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Numerical indices are commonly used as tools to aid wildfire management and hazard assessment. Although the use of such indices is
widespread, assessment of these indices in their respective regions of application is rare. We evaluate the effectiveness of the burning
index (BI) for predicting wildfire occurrences in Los Angeles County, California using space–time point-process models. These models are
based on an additive decomposition of the conditional intensity, with separate terms used to describe spatial and seasonal variability as well
as contributions from the BI. We fit the models to wildfire and BI data from the years 1976–2000 using a combination of nonparametric
kernel-smoothing methods and parametric maximum likelihood. In addition to using the Akaike information criterion (AIC) to compare
competing models, we use new multidimensional residual methods based on approximate random thinning and rescaling to detect departures
from the models and to ascertain the precise contribution of the BI to predicting wildfire occurrence. We find that although the BI appears
to have a positive impact on wildfire prediction, the contribution is relatively small after taking into account natural seasonal and spatial
variation. In particular, the BI does not appear to take into account increased activity during the years 1979–1981 and can overpredict during
the early months of the year.
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Wildfire risk.

1. INTRODUCTION

Fire departments all over the world often use numerical in-
dices to aid wildfire management. These indices are designed to
summarize local meteorological and fuel information and pro-
vide an estimate of the current risk of fire. The burning index
(BI) is part of the U.S. National Fire-Danger Rating System
(NFDRS), a collection of numerical indices designed to be used
for fire planning and management. The Los Angeles County
Fire Department (LACFD) uses the BI for creating short-term
wildfire hazard maps of the county that help managers make de-
cisions involving the allocation of resources and coordination of
presuppression activities.

Although the BI is already in common use by Los Angeles
and other fire departments, there have been relatively few at-
tempts to assess the index’s performance in predicting wildfires.
In the general area of index evaluation, there has been some
work in evaluating elements of the U.S. system (e.g., Haines,
Main, Frost, and Simard 1983) and various national (non-U.S.)
systems (Viegas, Bovio, Ferreira, Nosenzo, and Sol 1999), and
in using indices for prediction (Westerling, Cayan, Gershunov,
Dettinger, and Brown 2000). However, the BI’s ability to adapt
to particular regions, such as Los Angeles County, has yet to be
fully scrutinized. Mandallaz and Ye (1997) have noted that in
general, wildfire hazard indices are developed on the basis of
experience in a given area. Therefore, one must take care when
adapting indices to other areas.

The aim of this article is to evaluate the performance of the BI
in predicting wildfires in Los Angeles County. Our approach is
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to evaluate the best-fitting conditional intensity model both with
and without the BI and other information, not only to deter-
mine the optimal use of the BI in point process prediction, but
also to assess the increase in prediction performance using the
BI as compared with other information. We compare the vari-
ous conditional intensity models using the Akaike information
criterion (AIC) as well as multidimensional residual analysis
methods based on approximate random thinning and rescaling.
Although the AIC proves useful for finding the best model in
a set of possibilities, residual analysis can identify specific ar-
eas where the performance is poor and suggest directions for
improvement.

In the sections that follow, we briefly describe the U.S.
NFDRS and provide a summary of the data used for this analy-
sis. We then outline the point-process methodology used for
evaluating the performance of the BI. Finally, we discuss the
results of applying these methods to the wildfire data from
Los Angeles County, California.

2. A BRIEF SUMMARY OF THE NATIONAL
FIRE–DANGER RATING SYSTEM

The U.S. NFDRS was developed by the U.S. Department
of Agriculture Forest Service in 1972 (Deeming, Lancaster,
Fosberg, Furman, and Schroeder 1972) and was revised in 1978
(Deeming, Burgan, and Cohen 1977; Bradshaw, Deeming,
Burgan, and Cohen 1983). Since then, there have been some
adjustments (see, e.g., Burgan 1988). The NFDRS actually con-
sists of multiple components that can be combined to form three
different indices, of which the BI is one. Although this is a
“national” system, there are many parameters that can be cali-
brated to adapt the system to local environments. In particular,
a fire manager must choose a fuel model (from a set of 20 avail-
able models) that corresponds to the available fuel in the region.
The fuel model is then incorporated into the index computations
to produce an index for a specific region (Bradshaw et al. 1983).
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2.1 Computing the Burning Index

