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Abstract

We develop a flexible framework for modeling high-dimensional functional and

imaging data observed longitudinally. The approach decomposes the observed vari-

ability of high-dimensional observations measured at multiple visits into three ad-

ditive components: a subject-specific functional random intercept that quantifies

the cross-sectional variability, a subject-specific functional slope that quantifies the

dynamic irreversible deformation over multiple visits, and a subject-visit specific

functional deviation that quantifies exchangeable or reversible visit-to-visit changes.

The proposed method is very fast, scalable to studies including ultra-high dimen-

sional data, and can easily be adapted to and executed on modest computing in-

frastructures. The method is applied to the longitudinal analysis of diffusion tensor

imaging (DTI) data of the corpus callosum of multiple sclerosis (MS) subjects. The

study includes 176 subjects observed at 466 visits. For each subject and visit the

study contains a registered DTI scan of the corpus callosum at roughly 30,000

voxels.

Keywords: functional data analysis, principal components, linear mixed model, diffu-

sion tensor imaging, brain imaging data, multiple sclerosis.

1 Introduction

An increasing number of longitudinal studies routinely acquire high-dimensional data,

such as brain images or gene expression, at multiple visits. This led to increased interest

in generalizing standard models designed for longitudinal data analysis to the case when

the observed data are massively multivariate or functional. In this paper we propose
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to generalize the random intercept random slope mixed effect model to the case when

instead of a scalar, such as systolic blood pressure, one measures a highly multivariate

object, such as a brain image. The proposed methods can be applied to any longitudinal

study that includes high-dimensional functional or imaging data.

This paper is motivated by a study of multiple sclerosis (MS) patients (Reich et al.,

2010). Multiple sclerosis is a degenerative disease of the central nervous system. A

hallmark of MS is damage to and degeneration of the myelin sheaths that surround and

insulate nerve fibers in the brain. Such damage results in sclerotic plaques that distort

the flow of electrical impulses along the nerves to different parts of the body (Raine et al.,

2008). Secondary to the loss of myelin, but potentially as well a primary manifestation

of the disease, MS directly affects the neurons themselves, resulting in accelerated brain

atrophy.

Our data are derived from a natural history study of 176 MS cases drawn from a wide

spectrum of disease severity. Subjects were scanned over a 5-year period up to 10 times

per subject, for a total of 466 scans. The scans have been aligned using a 12 degrees

of freedom transformation, meaning that we accounted for rotation, translation, scaling,

and shearing, but not for nonlinear deformation. In this study we focus on fractional

anisotropy (FA), a useful DTI summary which is a measure of tissue integrity and is

sensitive to both axon fiber density and myelination in white matter. FA is measured on

the scale between zero (isotropic diffusion characteristic of fluid-filled cavities) and one

(anisotropic diffusion, characteristic of highly ordered white matter fiber bundles) and

characterizes the degree of d of a diffusion process (Mori, 2007).

The goal of the study was to model longitudinal variability of FA in the corpus cal-

losum. The primary region of interest (ROI), therefore is a central block of the brain

containing the corpus callosum, the major bundle of neural fibers connecting the left and

right cerebral hemispheres. We weight FA at each voxel in the block with a probability

for the voxel to be in the corpus callosum, where the probability is derived from an atlas

formed using healthy-volunteer scans, and study longitudinal changes of weighted FAs in

the blocks (Reich et al., 2010). Figure 1 displays the ROI displayed as a blue block in a

template brain. Each block is of size 38×72×11, indicating that there are 38 sagittal, 72

coronal, and 11 axial slices, respectively. Figure 2 displays the 11 axial (horisontal) slices

for one of the subjects from bottom to top. In this paper, we study the FA at every voxel

of the blue blocks, which could be unfolded into an approximately 30, 000 dimensional

vector that contains the corresponding FA value at each entry. The variability of these

images over multiple visits and subjects will be described by the combination of: 1) a

subject-specific functional random intercept that quantifies the cross-sectional variability;

2) a subject-specific functional slope that quantifies the dynamic irreversible deformation

over multiple visits; and 3) a subject-visit specific functional deviation that quantifies

exchangeable or reversible visit-to-visit changes.

