently according to (2.4) with

no dimension reduction where pL1, L2, L3q “ p6, 4, 2q, �2
i “ 0.102 for all i and t iu were fixed according

to the methods outlined in Section 3 above. For each of the 25 DL models, 50 (1250 total) data sets of

n “ 915 observations were simulated from a Poisson distribution with mean given by (3.5) using a log link

function. Values for �2
i , ↵ and X were structured after the National Morbidity, Mortality and Air Pollution

(NMMAPS) study for Dallas, TX. Specifically, �2
i “ 0.102 was chosen to align the simulated means within
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the range of observed number of deaths for the “older than 75” age group, ↵ was fixed at the log of the mean

number of deaths in the “older than 75” age group and X was constructed from summer (April-September)

average daily temperatures in Dallas, TX between the years 2001-2005 (183 “summer” days over 5 years

equates to n “ 915 total days). Because each of the DL surfaces were simulated on the same scale (�2
i “ 0.12

for all i), the columns of X were centered and scaled.

Each simulated data set was fit using four di↵erent models for comparison: (A) a DL� model where the

degree � and maximum lags tLiu were treated as unknown and estimated from the data, (B) a DL� model

where � and pL1, L2, L3q are assumed known, (C) a DL1 model where the maximum lag L1 was treated as

unknown and estimated from the data and (D) an unconstrained maximum likelihood approach where � and

pL1, L2, L3q are, again, treated as known. The primary reason for including model (D) is to highlight the

importance of incorporating model constraints when estimating DL� models. For (A), � and pL1, L2, L3q were

estimated by searching over all models of degree less than or equal to 3 and with maximum possible maximum

lags of p7, 5, 3q, respectively (i.e. models with L1 ° 7 or L2 ° 5 or L3 ° 3 were not considered). This equated

to searching over 387 total DL� models (9, 63, and 315 models of degree 1, 2, and 3, respectively) and

choosing the one which minimized AIC evaluated at the MAP estimate. Likewise, for (C), L1 was estimated

by searching over all models where L1 † 8. To investigate the e↵ect of the dimension reduction factor ri

on model fit, (A), (B) and (C) were fit using a common reduction factor of ri “ r P t0, 0.1, 0.2, 0.3, 0.6, 0.9u

where r “ 0 is the ground “truth.” For (A) and (C), the model selection was performed for each value of r.

No dimension reduction was used for (D) as additional assumptions would be required.

4.2 Simulation Results

The four model fits are compared in terms of root mean square error (RMSE) of the posterior mean (or

MLE), coverage (CVG) and width of a 95% credible (confidence) interval. For example, the RMSE for the
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ith DL surface using a dimension reduction factor of r (RMSEir) is calculated as,

RMSEir “ 1

dimp✓piqq

dimp✓piqqÿ

k“1

d∞25
j“1

∞50
s“1p✓jpi,kq ´ ✓̂jsrpi,kqq2
25 ˆ 50

where ✓jpi,kq is the kth parameter of the ith DL surface in the jth simulated model and ✓̂jsrpi,kq is the corre-

sponding posterior mean (or MLE) from the sth data set using a dimension reduction factor of r. Coverage

of a 95% credible (or confidence) interval is calculated by simply looking at the proportion of 95% intervals

which capture the true parameter. Interval width is calculated as the average distance between the upper

and lower 95% interval limits.

Figure 1 displays RMSE, CVG, and width as a function of the dimension reduction factor separated by

the DL surface (i.e. columns 1, 2, and 3 of Figure 1 correspond to results from the first, second, and third

degree DL surface, respectively). The value in the upper right corner corresponds to the results from the

unconstrained maximum likelihood fit (this is constant across r because no dimension reduction tool was

used). Comparing models (A) and (B) to (D), clearly, fitting a constrained DL model improves performance.