The BI is computed from the spread component (SC) and the
energy-release component (ERC) of the NFDRS. Both the SC
and the ERC are computed using meteorological and fuel data
gathered by remote automatic weather stations (RAWS). The
SC is simply the unmodified fire spread model of Rothermel
(1972), which is a function of wind, slope, and various fuel
properties. The ERC is a function of the loading-weighted re-
action intensity and the surface area-to-volume ratio of the fuel
bed. Given values for the SC and the ERC, the BI itself is com-
puted via the relation BI = 10 × .45 ×[(SC/60)(25 × ERC)].46

(Bradshaw et al. 1983). It is important to emphasize that the
BI is to be interpreted as summarizing and integrating informa-
tion from a variety of meteorological and fuel variables. That
is, one would expect the index to reflect the current fuel con-
ditions (e.g., fuel age, fuel moisture), in addition to the usual
meteorological conditions.

3. DATA

3.1 Wildfire Data

The wildfire data analyzed here were collected and compiled
by various agencies, including the LACFD, the Los Angeles
County Department of Public Works, the Santa Monica Moun-
tains National Recreation Area, the Ventura County Fire De-
partment, and the California Department of Forestry and Fire
Protection. The full dataset consists of origin dates and poly-
gons mapping the areas burned by wildfires between Janu-
ary 1878 and September 2000. LACFD officials have indicated
that only fires burning more than 100 acres were consistently
mapped before 1950, although since 1950, the LACFD has
mapped some fires as small as 1 acre. Fires before 1976 were
excluded from the present analysis (due to the unavailability of
BI data) and based on LACFD guidance, a lower threshold of
10 acres was chosen for inclusion of post-1976 fires.

Figure 1(a) shows the spatial distribution of wildfires larger
than 10 acres in Los Angeles County for 1976–2000. The lo-
cations are represented with a (scaled) state-plane coordinate

Figure 2. Dates of Occurrence and Areas Burned for Fires Larger
Than 10 Acres, 1976–2000.

system using the NAD 83 datum, so that one spatial unit cor-
responds to approximately 18.9 miles. Much of the wildfire ac-
tivity occurs in the Angeles National Forest and parts of the
Los Padres National Forest (eastern and northern areas), as well
as the Santa Monica Mountains area (the protrusion in the west-
ern part of the county). Figure 2 shows the times and areas
burned (in acres) for each of the fires in the dataset. In the years
1979–1981, there appears to be some intense temporal cluster-
ing of points, especially for fires in the 50- to 500-acre range. In
addition, there is a decreased level of activity around the years
1990–1991. We return to these particular features of the data in
Section 5.

3.2 Meteorological and Burning Index Data

Daily meteorological observations for eight RAWS around
Los Angeles County were obtained from the USDA Forest Ser-

(a) (b)

Figure 1. (a) Spatial Distribution of Wildfires Larger Than 10 Acres in Los Angeles County 1976–2000 and (b) Locations of Wildfires Occurring
in the Dataset Before 1976. In (a), locations of the eight remote automatic weather stations in Los Angeles County are indicated by the numbers
above the solid cirlces. One spatial unit is approximately 18.9 miles.
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Figure 3. Average Yearly BI Pattern.

vice. The locations for each of the RAWS are shown in Figure 1.
The RAWS collect data on precipitation, wind direction, wind
speed, air temperature, fuel temperature, and relative humidity
(Warren and Vance 1981). Collection of the data occurs at ap-
proximately 1:00 PM, when conditions for fire are considered
most severe.

For each of the eight stations, daily values of the BI were
then computed using the FireFamily Plus program (available for
free from the Forest Service). Not all of the stations contained
data covering the entire 25-year span from 1976 to 2000. Of the
eight stations, only stations 3 and 4 had data going back to 1976.
However, each of the stations had at least 5 years of daily data.

The data from each of the RAWS exhibit the natural seasonal
patterns for weather in Los Angeles County. Figure 3 shows the
average computed BI value (averaged over all available years)
for each day in the year. There is a general increase in BI from
July through September, followed by a decrease from October
through March. Station 1 did not have any observations for the
months of January, February, and March. However, in the entire
25-year interval of interest, only 10 fires occurred in the months
of January, February, and March, representing less than 2% of
the total number of fires. Therefore, for station 1, the BI val-
ues were set to 0 during that 3-month span. The other stations
also contained days with missing weather records. In this situ-
ation we filled in a missing BI value on a given day with the
average of that day across all of the other available years. The
percentages of missing data are given in Table 1 for the off-
season (January–April), the fire season (May–December), and
overall. In Section 6 we discuss the possible impacts of missing
data on the analysis.

