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Exploratory Data Analyses

5.1 Introduction

What do time series data look like? The purpose of this chapter is to provide
a number of different answers to this question. In addition, we outline the
rudiments of a time series analysis of air pollution and mortality that can be
used to connect the two to look for interesting relationships.

5.2 Exploring the Data: Basic Features and Properties

5.2.1 Pollutant data

The NMMAPS database has information about six of the criteria pollutants
defined by the United States Environmental Protection Agency. These pol-
lutants are measured by the EPA’s monitoring network and the raw data
are available on the EPA’s Air Quality System Web site. In this section we
describe some of the features of the pollutant data.

Particulate matter

For illustration, we begin with the Baltimore, Maryland data.

> balt <- readCity("balt", asDataFrame = FALSE)

The air pollution and weather data are stored in a data frame called “ex-
posure”. The PM10 time series in particular is stored in a variable named
“pm10tmean”.

> with(balt$exposure, summary(pm10tmean))

Min. 1st Qu. Median Mean 3rd Qu.
-35.1300 -10.7200 -3.1500 -0.1274 7.5330

Max. NA's
94.8700 3173.0000
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There are a number of interesting features of the PM10 data here. First,
notice the large number of missing values (NAs) in this particular variable. The
time series contains daily data for 14 years (January 1, 1987 through December
31, 2000), which means the total length of the series (including missing values)
is 5114. Of those 5114 possible values, 3173 of them are missing. The reason
for this is that PM10 measurements are only made once every three days in
Baltimore. So for every three days of potential measurement, two are always
missing. For the later years, the sampling pattern is changed to be one in six
days, so there are even more missing values for those years. Most cities in the
U.S. have this kind of sampling pattern for PM10 data, although there are a
handful of cities with daily measurements.

Another feature is that the mean and median are close to zero. How can
there be negative PM10 values one might wonder? Each of the pollutant time
series have been detrended so that they are roughly centered about zero.
Details of the detrending can be found in [101] and in Chapter 2. Generally
speaking, the detrending does not have a big impact on potential analyses
because in time series studies we are primarily interested in differences from
day to day, rather than differences between mean levels. If one is interested in
reconstructing approximately the original values, the “median trend” is stored
in a variable called “pm10mtrend” and can be added to the “pm10tmean”
variable.

> with(balt$exposure, summary(pm10tmean +
+ pm10mtrend))

Min. 1st Qu. Median Mean 3rd Qu.
0.5449 21.2300 28.6000 32.1900 40.0800

Max. NA's
130.5000 3173.0000

Another aspect worth noting about the pollutant data is that air pollution
concentrations in the NMMAPS database are averaged across multiple mon-
itors in a given city. When multiple monitor values are available for a given
day, a 10% trimmed mean is taken to obtain the value stored in the database
(hence the “tmean” part of the variable name).

We can plot the data to examine some more features. The resulting plot
is shown in Figure 5.1.

> with(balt$exposure, {
+ plot(date, pm10tmean + pm10mtrend,
+ ylab = expression(PM[10]), cex = 0.6)
+ })

One thing that is clear from the time plot of the data in Figure 5.1 is that the
variability of PM10 has decreased over the 14 year period. After about 1995,
we do not see the same number of very high values as we do before 1995.
Note that here we have plotted the PM10 data with the trend added back in
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Fig. 5.1. PM10 data for Baltimore, Maryland, 1987–2000.

so that we can examine the long-term trends in PM10. To look at the trend
more formally, we can conduct a simple linear regression of PM10 and time.

> library(stats)
> pm10 <- with(balt$exposure, pm10tmean +
+ pm10mtrend)
> x <- balt$exposure[, "date"]
> fit <- lm(pm10 ˜ x)

The table of regression parameter estimates is shown in Table 5.1. The neg-
ative slope parameter indicates a downward linear trend in PM10. If we look

Estimate Std. Error t value Pr(>jtj)
(Intercept) 47.8966 2.3076 20.76 0.0000

x −0.0018 0.0003 −6.89 0.0000

Table 5.1. Regression analysis of long-term trend in PM10.

more closely at a few years, we can see more patterns and trends. In partic-
ular, we can examine differences in these patterns across locations. Here, we
plot the Baltimore, Maryland PM10 data for the years 1998–2000.

> subdata <- subset(balt$exposure, date >=
+ as.Date("1998-01-01"))
> subdata <- transform(subdata, pm10 = pm10tmean +
+ pm10mtrend)
> fit <- lm(pm10 ˜ ns(date, df = 2 * 3),
+ data = subdata)
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> x <- seq(as.Date("1998-01-01"), as.Date("2000-12-31"),
+ "week")
> par(mar = c(2, 4, 2, 2), mfrow = c(2,
+ 1))
> with(subdata, {
+ plot(date, pm10, ylab = expression(PM[10]),
+ main = "(a) Baltimore", cex = 0.8)
+ lines(x, predict(fit, data.frame(date = x)))
+ })

These data are plotted in Figure 5.2(a). In addition to plotting the data, we
have added a simple natural spline smoother to highlight the overall trends.
The smoother uses two degrees of freedom per year of data to capture the
seasonality. There is a clear seasonal pattern in the PM10 data in Figure 5.2(a),
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Fig. 5.2. PM10 data for (a) Baltimore, Maryland, and (b) San Francisco, California,
1998–2000.

where the summer days tend to have higher levels than the winter days.
The Baltimore PM10 data exhibit a common pattern among eastern U.S.

cities, which is a summer increase in PM10 levels and a winter decrease. The
pattern in the western United States is somewhat different. We can take a
look at data from San Francisco, California for the same three year period.