High dimensional data sets have motivated the statistical and imaging communities

to develop new methodological approaches to data analysis. Successful modeling ap-

proaches involving wavelets and splines have been reported in the literature (Mohamed

and Davatzikos, 2004; Morris and Carroll, 2006; Guo, 2002; Morris et al., 2011; Zhu

et al., 2011; Morris et al., 2011; Rodriguez et al., 2009; Bigelow and Dunson, 2009; Reiss
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Figure 1: The 3D-rendering of the template brain and the region of interest, a blue block con-
taining corpus callosum. Views: R=Right, L=Left, S=Superior, I=Interior, A=Anterior,
P=Posterior. For the purposes of orientation, major venous structures are displayed in red in
the right half of the template brain. The 3D-renderings are obtained using 3D-Slicer (2011)
and 3D reconstructions of the anatomy from Pujol (2010).

et al., 2005; Reiss and Ogden, 2008, 2010). A different direction of research has focused

on principal component decompositions (Di et al., 2008; Crainiceanu et al., 2009; Aston

et al., 2010; Staicu et al., 2010; Greven et al., 2010; Di et al., 2010; Zipunnikov et al.,

2011b; Crainiceanu et al., 2011), which led to several applications to imaging data (Shi-

nohara et al., 2011; Goldsmith et al., 2011; Zipunnikov et al., 2011a). However, the high

dimensionality of new data sets, the inherent complexity of sampling designs and data

collection, and the diversity of new technological measurements raise multiple difficult

challenges that are currently unaddressed.

Here we address directly the problem of analyzing populations of high dimensional

images at multiple visits using high dimensional longitudinal functional principal compo-

nents analysis (HD-LFPCA). The method decomposes the longitudinal functional/imaging

data into a subject specific, longitudinal subject specific, and subject-visit specific com-

ponents. The dimension reduction for all components is done using principal components

of corresponding covariance operators. The estimation and inferential methods are fast

and can be performed on standard personal computers to analyze hundreds or thou-

sands of high-dimensional curves or images at multiple visits. This was achieved by a

combination of statistical and computational methods: 1) relying only on matrix block

calculations and sequential access to memory to avoid loading very large data sets into

the computer memory (see Demmel, 1997 and Golub and Loan, 1996 for a comprehensive

review of partitioned matrix techniques); 2) using SVD for matrices that have at least

one dimension smaller than 10, 000 (Zipunnikov et al., 2011a) 3) obtaining best linear

unbiased predictors (BLUPS) of principal scores as a by-product of SVD of the data

matrix; 4) linking the high-dimensional space to a low-dimensional intrinsic space; this
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Figure 2: The corpus callosum of a randomly chosen subject. Eleven axial slices are shown
on the left. A histogram of the weighted FA values is on the right. Orientation: Interior(slice
0) to Superior(slice 10), Posterior (top) to Anterior(bottom), Right to Left. The pictures are
obtained using MIPAV (2011).

allows Karhunen-Loeve (KL) decompositions of covariance operators that cannot even

be stored in the computer memory. The proposed methods are computationally linear

in the dimension of the function or images. Thus, even though we analyze images with

tens of thousands of voxels, the methods can easily be applied to images that are 2 or 3

orders of magnitude larger.

The rest of the manuscript is laid out as follows. Section 2 reviews LFPCA and

discusses its limitation in high-dimensional settings. In Section 3 we introduce HD-

LFPCA, which provides a new statistical and computational framework for LFPCA.

This will circumvent the problems associated with LFPCA in high dimensional settings.

Simulation studies are provided in Section 4. Our methods are applied to the MS data

in Section 5. Section 6 concludes the paper with a discussion.