4. METHODOLOGY

In evaluating the BI, our approach considers the times and
centroids of each fire as points of a space–time point process.

A space–time point process N is a σ -finite counting measure
on the spatial-temporal domain S × R

+. Given a Borel set
B ⊂ S × R

+, N(B) is the number of points in B. Let Ft be
a filtration (i.e., an increasing family of σ -algebras), and take
N(S × [0, t]) to be Ft-adapted for each Borel set S ∈ S . In ap-
plications, S is usually taken to be a subset of R

2.
The conditional intensity function of a point process is de-

fined as a nonnegativeFt-predictable process λ(t, x, y) such that
for each Borel set S ∈ S ,

N(S × [0, t]) −
∫ ∫

S

∫ t

0
λ(t, x, y)dt dx dy

is an Ft martingale. It is well known that for point processes
with simple ground processes (i.e., with no two points at ex-
actly the same time), the conditional intensity (when it exists)
uniquely characterizes all of the finite-dimensional distribu-
tions of the point process. (For a more thorough treatment of
conditional intensities, see Jacod 1975; Brémaud 1981; Daley
and Vere-Jones 2003.) Intuitively, one may consider the condi-
tional intensity function as describing the conditional expected
rate of occurrence of points at time t and location (x, y). In
particular, a version of the conditional intensity may be given
by the process

λ(t, x, y) = lim
u↑t

lim
�u�x�y↓0

E
[
N

(
(u,u + �u) × (x, x + �x)

× ( y, y + �y)
)∣∣Ft

]
/(�u�x�y)

Table 1. Percentage of Missing Values for Each Weather Station During
the Off-Season (Jan–Apr), the Fire Season (May–Dec), and Overall

Station

1 2 3 4 5 6 7 8

Jan–Apr 99.8 49.2 34.3 60.8 33.3 32.5 23.3 26.1
May–Dec 46.4 36.3 17.8 32.0 14.5 18.6 6.7 14.2
Overall 64.0 40.5 23.2 41.5 20.7 23.2 12.2 18.1
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for (t, x, y) ∈ S×R
+, provided that the limit exists (Schoenberg,

Brillinger, and Guttorp 2002).
In prescribing a model for λ, we use a spatial background

component m(x, y) that takes into account the spatial inhomo-
geneity of the wildfire occurrences. This component can be
thought of as incorporating previous knowledge about where
wildfires are more likely or less likely to occur. For example, it
would be undesirable for the model to predict a wildfire occur-
rence in downtown Los Angeles. For this component, a simple
two-dimensional kernel smoother is used,

m(x, y) = 1

n0

n0∑
j=1

1

φx φy
K

(
x − x0j

φx

)
K

(
y − y0j

φy

)
,

where K is a suitable kernel function. In estimating the spa-
tial background m(x, y), the smoother is not computed using
the 1976–2000 data. Rather, the spatial locations of the wild-
fires occurring before 1976 are smoothed, guaranteeing that the
estimate of the conditional intensity at time t is based strictly
on information from before time t. Here n0 is the number of
wildfires in the full dataset occurring before 1976, and (x0j, y0j)

represents the spatial coordinates of the jth fire in that subset.
Of legitimate concern is the similarity between the spatial con-
figurations of the wildfires before and after 1976. Figure 1(b)
shows the locations of wildfires occurring before 1976. One
can see that the spatial distribution is quite similar between the
two eras. A notable difference is the presence of about 25 wild-
fires in the far northeast corner of the county that appear after
1976 but not before. Although this difference reflects a slight
change in the spatial distribution over time, it is unlikely to
reflect a major shift in the overall wildfire regime. Other au-
thors have commented on the lack of evidence to suggest any
major change in the Southern California regime over the past
century (see Keeley, Fotheringham, and Morais 1999; Keeley
and Fotheringham 2001). In addition, because this difference
affects all of the models under consideration here, the effect on
any comparison between models should be minimal.

A seasonal component, S(t), is used to describe the overall
seasonal variation of the wildfire activity. Here we smooth the
times within each year of the pre-1976 fires,

S(t) = 1

n0

n0∑
j=1

1

φseas
K

( t∗ − t∗0j

φseas

)
,

where t∗ indicates the time since the beginning of the year and
t∗0j is the time since the beginning of the year for the jth wildfire
occurrence before 1976.