> sanf <- readCity("sanf", asDataFrame = FALSE)
> subdata <- subset(sanf$exposure, date >=
+ as.Date("1998-01-01"))
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> subdata <- transform(subdata, pm10 = pm10tmean +
+ pm10mtrend)
> fit <- lm(pm10 ˜ ns(date, df = 2 * 3),
+ data = subdata)
> x <- seq(as.Date("1998-01-01"), as.Date("2000-12-31"),
+ "week")
> with(subdata, {
+ plot(date, pm10, ylab = expression(PM[10]),
+ main = "(b) San Francisco", cex = 0.8)
+ lines(x, predict(fit, data.frame(date = x)))
+ })

The seasonal pattern for San Francisco in Figure 5.2(b) on the west coast is
the exact opposite of the pattern exhibited for Baltimore on the east coast.
Here, we have winter peaks in PM10 and summer lows. It is useful to note
these patterns when we examine the mortality data in the next section.

Ozone

Another pollutant that is of great interest to many researchers is ozone (O3)
which has been linked to mortality and morbidity in various parts of the
world [e.g., 6, and references therein]. Ozone is a gas that can form primarily
but is usually a result of secondary interactions with other gases and sunlight.
In particular, the formation of ozone is closely related to local meteorology.
In many locations ozone is not measured during the fall and winter months
because of the generally lower levels during that time.

Not every city in the NMMAPS database has ozone measurements. Here
we look at the Baltimore and Chicago data. Ozone is measured in parts per
billion (ppb) and has hourly measurements. The NMMAPSlite package has
the hourly measurements for ozone for each day as well as an aggregate mea-
sure for the entire day. The variable o3tmean is a daily time series of the
trimmed mean of the detrended 24-hour average of ozone. The trend for this
series is stored in the variable o3mtrend.

We plot the ozone data for Baltimore and Chicago in Figure 5.3(a, b).

> balt <- readCity("balt", asDataFrame = FALSE)
> chic <- readCity("chic", asDataFrame = FALSE)

> par(mfrow = c(2, 1), mar = c(3, 4, 2,
+ 2))
> with(balt$exposure, plot(date, o3tmean +
+ o3mtrend, main = "(a) Baltimore",
+ ylab = expression(O[3] * " (ppb)"),
+ pch = "."))
> with(chic$exposure, plot(date, o3tmean +
+ o3mtrend, main = "(b) Chicago", ylab = expression(O[3] *
+ " (ppb)"), pch = "."))
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One can see immediately that ozone, like PM10, is highly seasonal, here with a
summer peak and winter trough in both cities. Baltimore has a different sam-
pling pattern than Chicago in that for Baltimore there are only measurements
between the six months of April through October.

In the United States, when ozone is measured it tends to be measured
every day, so we do not have the kinds of missing data problems that we have
with particulate matter. Ozone tends to be missing in a seasonal way, as with
Baltimore, or sporadically. This pattern of missingness is also present with
the other gases: sulphur dioxide, nitrogen dioxide, and carbon monoxide.
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Fig. 5.3. Daily ozone data for (a) Baltimore and (b) Chicago, 1987–2000

5.2.2 Mortality data

The mortality data are stored in a separate element in the list returned by
readCity. That element is named “outcome” and consists of a data frame.
For the NMMAPS data, the outcomes consist of daily mortality counts start-
ing from January 1, 1987 through December 31, 2000. The mortality counts are
split into a number of different outcomes including mortality from all causes
excluding accidents, chronic obstructive pulmonary disease (COPD), cardio-
vascular disease, respiratory disease, and accidents. Each mortality count
series has an associated “mark” series of the same length which is 1 or 0 de-
pending on whether a given day’s count is seemingly outlying. One may wish
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to exclude very large counts in a given analysis and the “mark” variables are
meant to assist in that.

The mortality data are also stratified into three age categories: mortality
for people under age 65, age 65 to 74, and age over 75. The “outcome” object
has a slot named “strata” which is a data frame containing factors indicating
the different strata for the outcome data. In this case there is only one factor
variable (agecat) indicating the three age categories. Lastly, the “outcome”
object contains a “date” slot which is a vector of class “Date” indicating the
date of each observation.

The outcome data for New York City can be read in via readCity. Here
we have extracted the outcome data frame only. We can plot the mortality
count for all-cause mortality by age group to see the different trends and
seasonal patterns.