2 Longitudinal FPCA

In this section we review the LFPCA framework introduced by Greven et al. (2010).

We develop an estimation procedure based on the original one in Greven et al. (2010)

but heavily modified for application to high dimensional data. We emphasize the major

reasons why the original methods can not be applied to high-dimensional data such as

the voxel-wise FA in the corpus callosum for MS subjects described in Section 1.

2.1 Model

A brain imaging longitudinal study usually contains a sample of images Yij, where Yij is

a recorded brain image of the ith subject, i = 1, . . . , I, scanned at times Tij, j = 1, . . . , Ji.

The total number of subjects is denoted by I. The times Tij are subject specific. Different

subjects could have different number of visits (scans), Ji. The images are stored in 3-

dimensional array structures of dimension p = p1× p2× p3. For example, in the MS data
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p = 38× 72× 11 = 30, 096. Note that our approach is not limited to the case when data

are in a 3 dimensional array. Instead, it can be applied to any data structure where the

voxels (or pixels, or locations, etc.) are the same across subjects and visits and data can

be unfolded into a vector. Following Greven et al. (2010) we consider the LFPCA model

Yij(v) = η(v, Tij) +Xi,0(v) +Xi,1(v)Tij +Wij(v), (1)

where v denotes a voxel, η(v, Tij) is a fixed main effect, Xi,0(v) is the random func-

tional/imaging intercept for subject i, Xi,1(v) is the random functional/imaging slope for

subject i, Tij is the time of visit j for subject i, Wij(v) is the random subject/visit-specific

functional/imaging deviation.

In the remainder of the paper, we unfold the data Yij and represent it as a p × 1

dimensional vector containing the voxels in a particular order, where the order is pre-

served across all subjects and visits. We assume that η(v, Tij) is a fixed surface/image

and the latent (unobserved) 2p-dimensional process Xi(v) = (X
′
i,0(v), X

′
i,1(v))

′
and the p-

dimensional process Wij(v) are zero-mean second-order stationary. We also assume that

Xi(v) and Wij(v) are uncorrelated. We denote by KX(v1, v2) and KW (v1, v2) their covari-

ance operators, respectively. Assuming that KX(v1, v2) and KW (v1, v2) are continuous,

we can use the standard Karhunen-Loeve expansions of the random processes (Karhunen,

1947; Loeve, 1978) and represent Xi(v) =
∑∞

k=1 ξikφ
X
k (v) with φX

k (v) = (φX,0
k (v), φX,1

k (v))

and Wij(v) =
∑∞

l=1 ζijlφ
W
l (v), where φX

k and φW
l are the eigenfunctions of the KX and

KW operators, respectively. Note that KX and KW will be estimated by their sample

counterparts on finite 2p× 2p and p× p grids, respectively. Hence, we can always make a

working assumption of continuity KX and KW . The LFPCA model becomes the mixed

effects model{
Yij(v) = η(v, Tij) +

∑∞
k=1 ξikZ

′
ijφ

X
k (v) +

∑∞
l=1 ζijlφ

W
l (v)

(ξik1 , ξik2) ∼ (0, 0;λXk1 , λ
X
k2
, 0); (ζijl1 , ζijl2) ∼ (0, 0;λWl1 , λ

W
l2
, 0),

(2)

where Zij = (1, Tij)
′

and “ ∼ (0, 0;λXk1 , λ
X
k2
, 0)” indicates that a pair of variables is un-

correlated with mean zero and variances λXk1 and λXk2 , respectively. Variances λXk ’s are

nonincreasing, that is λXk1 ≥ λXk2 if k1 ≤ k2. No distributional assumptions on the scores

are required. In addition, the assumption that Xi(v) and Wij(v) are uncorrelated is en-

sured by the assumption that {ξik}∞k=1 and {ζijl}∞l=1 are uncorrelated. Note that model

(2) may be extended to include a more general vector of covariates Zij. We discuss a

general functional mixed model in Section 3.3.