Specifically, the RMSE of the three DL surfaces was reduced by an average of 75% , 85% , and 93% under

models (A) and (B) when using dimension reduction factors less than 0.5. Likewise, 95% credible interval

widths for the three DL surfaces in models (A) and (B) were, on average, 71%, 90% and 95% shorter than

the corresponding 95% confidence interval in model (D).

As evidenced by comparing the results from models (A) and (B) to (C), including higher order terms

in the model is beneficial when the corresponding coe�cients are non-zero. That is, the “best” DL1 model

had large RMSE and low CVG for the coe�cients of the first degree DL surface when the true degree of the

underlying model was greater than one.

Comparing the simulation results in Figure 1 between models (A) and (B), notice that estimating the

degree (�) and maximum lags (tLiu), results in more error in recovering the true DL surfaces. This fact is

apparent in that model (A) always had greater RMSE for dimension reduction factors less than 0.5. Greater

error in model (A), however, is expected as more opportunity for error exists when treating � and tLiu as

unknowns.
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Under model (A), a DL3 model was correctly chosen 95% of the time suggesting the model selection

method in Section 3.2 is useful in finding an appropriate degree for the HDDLM in this simulation setting.

Yet, as displayed in Table 1, there was large variation in the maximum lag chosen for each DL surface.

For example, according to Table 1, model (A) correctly estimated L2 “ 4 only 30% of the time. Perhaps

alarmingly, model (A) chose the correct DL3 model (i.e. the model with pL1, L2, L3q “ p6, 4, 2q) less than

5% of the time. This is due to the amount of noise present in the simulated datasets. To validate the model

selection procedure described above, we performed a separate simulation study using Gaussian errors with

very little noise (details of this simulation study are provided in the online supplementary materials). In the

low noise setting, the model selection procedure found pL1, L2, L3q “ p6, 4, 2q 100% of the time for reduction

factors as high as r “ 0.3. Higher values of r however, led to more error in model selection. Because this

noisy simulation was built to mimic real data, we feel this noisy simulation is more realistic than the low

noise setting in displaying how the HDDLM’s perform in practice.

From Figure 1, model (A) had lower 95% credible interval CVG and width compared to when � and

tLiu were treated as known. We hypothesize that this lower coverage is due to the fact that we fit only the

“best” model according to AIC. A full Bayesian analysis should treat � and tLiu as parameters and average

across model fits. We hypothesize that by model averaging, the model uncertainty would be reflected in the

credible intervals by increasing credible interval widths such that coverage would be nearer to the nominal

rate. However, model averaging in this setting is computationally demanding. Hence, there is a need to

develop computationally feasible methods to appropriately account for model uncertainty in DL� models so

as to have near nominal coverage rates. The development of such methods is beyond the scope of this article

and left for future work.

For this simulation study, dimension reduction factors as high as 0.6 maintained a high performance in

terms or RMSE and CVG while reducing the width of 95% credible intervals. For example, for the first

degree DL surface, by using r “ 0.6 compared to r “ 0, the average 95% credible interval width was reduced

by approximately 20% in model (B) while maintaining lower RMSE and a respectable 95% coverage rate of
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92%. In Figure 1, the behavior of RMSE, CVG and WDTH are relatively stable for r P t0, 0.1, 0.2, 0.3u but

less so for ri ° 0.3. This behavior suggest that, in practice, the value of ri can be chosen by fitting the model

for various values of ri and plotting the estimates of the coe�cients against ri to look for large changes in

the estimates. The value of ri can then be chosen as the maximum reduction factor such that estimates are

still stable for all values less than ri.

5. NMMAPS Application

Mortality and temperature data for Los Angeles and New York were obtained from the National Morbidity,

Mortality and Air Pollution (NMMAPS) study (Samet and others, 2000). Let Yct denote the mortality count

for people over the age of 65 on day t in city c. The model used for this analysis is given by,

Yct „ P `
exp

 
↵c ` x

1
ct✓c ` z

1
ct�c

(˘
(5.9)

where xct represents the vector of lagged average daily temperatures and their interactions as in model

(2.2), ↵ is an intercept, and zct is a vector of confounding covariates and includes a smooth function of time

(specifically, a natural cubic spline with 5 degrees of freedom per year) and a day of the week e↵ect. We use

the HDDLM in Section 2 as a model for ✓c and vague independent priors distributions were used for for ↵c

and �c.