Finally, a BI component B(t, x, y) describes, for an arbitrary
point (t, x, y), the contribution to the conditional intensity from
the values of the BI at each station. Because the BI values are
observed only at fixed locations in the county, some form of
interpolation is required to compute values at other locations.
We consider a BI component of the form

B(t, x, y) = 1

C

∑
s∈St

{
γsK

(
x − xs

βs

)
K

(
y − ys

βs

)
BI(t, s)

}
,

where BI(t, s) is the BI value recorded at time t from the
sth station, (xs, ys) represents the location of the sth station,
and St is the index set of stations in use at time t. The val-
ues γs are scaling coefficients for the BI values and are in units

of events/(spatial unit2 × day); the BI itself is dimensionless.
The normalization constant C is simply the sum of the kernel
weights. For each of the three components, the kernel function
used is the standard normal density function.

One may consider as a basis of comparison simple baseline
models, such as a homogeneous Poisson model,

λH(t, x, y) = µ, (1)

and a Spatial + Seasonal model,

λ0(t, x, y) = νm(x, y) + αS(t), (2)

where µ, ν, and α are parameters to be estimated. The model
in (2) does not include any information from the BI, and it
serves as a model against which we can compare models in-
corporating BI information from each station. We take

λ(t, x, y) = νm(x, y) + αS(t) + B(t, x, y) (3)

as our “BI model” and inspect the usefulness of the BI by com-
paring the performance of both λ and λ0.

4.1 Parameter Estimation

All parameters for each of the models were estimated by
maximizing the log-likelihood function

	(θ) =
n∑

i=1

logλ(ti, xi, yi; θ) −
∫ T2

T1

∫ ∫
S

λ(t, x, y; θ)dx dy dt,

where θ is a vector of free parameters and n is the total number
of events (ti, xi, yi) in the dataset, observed in the time interval
[T1,T2] over the area S . The parameters to be estimated are
ν, α, φx, φy, and φseas, as well as the BI parameters γs and βs
(s = 1, . . . ,8). Under fairly general conditions, maximum like-
lihood estimates (MLEs) have been shown to be consistent and
asymptotically normal (Ogata 1978; Rathbun and Cressie 1994;
Rathbun 1996).

When optimizing the log-likelihood, some restrictions must
be placed on the parameters to maintain a positive conditional
intensity function and numerical stability of the optimization
procedure. We restricted the parameters in each model to be
positive. In addition, the bandwidth parameters in the spatial
and seasonal components were bounded away from 0. Includ-
ing the βs parameters in the BI component considerably in-
creased the complexity of the likelihood surface and created
some difficulty with the numerical optimization. Ogata, Akaike,
and Katsura (1982) and Ogata and Akaike (1982) handled a
similar problem with a single bandwidth parameter by restrict-
ing that parameter to a finite grid and repeating the maximum
likelihood procedure for each value of the bandwidth parame-
ter on the grid. Unfortunately for our situation, with eight sep-
arate parameters (one for each weather station), constructing
a reasonable grid over which to optimize the log-likelihood
was computationally infeasible. Rather, we chose to restrict the
βs parameters to be less than 3.0 spatial units (about 56 miles).
This upper limit seemed reasonable in the sense that a particular
weather station should not have influence over points more than
50 miles from the station (see, e.g., Haines et al. 1983). An al-
ternative modeling approach that could circumvent some of the
problems mentioned earlier would be to model logλ(t, x, y) and
use pseudolikelihood methods, although this approach likely
would not solve the problems associated with including the BI
parameters.
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4.2 Residual Analysis and Approximate
Random Thinning

Various methods for constructing a multidimensional resid-
ual point process based on random rescaling (Merzbach and
Nualart 1986; Nair 1990; Schoenberg 1999) and random thin-
ning (Schoenberg 2003) have been proposed. One-dimensional
residual analysis via the rescaling method has been successfully
applied in a wide variety of applications (e.g., Berman 1983;
Ogata 1988; Diggle 1990; Rathbun 1993; Brown, Barbieri,
Ventura, Kass, and Frank 2001). However, rescaling can be
awkward for multidimensional residual analysis. In practice,
when the points are rescaled, the domain of observation is
also rescaled and can become uninterpretable or irregular (see,
e.g., Schoenberg 1997). Schoenberg (2003) proposed a method
based on approximate random thinning of the observed points,
which has the advantage that the resulting residual process lies
in the same domain as the observed point process.