In practice, model 2 is projected onto the first NX and NW components, respectively.

Assuming that NX and NW are known, the model becomes{
Yij(v) = η(v, Tij) +

∑NX

k=1 ξikZ
′
ijφ

X
k (v) +

∑NW

l=1 ζijlφ
W
l (v)

(ξik1 , ξik2) ∼ (0, 0;λXk1 , λ
X
k2
, 0); (ζijl1 , ζijl2) ∼ (0, 0;λWl1 , λ

W
l2
, 0).

(3)

The choice of the number of principal components NX and NW is discussed in (Di et al.,

2008; Greven et al., 2010). Typically, NX and NW are small and (3) provides significant

dimension reduction of the family of images and their longitudinal dynamics. The main
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reason why the LFPCA model (3) cannot be fit when data are high dimensional is that the

empirical covariance matrices KX and KW can not be calculated, stored or diagonalized.

Indeed, in our case these operators would be 30, 000 by 30, 000 dimensional, which would

have around 1 billion entries. In other applications these operators would be even bigger.

2.2 Estimation

There are many efficient and flexible ways to parametrize and estimate η(v, Tij). Some

of them are discussed in detail in (Greven et al., 2010). Therefore, we assume that

η(v, Tij) is estimated as η̃(v, Tij) and define the unexplained part of the image as Ỹij(v) =

Yij(v) − η̃(v, Tij). The computationally intensive part of fitting (3) is estimating the

following massively multivariate model

Ỹij =

NX∑
k=1

ξikφ
X,0
k + Tij

NX∑
k=1

ξikφ
X,1
k +

NW∑
l=1

ζijlφ
W
l , (4)

where Ỹij = {Ỹij(v1), . . . , Ỹij(vp)} is a p× 1 dimensional vector, and φX,0
k , φX,1

k , and φW
l

are correspondingly vectorized eigenvectors. The model can be rewritten in matrix form

as

Ỹij = ΦX,0ξi + TijΦ
X,1ξi + ΦWζij, (5)

where ΦX,0 = [φX,0
1 , . . . ,φX,0

NX
] and ΦX,1 = [φX,1

1 , . . . ,φX,1
NX

] are p × NX dimensional ma-

trices, ΦW = [φW
1 , . . . ,φ

W
NW

] is a p × NW dimensional matrix, principal scores ξi =

(ξi1, . . . , ξiNX
)
′

and ζij = (ζij1, . . . , ζijNU
)
′

are uncorrelated with diagonal covariance ma-

trices E(ξiξ
′

i) = ΛX = diag(λX1 , . . . , λ
X
NX

) and E(ζijζ
′

ij) = ΛW = diag(λW1 , . . . , λ
W
NW

),

respectively. To obtain the eigenvectors and eigenvalues in model (5), the spectral de-

compositions of KX and KW need to be constructed. The first NX and NW eigenvectors

and eigenvalues are retained after this, that is KX ≈ ΦXΛXΦX′
and KW ≈ ΦWΛWΦW ′

,

where ΦX = [ΦX,0′ ,ΦX,1′ ]
′

denotes a 2p×NX matrix with orthonormal columns and ΦW

is a p×NW matrix with orthonormal columns.

Next, we describe how LFPCA estimates the covariance operators KX and KW . First,

we split the 2p×2p matrix KX into four p×p blocks as KX = [K00
X

...K01
X ; K10

X

...K11
X ], where

Kks
X = E{ΦX,kξi(Φ

X,sξi)
′} for k, s ∈ {0, 1}. Intuitively, K00

X is the covariance operator of

the random intercept process X0i(v), K11
X is the covariance operator of the random slope

process X1i(v), and K01
X is the cross-covariance operator of the random slope process

X0i(v) with the random slope process X1i(v). From (5), it follows that for subject i

observations Ỹij1 and Ỹij2 “on average” interact according to the following identity