> data.split <- split(outcome, outcome$agecat)
> par(mfrow = c(3, 1), mar = c(2, 4, 2,
+ 2) + 0.1)
> with(data.split[[1]], plot(date, death,
+ main = "Under 65", ylab = "Mortality count",
+ pch = "."))
> with(data.split[[2]], plot(date, death,
+ main = "65 to 74", ylab = "Mortality count",
+ pch = "."))
> with(data.split[[3]], plot(date, death,
+ main = "Over 75", ylab = "Mortality count",
+ pch = "."))

The mortality data for the three age categories are shown in Figure 5.4. Notice
in Figure 5.4 that the three age categories have slightly different trends in
mortality. The under 65 group appears to have a decreasing trend, particularly
after 1995. The 64–75 group appears to have a more gradual decrease trend
over the 14 year period and the over 75 group has a relatively stable trend
in mortality. All groups have a strong seasonal pattern with a peak in winter
and a trough in summer. The seasonality seems to be most pronounced in the
over 75 group. The peak in winter mortality is most likely due to the spread of
infectious diseases such as influenza as well as temperature-related phenomena
in cold weather areas. Most important for subsequent health-related analyses,
aside from temperature, data related to the causes of these seasonal changes
in mortality are largely unavailable or unmeasured.

We can examine other features of the data such as the autocorrelation
structure. With time series data such as these, we would expect that neigh-
boring values (in time) would be more similar than distant values. One such
tool for examining this behavior is the autocorrelation function, or acf. The
acf is defined as [13]

r(k) =
1
N

N−k∑
t=1

(xt − x̄)(xt+k − x̄)/c(0)
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Fig. 5.4. New York City daily mortality data by age category, 1987–2000

where

c(0) =
1
N

N∑
t=1

(xt − x̄)2

The integer k indicates the lag of the variable. A plot of r(k) for k = 0, 1, . . . ,K
is called a correlogram. Figure 5.5(a) shows a correlogram for the New York
City mortality data. The correlogram can be computed in R using the acf
function in the stats package.

> library(stats)
> par(mfrow = c(2, 1))
> x <- with(subset(outcome, agecat == "75p"),
+ death)
> acf(x, lag.max = 50, main = "(a) New York City mortality",
+ ci.col = "black")

The very slow decrease in autocorrelation from lag 1 to lag 50 shown in the plot
indicates that there is some nonstationarity in the series. We can remove this
by regressing the values of the series against a smooth function of time. This
smooth function of time can be estimated using natural splines or possibly
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other nonparameteric methods. Here we use a natural spline smoother for
simplicity.

> library(splines)
> fit <- lm(x ˜ ns(1:5114, 2 * 14))
> xr <- resid(fit)
> label <- "(b) New York City mortality (seasonality removed)"
> acf(xr, lag.max = 50, main = label, ci.col = "black")

Figure 5.5(b) shows the correlogram of the residuals after removing some of the
seasonality. There remains some autocorrelation but substantially less than
that exhibited before the seasonality was removed. Season is an important
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Fig. 5.5. Autocorrelation functions for New York City mortality data for (a) raw
data and (b) residuals after removing seasonality.

variable to consider because as shown in Figures 5.4 and 5.2, season is related
very strongly to both mortality and air pollution.



50 5 Exploratory Data Analyses

5.3 Exploratory Statistical Analysis

In many time series analyses, one is often interested in how a single variable,
such as temperature, PM10, or mortality, varies over time. We might be in-
terested in how that variable varies from day to day, month to month, season
to season, or year to year. The particular timescale of interest depends on the
type of scientific question one is interested in addressing.

We may also be interested in examining how two variables co-vary with
each other over time. Such questions may come in the form of, “If X increases
today, does Y also increase today?” or, “If X increases this month, does Y
increase next month?”

In the previous section, we examined individual variables and how they
varied over time. We noticed that both PM10 and mortality have strong sea-
sonal patterns and long-term (generally decreasing) trends. In this section we
look at the relationship between mortality and PM10 and also examine what
other variables might potentially confound that relationship.

5.3.1 Timescale decompositions

Common to all time series data is that we have values that vary over a time
index. In the case of air pollution and mortality data, we have values that
change from day to day. However, we may also be interested in timescales of
variation beyond the day-to-day changes. For example, we may be interested
in looking at the overall 14 year long-term trend of mortality or the seasonal
behavior of PM10. In such cases, it is useful to decompose the time series into
separate components so that we can examine them separately rather than mix
them all together.

We can conceptualize a time series fYtg as following the model

Yt = trendt + seasonalityt + short-term and other variationt (5.1)

where Yt is either mortality or perhaps PM10. Given access to the separate
timescale components (trend, seasonality, short-term) we could compare them
separately for mortality and PM10.

Table 5.2 gives a schematic of the potentially interesting timescales in
which we may be interested when examining air pollution and mortality. The
three timescales for each variable are labeled generally as “Trend” for trends
spanning across years, “Seasonal” for within-year patterns, and “Short-Term”
for shorter-term fluctuations. Although we are interested in the timescale de-
compositions of both mortality and pollution separately, we are more inter-
ested in looking at how the two variables correlate at different timescales and
in determining what kind of evidence is provided by such correlations.