The algorithm for approximate random thinning is straight-
forward and easy to implement:

1. Choose a positive integer K such that K < n, where n is
the total number of points observed.

2. For i = 1, . . . ,n, compute pi = λ(ti, xi, yi; θ̂)−1/∑n
j=1 λ(tj, xj, yj; θ̂)−1, where λ(t, x, y; θ̂) is the estimated

conditional intensity function.
3. Using probability weights p1, . . . ,pn, take a subsample of

size K from the original points {(ti, xi, yi)} to produce the
residual process {(t∗j , x∗

j , y∗
j )} ( j = 1, . . . ,K).

The algorithm attempts to “thin out” points in areas with high
intensity and retain points in areas of low intensity. Although
points are deleted from the original dataset, one can repeat the
algorithm many times to produce multiple random realizations
of approximate thinned residuals.

If K is chosen to be relatively small compared with n and the
fitted conditional intensity closely approximates the true con-
ditional intensity governing the point process, then the residual
process should resemble a homogeneous Poisson process with
rate K/(‖S‖(T2 − T1)) over the original domain of the process.
The primary advantage to generating a residual process is that
the problem of evaluating the fit of a possibly complex model
is reduced to examining whether the residual process is similar
to a homogeneous Poisson process, a task for which there are
many tests and diagnostics. Once the residuals have been pro-
duced, one can simply display them in residual plots or compute
summary statistics. For example, one may wish to test for resid-
ual clustering or inhibition via a statistic such as the K-function
(Ripley 1981). In Section 5.1.1 we use a spatial-temporal ver-
sion of the K-function to quantify the clustering in the approxi-
mate thinned residual processes.

5. APPLICATION TO WILDFIRE AND
BURNING INDEX DATA

We fit each of the models in (1)–(3) to the Los Angeles
County data by maximum likelihood. The MLEs for the pa-
rameters in the spatial and seasonal components of each of the
models are given in Table 2. The estimate for µ̂ in the homo-
geneous Poisson model was .0041 events/(spatial unit2 × day),
indicating an average of 24 fires per year in the county. The

Table 2. Maximum Likelihood Estimates of Parameters for
Non-BI Components

Model µ̂ ν̂ φ̂x φ̂y α̂ φ̂seas

Homogeneous Poisson .0041
Spatial + Seasonal .0348 .0440 .0259 .7053 8.44
BI .0293 .0339 .0200 .5570 8.27

bandwidth parameters for the spatial background component
of the Spatial + Seasonal model were estimated as φ̂x = .0440
spatial units (.83 miles) in the x direction (east–west) and
φ̂y = .0259 spatial units (.49 miles) in the y direction (north–
south) for the Spatial + Seasonal model. For the best-fitting
BI model, the estimates for the spatial bandwidth parameters
were similar, although somewhat smaller. The estimate for the
bandwidth parameter of the seasonal component was approx-
imately 8 days for both models. The estimates of the station
multiplier coefficients (γs, s = 1, . . . ,8) and the βs values in the
BI component are given in Table 3. Many of the coefficients are
estimated to be 0, likely resulting from the high correlation of
the BI values between different stations. The stations receiving
non-0 weight are stations 1, 4, 5, and 7.

To compare the overall fit of each of the models, we used the
AIC (Akaike 1973), defined as −2	(θ̂) + 2p, where 	(θ̂) is the
log-likelihood of the model evaluated at the MLE θ̂ and p is
the number of free parameters in the model. Not unexpectedly,
there is a dramatic decrease in AIC from 7,693.9 for the homo-
geneous Poisson model to 6,741.1 for the Spatial + Seasonal
model. The addition of the weather stations in the BI model de-
creases the AIC to 6,704.6. The decrease in AIC between the
Spatial + Seasonal and BI models indicates that the BI com-
ponent is in fact improving the fit of the model, even with the
addition of 16 parameters (2 for each station). However, the rel-
ative decrease in AIC is considerably smaller than the decrease
between the homogeneous Poisson and the Spatial + Seasonal
models, suggesting that the impact of the BI component is very
subtle. One can obtain a sense of the individual contributions
of the components by examining a BI-only model (i.e., with
no seasonal or spatial components), a Seasonal + BI model
(with no spatial component), and a Spatial + BI model (with
no seasonal component). The AIC values for these models
were 7,358.2, 7,062.7, and 6,857.9. Although the BI compo-
nent alone captures some seasonal and spatial variability, much
can be gained by adding separate seasonal and spatial compo-
nents. Furthermore, none of the smaller BI models fits as well
as the Spatial + Seasonal model.