To choose the maximum lags, we considered all DL� models up to � “ 3 with maximum lags up to and

including pL1, L2, L3q “ p10, 7, 7q. Using the methods outlined in Section 3, Table 2 displays the top 5 DL�

models for each city according to the AIC criterion evaluated at the MAP estimates and the “best” DL1

model for comparison. From Table 2, notice that Los Angeles seems to have longer maximum lags than New

York suggesting that “heat” e↵ects are spread over a longer period of time in Los Angeles than in New York.

In both New York and Los Angeles, however, interactions between lagged heat covariates are preferred. That

is DL� models with � ° 1 are preferred to DL1 models. The preference for higher order interactions between

lagged covariates is stronger in New York than it is in Los Angles. For New York, the “best” DL1 model

ranked 240th among the 804 considered models. For Los Angeles, the best DL1 model ranked 4th suggesting
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that an additive model may be su�cient for Los Angeles but not for New York. As a final point, the models

displayed in Table 2 are similar in terms of AIC suggesting that distinguishing a “best” model for this data

set is di�cult. However, when considering all 804 models, the spread in AIC is much larger than seen in

Table 2 (from 4445 to 4536 for NY and from 4387 to 4461 for LA) suggesting the data is able to distinguish

between models that fit well and those that fit poorly.

We estimated the preferred model from Table 2 using di↵erent values for a common dimension reduction

factor r but found little di↵erence in the posterior means of ✓c for any r § 0.5 (although there were di↵erences

in the posterior standard deviation). The estimates of ✓c were less stable using r ° 0.5 so we chose to set

r “ 0.5 for this analysis to reduce the dimension and posterior standard deviations as much as possible.

Figure 2 displays the the first degree DL surfaces for New York and Los Angeles according to the “best”

model in Table 2. Both New York and Los Angeles were found to have quite similar first degree DL surfaces

with large e↵ects occurring at more recent lags before dipping below zero at moderate lags and eventually

tapering o↵ to zero. These curves are consistent with previous studies which find a “displacement” e↵ect of

heat on mortality (Braga and others, 2002; Heaton and Peng, 2012). Figure 2 also displays the second degree

DL surfaces for New York and Los Angeles. For New York, 95% credible intervals showed that the p0, 1q and

p1, 1q coe�cients were di↵erent from zero while for Los Angeles, the p1, 1q e↵ect was the only interaction e↵ect

di↵erent from zero. In both cities, the coe�cient for X2
t´1 was significantly positive showing an non-linear

increase in mortality due to heat on the previous day. New York also had a significant positive coe�cient for

the interaction term XtXt´1 suggesting that high heat on successive days increased mortality counts beyond

what traditional DL models would suggest.

Due to the di�culty of interpreting higher degree DL surfaces, Figure 3 presents a more interpretable way

of viewing the e↵ect of lagged heat exposure on expected mortality. Figure 3 displays the posterior mean of

the percentage change in expected mortality counts as a function of the deviation from a temperature of 75˝

F on days t and t´1 holding the temperature on days t´3, t´4, . . . constant and is a summary of the e↵ect

of all lagged e↵ects on expected mortality. From Figure 3, the e↵ect of including interactions between lagged
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covariates is apparent in that the contours of equal height are not straight lines. For example, in both cities

the e↵ect of temperature changes on mortality is non-linear and changes across the temperature domain.

6. Conclusions and Extensions

This article proposed higher degree DL models that extend the basic DL model to consider interactions

between lagged covariates. The basic DL model is easily seen to be a special case of a higher degree DL

model. Appropriate modeling constraints were imposed on the coe�cients via a Gaussian process prior.