Timescale decompositions of this kind are common in time series analy-
sis. One example is the STL decomposition of [15] which is implemented in
R in the stl function of the stats package. Cleveland’s STL uses the non-
parameteric smoother loess to decompose a time series into three separate
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components. Another possibility is to compute the Fourier transform of the
time series and group the different frequency components together into trend,
seasonal, and short-term components. The use of the Fourier transform allows
for more precise examination of timescales beyond those already mentioned.

Mortality
Trend Seasonal Short-Term

Trend X
Pollution Seasonal X

Short-Term X

Table 5.2. Example timescales of interest for air pollution and health studies and
the correlations between timescales of interest (marked with Xs)

One question that is useful to ask is how are mortality and air pollution
levels correlated at each of the three different timescales?

In particular, we are potentially interested in estimating the correlations
between the respective long-term trends of mortality and pollution, the sea-
sonal trends, and the short-term fluctuations (the Xs marked in Table 5.2).
Hence, the cells of interest in Table 5.2 are the ones falling on the diago-
nal. Although it is possible to look at other correlations in the table, their
interpretation is less clear.

A related question one needs to ask is what might confound the relation-
ship between mortality and air pollution at different timescales? For example,
long-term decreases in PM10 might be positively correlated with long-term
decreases in mortality, indicating that lowering air pollution levels is ben-
eficial. However, there might be factors explaining both decreases, such as
changes in population demographics and community-level activity patterns.
Weather, and specifically temperature, is a factor that can confound the rela-
tionship between mortality and pollution at both the seasonal timescale and
the short-term timescale because it too has seasonal trends and short-term
flucutations. As with all correlation analyses, any evidence of association at a
given timescale must be interpreted in the context of what might potentially
confound that association.

5.3.2 Example: Timescale decompositions of PM10 and mortality

We use data from Detroit, Michigan to demonstrate the timescale decompo-
sition introduced in the previous section. Here, we use the full 14 year daily
time series available from the NMMAPS database and not the shortened series
shown in Figure 4.1.

We decompose the time series data into three different timescales using
moving averages as defined in Section 4.3. Because our method of using moving
averages does not work well with missing values in the exposure variable, we
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will fill in the missing values with the mean of the entire series. There are only
52 missing values out of 5114 observations, thus this filling-in procedure does
not have an impact on the results.

A simple linear regression of y and x gives us the results in Table 5.3.

> library(NMMAPSlite)
> library(stats)
> initDB("NMMAPS")
> data <- readCity("det", collapseAge = TRUE)
> y <- data[, "death"]
> x <- with(data, pm10tmean + pm10mtrend)
> dates <- data[, "date"]
> x[is.na(x)] <- mean(x, na.rm = TRUE)
> fit <- lm(y ˜ x)

Estimate Std. Error t value Pr(>jtj)
(Intercept) 46.1798 0.2263 204.11 0.0000

x 0.0232 0.0057 4.06 0.0000

Table 5.3. Simple linear regression of PM10 and mortality

There appears to be strong evidence of a positive association between PM10

and mortality. We can conduct a full timescale decomposition of the PM10

data to obtain a more detailed picture of the relationship between mortality
and PM10 in Detroit.

> library(stats)
> x.yearly <- filter(x, rep(1/365, 365))
> z <- x - x.yearly
> z.seasonal <- filter(z, rep(1/90, 90))
> u <- z - z.seasonal
> u.weekly <- filter(u, rep(1/7, 7))
> r <- u - u.weekly

Upon decomposing the data, we can fit the model in (4.4) to obtain estimates
of the yearly, seasonal, weekly, and sub-weekly associations.

> fit <- lm(y ˜ x.yearly + z.seasonal +
+ u.weekly + r)

All of the timescales appear strongly associated with mortality. However,
the seasonal component has a strong negative association. This is because
Detroit’s PM10 levels tend to be higher in the summer season and lower in
the winter. In contrast, mortality is generally higher in the winter and lower
in the summer. This inverse relationship gives us the negative coefficient for
the seasonal component.

We can also produce a timescale decomposition of the mortality data and
then plot the different timescales for mortality and PM10 next to each other to
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Estimate Std. Error t value Pr(>jtj)
(Intercept) 34.1031 1.3098 26.04 0.0000

x.yearly 0.3783 0.0383 9.88 0.0000
z.seasonal −0.4354 0.0295 −14.76 0.0000
u.weekly 0.0532 0.0123 4.33 0.0000

r 0.0215 0.0070 3.07 0.0022

Table 5.4. Linear regression of PM10 and mortality, full decomposition

check for any interesting relationships. First we can decompose the mortality
time series in to the same yearly, seasonal, weekly, and sub-weekly timescales.