The significance of the added BI component can be evalu-
ated with a likelihood ratio test. Because the additive BI and
Spatial + Seasonal models are nested, the test statistic has an
asymptotic χ2

k distribution under the null hypothesis that the BI
model provides no improvement (Ogata 1988). For these two

Table 3. Maximum Likelihood Estimates for Parameters in
the BI Component

s

1 2 3 4 5 6 7 8

γ̂s (×10−5) 2.2 0 0 17.4 3.1 0 25.6 0
β̂s .001 3.000 3.000 .387 .001 .442 .520 .816
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Figure 4. Estimated Conditional Intensity Function for the BI Model on the 15th of Each Month in 1999. The units are in events/(spatial
unit 2 × day) where one spatial unit is approximately 18.9 miles.

models, the difference in number of parameters is 16 and the
log-likelihood ratio test statistic has a value of 35.2, which is
significant at the 5% level ( p value of .0037).

For comparison, we also fit models where the different
components are multiplied instead of added. The results were
similar, in that the model incorporating BI did not appear to
provide a dramatic improvement in fit to the data. In this case
the BI model produced a conditional intensity that was quite
smooth and did not accurately represent the spatial-temporal
clustering in the data. The AIC values for the Spatial×Seasonal
model and the full (multiplicative) BI model were 6,831.6
and 6,680.5. It should be noted that although the multiplicative
full BI model has a slightly lower AIC than the additive ver-
sion, differences in AIC between nonnested models should be
interpreted with caution. In particular, such differences can be
subject to substantial sampling fluctuations (Ripley 1996; Stone
1977). Nevertheless, the improved prediction performance of
the full multiplicative model suggests a direction for future in-
vestigation.

Figure 4 shows the estimated conditional intensity function
for the additive BI model on the 15th of each month in 1999.
The year 1999 is a typical year in the dataset, containing a total
of 21 fires. For this year, the intensity reaches its lowest point
around March and increases through August. The conditional
intensity is generally high in the northwest region of the county,
where much of the wildfire activity takes place.

5.1 Residual Analysis

Although AIC is useful for determining the relative improve-
ment of fit for competing models, one may be interested in
a more refined analysis of a particular model. We conducted
residual analysis of the Spatial + Seasonal and BI models using
both approximate random thinning and the rescaling method to
identify possible departures of the models from the data.

5.1.1 Approximate Thinned Residuals. For the approxi-
mate random thinning procedure, we chose a subsample size
of K = 50 for each thinning and generated 1,000 thinnings
from each model. In each realization, the residuals appear to be
spread uniformly across the county. Recall that in Figure 1(a)
the data were highly clustered in the northwest region near
weather stations 1 and 2 and that there were relatively few
points in the northeast corner. This clustering is not apparent
in the thinned residuals, indicating adequate treatment of this
clustering effect in the BI model.

Figure 5 shows two realizations of thinned residuals for the
time and y-coordinates. Here we see that there is a cluster of
points around the years 1979–1981; other realizations demon-
strated a similar pattern. This residual nonstationarity indicates
that the BI model is not adequately taking into account the
nonstationarity in the data around this specific period. One pos-
sible explanation for this lack of fit is that the increased activity
was not due to purely meteorological phenomena or changes in
fuel properties. Indeed, the BI model for those years appears
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Figure 5. Two Random Realizations of Residuals for the BI Model (time and y-coordinate).

close to the Spatial + Seasonal model; we discuss this further
in Section 5.1.2. Some of the wildfires observed during this pe-
riod occur in the far-northeast region mentioned in Section 4.
However, in the 3-year period 1979–1981, only 8 wildfires oc-
curred in this area, whereas the total numbers of fires for these
years were 56, 57, and 44—double the average number of fires
per year. Therefore, it is difficult to attribute the residual nonsta-
tionarity to a change in spatial distribution alone. The thinned
residuals appear to indicate a failure in the BI to detect con-
ditions associated with the prevalence of fires between 1979
and 1981.