Due to the potentially high dimension of these models, predictive processes were derived from the Gaussian

process prior and used as a natural dimension reduction tool in this context. The usefulness of high degree

DL models, along with the e↵ectiveness of the dimension reduction strategy, were illustrated via simulation

and in investigating the e↵ect of high heat exposure on mortality in Los Angeles and New York using data

from the NMMAPS study. We also proposed a method for selecting the degree and maximum lags using

MAP estimators.

Beyond applied research, several new statistical research avenues for DL� models remain. Foremost is the

need to explore model selection strategies for selecting the degree and maximum lags in DL� models. As was

seen in the simulation studies in Section 4, choosing the maximum lag using the procedure outlined in this

article was often di�cult to do due to the noise in the data. Much of this di�culty is due to the inherent

complex nature of DL� models. However, continued statistical work is needed to improve on model selection

techniques.

In conjunction with improved model selection techniques, the DL� models used here assume a single

maximum lag for each degree. For example, L2 determines the maximum lag for second degree interactions.

Under this assumption, if L2 “ 6 then the p1, 6q lagged interaction is treated equally as the p5, 6q interaction

despite the fact that the p5, 6q interaction is a priori more likely to be zero. A more realistic assumption is

allow the maximum lag to change depending on the interaction. Additionally, assuming stationarity across

lags, as is done implicitly here, is not realistic, That is, we expect larger di↵erences between e↵ects at smaller
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lags than larger lags which suggests non-stationarity in modeling the DL coe�cients. These extensions are

left for future work.

Finally, note that the DL� models presented here are, in reality, only univariate because they rely on

a single lagged covariate. Multiple distributed lag models have also been used but typically do not include

interactions between lag and variables. Extending the DL� models here to multiple-lagged covariates is

currently under investigation.
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Fig. 1. Simulations results as a function of the dimension reduction factor (r). The solid, dashed and dotted lines
correspond to the simulations results when estimating the degree (model A), when treating it as fixed (model B)
and when fitting the best DL1 model (model C), respectively. The number in the top right corner corresponds to the
unconstrained maximum likelihood fit (model D). The first, second, and third column of plots correspond to results
from the first, second, and third degree DL surface, respectively. Results from model C are excluded from the second
and third columns because only the first degree surface was estimated.

Table 1. Proportion of time Li “ ` for a given maximum lag ` under model (A) in the simulation study.
“NA” stands for ”Not Applicable” and indicates that models with Li “ ` were not considered in the explored

model space. As an example, only 30% of the time model (A) correctly chose L2 “ 4.

Maximum Lag L1 L2 L3

0 0.12 0.17 0.14
1 0.08 0.08 0.30
2 0.09 0.12 0.41
3 0.12 0.25 0.15
4 0.17 0.30 NA
5 0.15 0.08 NA
6 0.19 NA NA
7 0.07 NA NA
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Fig. 2. Estimate first degree DL surfaces for (a) New York and (b) Los Angeles. Estimated second degree DL
coe�cients for (a) New York and (b) Los Angeles. The solid points correspond to the posterior mean while the error
bars represent a 95% central credible interval.

Table 2. Top 5 DL� models in the NMMAPS analysis of New York and Los Angeles mortality counts.

New York Los Angeles
Rank tLiu AIC(MAP) tLiu AIC(MAP)

1 t4, 1u 4445.48 t7, 1u 4387.12
2 t4, 3u 4445.81 t7, 0, 0u 4388.46
3 t5, 1u 4445.85 t6, 0u 4388.65
4 t3, 1u 4446.03 t8u 4388.84
5 t4, 1, 1u 4446.15 t7, 0u 4388.87

Best DL1 Model t4u 4458.24 t8u 4388.84
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Fig. 3. Percent change in mortality as a function of the deviation from a temperature of 75˝ F on days t and t ´ 1.
Allowing for interactions between lagged covariates models the curvature of contour lines.
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