> y.yearly <- filter(y, rep(1/365, 365))
> yz <- y - y.yearly
> yz.seasonal <- filter(yz, rep(1/90, 90))
> yu <- yz - yz.seasonal
> yu.weekly <- filter(yu, rep(1/7, 7))
> yr <- yu - yu.weekly

Figure 5.6 shows a portion of the timescale decompositions for the Detroit
PM10 (left column) and daily mortality data (right column) for the years
1988–2000. Data are shown for the period 1988–2000 because we use the first
year of data to calculate the moving averages. We can see a little more clearly
the strong positive association between the yearly trends and the negative
association between the seasonal components. The less smooth weekly and
residual/subweekly components are difficult to examine by eye and we must
resort to linear regression results in those cases.

5.3.3 Correlation at different timescales: A look
at the Chicago data

Dominici et al.[29] provided software for creating timescale decompositions of
time series data via a Fourier transform. We have packaged their software and
have included it in the tsModel package. The tsdecomp function can be used
to decompose a time series into user-specified timescales. We demonstrate the
use of tsdecomp on mortality and PM10 data from Chicago, Illinois.

> data <- readCity("chic", collapseAge = TRUE)
> death <- data[, "death"]
> is.na(death) <- as.logical(data[, "markdeath"])

The Chicago mortality data contain a few days with extremely high mortality
counts. Although these may be of interest in another analysis, they are outliers
with respect to the other data points and we remove them for the time being
by setting them to be NA. The variable markdeath is an indicator of days
that have outlying mortality counts.

First we can identify important characteristics of the mortality data by
decomposing the series into three different timescales. The timescales include
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Fig. 5.6. Timescale decomposition for Detroit PM10 and mortality data, 1987–2000.

• A single cycle over the entire series
• 2–14 cycles over the entire series
• 15 or more cycles

These timescales correspond roughly to long-term trends, seasonal trends, and
higher frequency short-term trends.

> library(tsModel)
> mort.dc <- tsdecomp(death, c(1, 2, 15,
+ 5114))

The three time scales are plotted in Figure 5.7.

> par(mfrow = c(3, 1), mar = c(3, 4, 2,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> plot(x, mort.dc[, 1], type = "l", ylab = "Trend",
+ main = "(a)")
> plot(x, mort.dc[, 2], type = "l", ylab = "Seasonal",
+ main = "(b)")
> plot(x, mort.dc[, 3], type = "l", ylab = "Residual",
+ main = "(c)")

Figure 5.7(a) shows the long-term trend which is generally decreasing, not
unlike the trend observed with the New York City mortality data. Here we
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have collapsed the three age categories and are examining the aggregated se-
ries. Figure 5.7(b) shows the obvious seasonal pattern in the mortality data,
again with a winter peak and summer trough. Figure 5.7(c), the bottom plot,
shows the residual variation in mortality, once the long-term trend and sea-
sonality have been removed. Note that the original series is equal to the sum
of the three plots in Figures 5.7(a–c). A similar timescale decomposition can
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Fig. 5.7. Chicago mortality timescale decomposition, 1987–2000, into (a) long-term
trend, (b) seasonality, and (c) short-term variation.

be conducted for the PM10 data, which we do below.

> pm10 <- with(data, pm10tmean + pm10mtrend)
> poll.dc <- tsdecomp(pm10, c(1, 2, 15,
+ 5114))

Figure 5.8 shows the three timescales for the Chicago PM10 data in the
same format as Figure 5.7.

> par(mfrow = c(3, 1), mar = c(3, 4, 1,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
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> plot(x, poll.dc[, 1], type = "l", ylab = "Trend")
> plot(x, poll.dc[, 2], type = "l", ylab = "Seasonal")
> plot(x, poll.dc[, 3], type = "l", ylab = "Residual")

Comparing Figures 5.8 and 5.7 visually, we can see that the seasonal compo-
nents of mortality and PM10 do not correspond and in fact appear negatively
correlated. The long-term trend components seem to behave similarly in that
they are both generally decreasing. From the plots alone, it is difficult to tell
if the short-term fluctuations are in fact correlated at all.
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Fig. 5.8. Chicago PM10 timescale decomposition, 1987–2000

We can examine the correlations at different timescales more formally by
actually computing the correlations separately for each timescale.

> c1 <- cor(mort.dc[, 1], poll.dc[, 1],
+ use = "complete.obs")
> c2 <- cor(mort.dc[, 2], poll.dc[, 2],
+ use = "complete.obs")
> c3 <- cor(mort.dc[, 3], poll.dc[, 3],
+ use = "complete.obs")
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Doing so gives us a correlation of 0.65, for the long-term trend component
−0.81 for the seasonal component, and 0.12 for the short-term component.
Hence, the long-term and short-term timescales are positively correlated and
the seasonal timescale has a negative correlation. We had already suspected
the positive correlation in the long-term trends and the negative correlation
in the seasonality, but the positive correlation in the short-term variation is
interesting. Table 5.5 shows the correlations between mortality and PM10 for
each timescale in the context of Table 5.2.

Mortality
Trend Seasonal Short-Term

Trend 0.65
Pollution Seasonal -0.81

Short-Term 0.12

Table 5.5. Correlations for mortality and PM10 at different timescales

An alternative and perhaps more flexible approach is to use linear re-
gression to analyze everything at once and simultaneously conduct tests of
significance (if such tests are of interest).