Although visual inspection of the residuals can be a useful
method of model evaluation, it may be desirable to have a more
systematic test available. Existing second-order methods for an-
alyzing point patterns are largely two-dimensional, although
there have been some extensions (e.g., Baddeley, Moyeed,
Howard, and Boyde 1993; Diggle, Chetwynd, Häggkvist, and
Morris 1995). To test the homogeneity of the residual process,
we used a simple space–time version of the K-function. The
general K-function evaluated at distance h is the expected num-
ber of pairs of points per unit area that are within distance h of
each other, that is,

K(h) = 1

n

‖S‖
n

∑
i �=j

1{d(xi, xj) < h},

where xi and xj are points of the process, S is the domain
of observation, and d is a distance function. To evaluate the
K-function, a distance function must be specified, which in
purely spatial settings is typically Euclidean distance. For our
application, we chose the following distance function, which is
defined for two points (t1, x1, y1) and (t2, x2, y2) as

d{(t1, x1, y1), (t2, x2, y2)}
=

√
(x1 − x2)2 + ( y1 − y2)2 + δ|t1 − t2|. (4)

Given a point xi and distance h, we count the number of
points xj in the cone of radius h and height h (centered at xi),
then average over all points in the pattern.

The value of δ in (4) was chosen so that the temporal and
spatial scales were commensurate. Here this corresponds to
δ = 1/5,475 days, which sets a spatial distance of 5 miles
roughly equivalent to a temporal distance of 4 years. Previous

research in Los Angeles County has suggested that the occur-
rence of a wildfire tends to inhibit the occurrence of another
wildfire in the same location. The risk of fire then slowly in-
creases for approximately 20 years, after which the risk of fire is
nearly constant (Peng and Schoenberg 2002; Schoenberg, Peng,
Huang, and Rundel 2003). Therefore, fires occurring within
4–5 years of each other (in the same location) would be con-
sidered “nearby” in a similar sense that fires occurring within
5 miles of each other (at the same time) would be considered
“nearby.” The precise choice of δ does not affect the actual com-
putation of the K-function, which is invariant to rescalings of
the data. Finally, rather than plot the raw K-function, we use a
normalized version (sometimes called the L-function) centered
around 0 for a homogeneous Poisson process.

Figure 6 shows the mean estimated K-functions for the 1,000
approximate thinned residuals from both the Spatial+ Seasonal

Figure 6. Normalized K -Function for the Spatial + Seasonal (solid
gray line) and BI (solid black line) Models. The dotted line is the upper
95th percentile (pointwise) for the K -function applied to 1,000 realiza-
tions of a homogeneous Poisson process.
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model and the BI model. The K-function does not enter the neg-
ative range in this case, indicating a lack of inhibition in the
residuals. Therefore, to show greater detail, the figure omits the
negative range of the K-function. The estimated K-function for
residuals of the BI model appears to decrease to 0 faster than
that of the Spatial + Seasonal model. However, there is signifi-
cant clustering for smaller distances from .25 to 1.0, which cor-
responds to ranges of 4–18.9 miles in the spatial domain and of
4–15 years in the temporal domain. As shown in the following
section, the clustering that we observed in the residuals is most
likely due to a multiyear period of increased wildfire activity
that is not being captured by the BI model.

5.1.2 Rescaled Temporal Residuals. The fit of the BI
model in the temporal domain can be assessed using the rescal-
ing method (Meyer 1971) to create a residual process on the
line. Each original event time ti (i = 1, . . . ,n) is mapped to a
new time,

τi =
∫ ti

T1

∫ ∫
S

λ(t, x, y; θ̂)dx dy dt,

where T1 is equal to January 1, 1976 and S is the spatial
observation window. We can then check whether the residu-
als τ1 < · · · < τn appear as a homogeneous Poisson process
of rate 1 on the line. A histogram of the rescaled residuals
(not shown) appeared to have a larger than expected number of
points in the period 50–150 in transformed time. On the origi-
nal time scale, the interval 50–150 corresponds approximately
to the years 1978–1982. This result, along with the clustering
in the thinned residuals (observed in Fig. 5), confirms that the
increased wildfire activity during the years 1979–1981 is not
captured by the BI model.

One can further examine the original data using the temporal
intensity function

r(t) =
∫ ∫

S
λ(t, x, y; θ̂)dx dy.

Figure 7 shows r(t) over two different time intervals for the
Spatial+Seasonal and BI models. Figure 7(a) shows r(t) for the
years 1979–1981, the period in which we observe an unusually
high level of wildfire activity. One might expect the BI model to
have a higher intensity during this time period, given the depen-
dence of the BI on local weather and fuel properties. However,
the BI model appears to be quite close to the Spatial + Seasonal
model and significantly underestimates the rate of activity dur-
ing these 3 years. Figure 7(b) shows the period 1990–1991,
a period containing a larger-than-expected residual interevent
time observed in a plot of the empirical log-survivor function.
The two vertical dotted lines indicate the two events that gener-
ated the large residual interevent time. These two events corre-
spond to the last fire in 1990 and the first fire in 1991. The first
fire in 1991 comes on August 23, which is much later in the
year than is typical for the first fire. Figure 7(b) shows that the
conditional intensity of the BI model is much lower than that of
the Spatial + Seasonal model in the months between May and
September and possibly reflects a local change in weather or
fuel conditions that is different from the usual seasonal pattern.
However, it would appear that the BI model is not compensat-
ing sufficiently, thus creating the larger-than-expected residual
interevent time.