E(Ỹij1Ỹ
′

ij2
) = K00

X + Tij2K
01
X + Tij1K

10
X + Tij1Tij2K

11
X + δj1j2K

W , j1, j2 = 1, . . . , Ji (6)

where δj1j2 is 1 if j1 = j2 and 0 otherwise. Identifiability of model (6) requires that some

subjects have more than two visits, that is Ji ≥ 3. Covariances KX and KW can be esti-

mated by regressing Ỹij1Ỹ
′
ij2

on 1, Tij2 , Tij1 , Tij1Tij2 , and δj1j2 . We can rewrite (6) in ma-

trix form as E(Ỹv
ij1j2

) = Kvfij1j2 , where Ỹv
ij1j2

= Ỹij2⊗Ỹij1 is a p2×1 dimensional vector,

the parameter of interest is the p2×5 matrix Kv = [vec(K00
X ), vec(K01

X ), vec(K10
X ), vec(K11

X ),
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vec(KW )], and the covariates are entries in the 5×1 vector fij1j2 = (1, Tij2 , Tij1 , Tij1Tij2 , δj1j2)
′
.

With these notations, (6) can be rewritten as EYv = KvF, where Ỹv is p2 ×m dimen-

sional with m =
∑I

i=1 J
2
i and F is a 5 × m dimensional matrix with columns equal to

fij1j2 , i = 1, . . . , I and j1, j2 = 1, . . . , Ji. The ordinary least squares (OLS) estimator of

Kv is thus K̂v = ỸvF
′
(FF

′
)−1 which provides unbiased estimators of the covariances KX

and KW . If we denote H = F
′
(FF

′
)−1 then each column of H is a vector of weights such

that

K̂00
X =

∑
i,j1,j2

Ỹij1Ỹ
′

ij2
h1ij1j2 , K̂01

X =
∑
i,j1,j2

Ỹij1Ỹ
′

ij2
h2ij1j2 , K̂10

X =
∑
i,j1,j2

Ỹij1Ỹ
′

ij2
h3ij1j2 , (7)

K̂11
X =

∑
i,j1,j2

Ỹij1Ỹ
′

ij2
h4ij1j2 , K̂W =

∑
i,j1,j2

Ỹij1Ỹ
′

ij2
h5ij1j2 .

Thus, the OLS equations (7) define the symmetric matrices K̂X and K̂W .

Estimating the covariance matrices is a crucial first step. However, constructing and

storing these matrices requires O(p2) calculations and O(p2) memory units, respectively.

Even if it were possible to calculate and store these covariances, obtaining the spectral

decompositions would typically be infeasible. Indeed, KX is a 2p× 2p and KW is a p× p
dimensional matrix, which would require O(p3) operations, making diagonalization infea-

sible for p > 104. Therefore, LFPCA, which performs extremely well when the functional

dimensionality is moderate, fails in very high and ultra high dimensional settings.

In the next section we develop a methodology capable of handling longitudinal mod-

els of very high dimensionality. The main reason why our methods work efficiently is

because the intrinsic dimensionality of the model is controlled by the sample size of the

study, which is much smaller compared to the number of voxels. The core part of the

methodology is to carefully exploit this underlying low dimensional space.

3 HD-LFPCA

In this section we provide our statistical model and inferential methods. The main em-

phasis is given to providing a new methodological approach with the ultimate goal of

solving the intractable computational problems discussed in the previous section. While

our approach was motivated by high dimensional DTI data of the MS study, HD-LFPCA

has a considerable potential for the analysis of many other longitudinal study dealing

with high-dimensional data.

3.1 Eigenanalysis

In Section 2 we established that the main computational bottleneck for standard LFPCA

of Greven et al. (2010) is constructing, storing, and decomposing the relevant covariance

operators. In this section we propose an algorithm that allows efficient calculation of the

eigenvectors and eigenvalues of these covariance operators. In addition, we demonstrate

how all necessary calculations can be done using sequential access to data. One of the

main assumptions of this section is that the sample size, n =
∑I

j=1 Ji, is moderate so

7



calculations of order O(n3) are feasible. In Section 3.4 we discuss ways to extend our

approach to situations when this assumption is violated.