> library(stats)
> poll.df <- as.data.frame(poll.dc)
> names(poll.df) <- c("Trend", "Season",
+ "ShortTerm")
> fit <- lm(death ˜ Trend + Season + ShortTerm,
+ data = poll.df)

Table 5.6 shows the results of such a regression analysis. Because of the linear
model assumption and the orthogonality of the predictors, the results of the
regression analysis lead us to the same conclusions as the simple correlation
analysis.

Estimate Std. Error t value Pr(>jtj)
(Intercept) 118.5628 1.1507 103.04 0.0000

Trend 0.8299 0.0936 8.87 0.0000
Season −1.2029 0.0375 −32.11 0.0000

ShortTerm 0.0714 0.0099 7.23 0.0000

Table 5.6. Regression of daily mortality on different timescales of PM10

5.3.4 Looking at more detailed timescales

Although the long-term, seasonal, and short-term trends are common timescales
to examine in time series analysis, particular applications may allow for other
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interesting and relevant timescales to examine. For example, in pollution stud-
ies one might be interested in separating out the effects of daily variation in
pollutant levels on mortality counts from the effects of weekly or monthly
variation.

The tsdecomp function can be used to look at more detailed timescales
of either pollution or mortality.

> freq.cuts <- c(1, 2, 15, round(5114/c(60,
+ 30, 14, 7, 3.5)), 5114)
> poll.dc <- tsdecomp(pm10, freq.cuts)
> colnames(poll.dc) <- c("Long-term", "Seasonal",
+ "2-12 months", "1-2 months", "2-4 weeks",
+ "1-2 weeks", "3.5 days to 1 week",
+ "Less than 3.5 days")

We plot these more detailed timescales in Figure 5.9.

> par(mfcol = c(4, 2), mar = c(2, 2, 2,
+ 2))
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> cn <- colnames(poll.dc)
> for (i in 1:8) {
+ plot(x, poll.dc[, i], type = "l",
+ frame.plot = FALSE, main = cn[i],
+ ylab = "")
+ }

When looking at multiple timescales, it is a little easier to simply conduct
a multiple regression analysis of the outcome versus the timescales of the
pollutant rather than compute individual correlations.

> poll.df <- as.data.frame(poll.dc[, 1:8])
> fit <- lm(death ˜ ., data = poll.df)

Table 5.7 shows the results of regressing all-cause nonaccidental mortality on
the eight timescales shown in Figure 5.9. Notice that the coefficients for the
“Long-term” and “Seasonal” timescales are identical to those in Table 5.6.
This is to be expected because of the linearity assumption and the orthogo-
nality of the different timescales. However, now the short-term timescale has
been broken down even further so that we have estimates of the association
between mortality and timescales ranging from 2–12 months down to <3.5
days. Not all of the timescales could be considered statistically significant with
respect to their relationship with mortality. The summary in Table 5.6 pro-
vides a “breakdown” of the evidence for Chicago and allows for a potentially
more informed discussion of what evidence might be relevant for subsequent
decisions or actions.

Unfortunately, the timescale analysis using tsdecomp() can only be done
with cities that have relatively complete data on PM10. In the next chapter
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Fig. 5.9. Detailed timescale decomposition for Chicago, Illinois PM10 data, 1987–
2000.

Estimate Std. Error t value Pr(>jtj)
(Intercept) 115.1945 0.5491 209.80 0.0000
Long-term 0.8300 0.0935 8.88 0.0000

Seasonal −1.2029 0.0374 −32.15 0.0000
2-12 months −0.0267 0.0363 −0.74 0.4623
1-2 months 0.0670 0.0421 1.59 0.1116

2-4 weeks 0.1251 0.0256 4.90 0.0000
1-2 weeks 0.1040 0.0197 5.27 0.0000

3.5 days to 1 week 0.0638 0.0184 3.46 0.0005
Less than 3.5 days 0.0364 0.0229 1.59 0.1121

Table 5.7. Regression of daily mortality on more detailed timescales of PM10,
Chicago, Illinois, 1987–2000

we use other methods to get around this limitation.
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5.4 Exploring the Potential for Confounding Bias

Under the linear regression model, there is evidence of an association between
mortality and PM10 at all three timescales (yearly, seasonal, and shorter).
However, as noted before, the association is positive in two timescales and
negative in one. How should we interpret these results along with the regres-
sion analysis? If PM10 were truly associated with mortality (either positively
or negatively) we would at least expect that the correlations for each of the
timescales would all be in the same direction.

One possible explanation is that there is some confounding going on. It
is possible that at one or more of the timescales, the relationship is in fact
confounded by a third not-yet-included variable. One such variable is tem-
perature. Temperature has strong seasonal patterns as well as short-term
fluctuations that are often correlated with PM10 and mortality. In addition,
temperature has long-term trends that could potentially affect both PM10 and
mortality. Figure 5.10 shows the daily temperature values for Chicago.