(a)

(b)

Figure 7. Temporal Intensity Functions r(t) for the Spatial + Seasonal
(black line) and BI Model (gray line) for (a) 1979–1981 and
(b) 1990–1991.

5.2 Model Predictions

Given a model for the conditional intensity of a point process,
the process can be simulated via the random thinning algorithm
of Lewis and Shedler (1979). We simulated 1 year’s worth of
events to see whether features of the simulations matched those
of the observed events. We refitted the BI model using the wild-
fire and BI data from 1976 through 1998 and applied the Lewis–
Shedler algorithm to generate random realizations of wildfire
events for 1999. The spatial distribution of the simulations ap-
peared to match the configuration of the observed fires fairly
well. However, we found that the BI model tends to predict
more fires between January and April than were actually ob-
served. The first observed fire of 1999 was on January 3, fol-
lowed by a fire on April 23. However, in each simulation the
BI model predicted, on average, seven fires in the intervening
months. In the entire 23-year period 1976–1998, the average
number of fires between January and April was less than 1.
Figure 3 shows that on average, many of the stations do not
reach their lowest point until the middle of March or even April.
Therefore, the BI model will produce a higher intensity because
of the high BI values. This indicates the BI’s failure to ade-
quately characterize the low risk of fire associated with the me-
teorological and vegetative conditions during winter and early
spring.

6. SUMMARY AND DISCUSSION

In this article we have developed an approach for evaluat-
ing a wildfire hazard index using space–time conditional in-
tensity models. This approach allows for a detailed analysis of
the performance of the BI in predicting wildfire occurrence in
Los Angeles County. Our conclusions about the BI are based
on an assessment of conditional intensity models that incorpo-
rate spatial, seasonal, and BI information. We find that the best-
fitting model that incorporates BI information does not perform
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substantially better than a simple model that takes into account
only natural spatial and seasonal variation.

We used two point-process residual analysis techniques to
supplement a standard likelihood-based model evaluation cri-
terion (i.e., AIC). The random thinning method enabled us to
check for residual space–time clustering on the same tempo-
ral and spatial scales as the data, whereas the rescaling method
allowed for the closer inspection of temporal clustering in the
residuals. Together, the methods provided greater insight into
precisely where the BI model fit poorly and where it made some
(minimal) improvement.

It is important to note the possible biases that may result
from the missing data and the procedure used to fill in miss-
ing BI values. In Section 3 we replaced a missing value on a
given day with the average of the nonmissing values for that
day across all years. If the nonmissing values do not accurately
represent the missing data, then the resulting estimated condi-
tional intensity could be biased. In our initial examination of
the BI data, we found that stations with relatively low percent-
ages of missing data had very regular seasonal patterns from
year to year. Although one would expect some natural varia-
tion between stations, we see no reason why the other stations
should not exhibit the same strong seasonal patterns. Therefore,
the biases resulting from the missing data are likely to be small.
Determining the optimal use of station data, including develop-
ing methods for imputing missing values, is an important sub-
ject for future work.

Another area for future investigation is examining the perfor-
mance of other hazard indices in Los Angeles County, having
already identified some specific deficiencies with the BI. Also,
it may be necessary to incorporate other variables into index
computations or to reexamine the fuel models used to adapt the
system to different locations.

Although incorporation of the BI into the models presented
here is consistent with the way in which the BI is used in prac-
tice by Fire Department officials, the use here is in some dis-
agreement with the original motivation behind development of
the BI, to predict flame length. With this in mind, it is perhaps
not surprising that the BI’s utility in predicting wildfire occur-
rence is severely limited. One difficulty that applies to the de-
velopment and use of any index in Los Angeles County is that
wildfire occurrences exhibit very strong seasonal and spatial
patterns that already explain much of the variation in the data.
In the future, it will be important to understand the sources of
residual variation and to construct indices that target this varia-
tion. Although our analysis indicates that the BI is a step in that
direction, there remains considerable room for improvement.

[Received April 2003. Revised October 2003.]
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