Denote by Ỹ = (Ỹ1, . . . , ỸI), where Ỹi = (Ỹi1, . . . , ỸiJi) is a centered p× Ji matrix

and the column j, j = 1, . . . , Ji, contains the unfolded image for subject i at visit j. Note

that the matrix Ỹi contains all the data for subject i with each column corresponding

to a particular visit. The matrix Ỹ is the p × n matrix is not directly observed and

obtained by column-binding the centered subject-specific data matrices Ỹi. Thus if Ỹi =

(Ỹi1, . . . , ỸiJi) then Ỹ = (Ỹ1, . . . , ỸI). Our approach starts with constructing the SVD

of the matrix Ỹ

Ỹ = VS1/2U
′
. (8)

Here, the matrix V is p × n dimensional with n orthonormal columns, S is a diagonal

n×n dimensional matrix and U is an n×n dimensional orthogonal matrix. Calculating

the SVD of Ỹ requires only a number of operations linear in the number of parameters

p. Indeed, consider the n × n symmetric matrix Ỹ
′
Ỹ with its spectral decomposition

Ỹ
′
Ỹ = USU

′
. Note that for high-dimensional p the matrix Ỹ cannot be loaded into

the memory. The solution is to partition it into L slices as Ỹ
′
= [(Ỹ1)

′ |(Ỹ2)
′| . . . |(ỸL)

′
],

where the size of the lth slice, Ỹl, is (p/L) × n and can be adapted to the available

computer memory and optimized to reduce implementation time. The matrix Ỹ
′
Ỹ is

then calculated as
∑L

l=1(Ỹ
l)

′
Ỹl.

From the SVD (8) the p × n matrix V can be obtained as V = ỸUS−1/2. The

actual calculations can be performed on the slices of the partitioned matrix Ỹ as Vl =

ỸlUS−1/2, l = 1, . . . , L. The concatenated slices [(V1)
′ |(V2)

′| . . . |(VL)
′
] form the ma-

trix of the left singular vectors V
′
. Therefore, the SVD (8) can be constructed with a

sequential access to the data Ỹ with p-linear effort.

After obtaining the SVD decomposition of Ỹ, each image Ỹij can be represented as

Ỹij = VS1/2Uij, where Uij is a corresponding column of matrix U
′
. Therefore, the

vectors Ỹij differ only via the vector factors Uij of dimension n × 1. Comparing this

SVD representation of Ỹij with the right-hand side of (4), it follows that cross-sectional

and longitudinal variability controlled by the principal scores ξi, ζij, and time variables

Tij must be completely determined by the low-dimensional vectors Uij. This is the key

observation which makes our approach feasible. Below, we provide more intuition behind

our approach. The formal argument is presented in Theorem 1.

First, we substitute the left-hand side of (5) with its SVD representation of Ỹij to

get VS1/2Uij = ΦX,0ξi + TijΦ
X,1ξi + ΦWζij. Now we can multiply by V′ both sides

of the equation to get S1/2Uij = V′ΦX,0ξi + TijV
′ΦX,1ξi + V′ΦWζij. If we denote

AX,0 = V′ΦX,0 of size n×NX , AX,1 = V′ΦX,1 of size n×NX , and AW = V′ΦU of size

n×NW , we obtain

S1/2Uij = AX,0ξi + TijA
X,1ξi + AWζij. (9)

Conditionally on the observed data Ỹ, models (5) and (9) are equivalent. Indeed, model

(5) is a linear model that we want to fit to n vectors Ỹij’s. These vectors span an