> data <- readCity("chic", collapseAge = TRUE)
> with(data, plot(date, tmpd, type = "l",
+ ylab = "Temperature"))
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Fig. 5.10. Daily temperature for Chicago, 1987–2000.

We can remove the effect of temperature by regressing both mortality and
PM10 on temperature and taking the residuals.

> temp <- data[, "tmpd"]
> pm10.r <- resid(lm(pm10 ˜ temp, na.action = na.exclude))
> death.r <- resid(lm(death ˜ temp, na.action = na.exclude))
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> poll.dc <- tsdecomp(pm10.r, c(1, 2, 15,
+ 5114))

Figure 5.11 shows a timescale decomposition of PM10 after the variation due
to temperature has been removed.

> par(mfrow = c(3, 1), mar = c(3, 4, 1,
+ 2) + 0.1)
> x <- seq(as.Date("1987-01-01"), as.Date("2000-12-31"),
+ "day")
> plot(x, poll.dc[, 1], type = "l", ylab = "Trend")
> plot(x, poll.dc[, 2], type = "l", ylab = "Seasonal")
> plot(x, poll.dc[, 3], type = "l", ylab = "Residual")
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Fig. 5.11. Timescale decomposition of the residuals of PM10 regressed on temper-
ature.

We can then take the mortality residuals and regress them on the timescale
decomposition of the PM10 residuals.

> poll.df <- as.data.frame(poll.dc)
> names(poll.df) <- c("Trend", "Season",
+ "ShortTerm")
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> fit <- lm(death.r ˜ Trend + Season + ShortTerm,
+ data = poll.df)

Table 5.8 shows the estimated regression coefficients for the relationship
between PM10 and mortality after removing temperature. Notice now in

Estimate Std. Error t value Pr(>jtj)
(Intercept) −0.0988 0.1835 −0.54 0.5902

Trend 0.8829 0.0894 9.88 0.0000
Season 0.3226 0.0661 4.88 0.0000

ShortTerm 0.1061 0.0103 10.29 0.0000

Table 5.8. Regression of mortality on PM10 with temperature removed

Table 5.8 that the regression coefficient for the seasonal timescale has changed
sign whereas the coefficients for the short-term and long-term trend timescales
are relatively unchanged. Clearly temperature has some relationship with both
mortality and PM10 at the long-term and seasonal timescales. The potential
confounding effect of temperature on the short-term timescale is perhaps less
substantial.

Temperature is an example of a measured confounder. We have daily data
on temperature and can adjust for it directly in our models. Often, there
are other potential confounders in time series analysis for which we generally
do not have any data. Such confounders are unmeasured confounders and
an example of one in this application is a group of variables that we might
collectively call “season”.

Season affects mortality because in the winter there is generally thought to
be an increase in the spread of infectious diseases such as influenza. Unfortu-
nately, there is little reliable data on such infectious disease events. Season can
also affect pollution levels via periodic changes in sources such as power plant
production levels or automobile usage. Yet another unmeasured confounder is
the group of variables that might produce long-term trends in both pollution
and mortality. As mentioned before, these include population demographics
and activity patterns.

The potential for confounding from seasonal and long-term trends might
lead us to discount the evidence of association between the trend and seasonal
components found in Tables 5.5 and 5.6. In subsequent analyses we may wish
to completely remove their influence on any assocations we choose to estimate.

We can observe the potential confounding effect of season on the relation-
ship between PM10 and mortality by conducting a simple stratified analysis.
We demonstrate this effect using data from New York City, New York.

> data <- readCity("ny", collapseAge = TRUE)

We can make a simple scatterplot of the daily mortality and PM10 data for
the years 1987–2000.
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> with(data, plot(l1pm10tmean, death,
xlab = expression(PM[10]),

+ ylab = "Daily mortality", cex = 0.6,
+ col = gray(0.4)))

We can also overlay a simple linear regression line on the plot to highlight the
relationship between the two variables.

> f <- lm(death ˜ l1pm10tmean, data)
> with(data, {
+ lines(sort(l1pm10tmean), predict(f,
+ data.frame(l1pm10tmean = sort(l1pm10tmean))),
+ lwd = 4)
+ })

The resulting scatterplot is shown in Figure 5.12. The PM10 data we have
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Fig. 5.12. Scatterplot of daily mortality and lag 1 PM10 for New York City, New
York, 1987–2000.

chosen to plot is the lag 1 PM10 value. This means that for each day’s mortality
count, we plot the previous day’s PM10 value. Time series studies of mortality
and PM10 have shown this to be an important lag structure [101]. The overall
relationship between lag 1 PM10 and mortality in New York City appears to
be negative.
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In Figures 5.13(a–d) we have plotted the New York City mortality and
PM10 data four times, with each plot highlighting a different season of the
year. Within each plot we have overlaid in black the data points correspond-
ing to that season as well as the regression line fit to only the data from
that season. We can see that for each season, the relationship between lag 1
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Fig. 5.13. Simple linear regression of New York City PM10 and mortality data,
stratified by season.

PM10 and mortality is positive, but the overall, the relationship is negative,
as shown in Figure 5.12. This example with New York City data illustrates
how estimated associations between air pollution and mortality can change
depending on whether one decides to adjust for season.

In general, without data on the factors that cause the seasonal and long-
term trends we cannot adjust for them directly when modeling air pollution
and mortality. However, one approach is to make an assumption that these
variables affect mortality and pollution in a smooth manner. Given this as-
sumption we can use a smooth function of time itself to adjust for the various
seasonal and long-term trends that may confound the relationship between air
pollution and mortality. We explore this approach to adjusting for unmeasured
confounding in Chapter 6.
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5.5 Summary

Many standard tools of statistical analysis can be brought to bear when an-
alyzing time series data. Looking at correlations or simple linear regression
models can provide insight into relationships between variables. In addition,
smoothing techniques can be used for exploratory analysis.

With time series data, a feature that we can take advantage of is the
fact that there is an underlying process evolving over time. We can meaning-
fully decompose a time series into a long-term trend, a seasonal pattern, and
residual short-term variation. This kind of timescale decomposition can give
us insight into where the evidence of an association exists. In epidemiologi-
cal studies, there is an added benefit of timescale decompositions in that we
can examine each timescale independently and evaluate the strength of the
evidence.

For example, with air pollution and mortality, even though the associ-
ations at the long-term trend and seasonal timescales may be confounded,
the variation at the short-term timescale is not necessarily confounded by
the same factors and the associations there may still be credible. This fact
highlights the benefits of the timescale decomposition. By decomposing the
predictor into separate long-term trend, seasonal, and short-term timescales,
we can isolate the sources of evidence and use our subject matter knowledge
to upweight or downweight the evidence appropriately.

In any epidemiological study one might reasonably ask, “From where does
the evidence of association come?” In air pollution and health time series
studies it would appear that perhaps the most reliable evidence comes from
the short-term timescale variation. We explore this question in greater depth
in the chapters to follow.

5.6 Reproducibility Package

For the sake of brevity, some of the code for producing the analyses in this
chapter has not been shown for the sake of brevity. However, the full data and
code for reproducing all of the analyses and plots can be downloaded using
the cacher package by calling

> clonecache(id = "2a04c4d5523816f531f98b141c0eb17c6273f308")

which will download the cached analysis from the Reproducible Research
Archive.

5.7 Problems

In this set of problems we explore the daily time series data of air pollu-
tion and mortality and we visually inspect their long-term, seasonal, and
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short-term variation. We also calculate the associations between air pollution
and mortality at these different scales of variation.

The data frames for each of the cities all have the same variable names.
The primary variables we need from each data frame are

• death, daily mortality counts from all-cause non-accidental mortality
• pm10tmean, daily detrended, PM10 values
• pm10mtrend, daily median trend of PM10

• date, the date, stored as an object of class Date
• tmpd, daily temperature

The data for a given city (denoted by its abbreviated name) can be read into
R using the readCity function from the NMMAPSlite package described
in Chapter 2.

1. Load data for Chicago (chic), New York (ny), and Los Angeles (la) into
R.

2. For each city, plot the PM10 data versus date. Try plotting PM10 both
with and without the trend added in. Try plotting the data in smaller
windows of time to see more detail.

3. Using the tsdecomp function, decompose the Chicago PM10 data into
three timescales: long-term variation, seasonal variation short-term vari-
ation. Plot your results.

4. For each of the three cities, plot the all-cause non-accidental mortality
data versus date separately for each of the three age categories: under65,
65to74, and 75p.

5. Using the tsdecomp function, decompose the mortality data into three
timescales (as before).

6. Revisit the timescale decompositions for both PM10 and mortality in
Chicago. Visually compare the long-term trend for mortality with the
long-term trend for PM10. Do the same comparison for the seasonal and
short-term components.

7. Compute the correlation coefficient between the long-term trends for mor-
tality and PM10. Compute the correlation coefficients for both the seasonal
and short-term components of mortality and PM10. If there are any miss-
ing data, set use = "complete" in the call to cor when computing
the correlation.

8. Try the same timescale/correlation analysis with the city of Seattle, WA
(seat). Do you get the same correlations?

9. Try the same timescale/correlation analysis with Pittsburgh, PA (pitt).
10. Fill in the following table with the correlations between PM10 and mor-

tality computed at different timescales in the previous steps:
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Long-Term Seasonal Short-Term
Chicago
Seattle

Pittsburgh

Upon completing the problems above, consider the following questions.

1. What are the main characteristics of the time series data for mortality
and air pollution?

2. What are the long-term, seasonal, and short-term variations in air pollu-
tion in U.S. cities? Are there differences between cities?

3. What are the long-term, seasonal, and short-term variations in mortality
in U.S. cities? Are there differences between cities? Are there differences
between age categories?

4. How do the long-term, seasonal, and short-term variations in PM10 and
mortality relate to each other? How do they relate on different timescales?

5. Is there any evidence of an association between PM10 and mortality in
these cities? Which timescale is more suitable for drawing inferences?

6. How should we weigh the evidence from the different timescales? What
evidence is more important? What evidence should be discounted and
why?
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