(at most) n-dimensional linear subspace. Hence, the columns of matrix V, the right

singular vectors of Ỹ, could be thought of as an orthonormal basis with S1/2Uij being

the coordinates of Ỹij with respect to this basis. Multiplication by V′ can be seen as
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a linear mapping from model (5) restricted to observed data Ỹ′ijs to model (9). Thus,

even though VV′ 6= Ip, the projection defined by V does not lose any information about

the linear mixed model (5) as the original data vectors Ỹij’s can be recovered using

the identity VV′Ỹij = Ỹij. Hence, model (9) has an “intrinsic” dimensionality that is

induced by the study sample size n. We can estimate the low-dimensional model (9)

using the LFPCA methods developed in Section 2. This step is now feasible as it requires

only O(n3) calculations. The formal result presented below shows that fitting model (9)

is an essential step for getting the high-dimensional principal components in a p-linear

time.

Theorem 1: The eigenvectors of the estimated covariance operators (7) can be cal-

culated as Φ̂
X,0

= VÂX,0, Φ̂
X,1

= VÂX,1, Φ̂
W

= VÂW , where matrices ÂX,0, ÂX,1,

ÂW are obtained from fitting model (9). The estimated matrices of eigenvalues Λ̂
X

and

Λ̂
W

are the same for both model (4) and model (9).

The proof of the theorem is given in Appendix. Note that the construction above

is a generalization of the HD-MFPCA result in Zipunnikov et al. (2011b), which was

obtained in the case when there is no longitudinal component ΦX,1. In the next section,

we provide more insights into the intrinsic model (9).

3.2 Estimation of principal scores

Principal scores play the role of the coordinates of Ỹij in the basis defined by the LFPCA

model (5). Therefore, it is essential to estimate the principal scores to make inferences

based on principal components. In this section, we propose an approach to calculating

the BLUPS of the scores that is computationally feasible for samples of high-resolution

images.

First, we introduce some notations. In Section 3.1, we showed that the SVD of the

matrix Ỹ can be written in by-subject blocks as Ỹi = VS1/2U
′
i, where the n× Ji matrix

U
′
i corresponds to the subject i. Model (5) can be rewritten as

vec(Ỹi) = Biωi, (10)

where Bi = [BX
i

...BW
i ], BX

i = 1Ji⊗ΦX,0+Ti⊗ΦX,1, BW
i = IJi⊗ΦW , Ti = (Ti1, . . . , TiJi)

′
,

ωi = (ξ
′

i, ζ
′

i)
′
, the subject level principal scores ζi = (ζ

′

i1, . . . , ζ
′

iJi
)
′
, 1Ji is a Ji × 1 vector

of ones, ⊗ is the Kronecker product of matrices, and operation vec(·) stacks the columns

of a matrix on top of each other. The following theorem contains the main result of this

section; it shows how the estimated BLUPs can be efficiently calculated for the LFPCA

model in the context of high dimensional data.

Theorem 2: Under the LFPCA model (3), the estimated best linear unbiased predic-

tor (EBLUP) of ξi and ζi is given by(
ξ̂i
ζ̂i

)
= (B̂

′

iB̂i)
−1B̂

′

ivec(Ỹi), (11)

where matrix factors above can be written in terms of low-dimensional right singular

9



vectors as

B̂
′

iB̂i =

(
JiĈ00 + T 2

i·Ĉ11 + Ti·(Ĉ10 + Ĉ01) 1
′
Ji
⊗ Ĉ0W + T

′
i ⊗ Ĉ1W

1Ji ⊗ ĈW0 + Ti ⊗ ĈW1 INW Ji

)

and

B̂
′

ivec(Ỹi) =

(
ÂX,0S1/2U

′
i1Ji + ÂX,1S1/2U

′
iTi

vec(ÂWS1/2U
′
i)

)
,

where Ti· =
∑Ji

j=1 Tij, T
2
i· =

∑Ji
j=1 T

2
ij, Ĉks = (ÂX,k)

′
ÂX,s for k, s ∈ {0, 1}, ĈsW =

(ÂX,s)
′
ÂW , ĈWs = Ĉ

′
sW for s = {0, 1}.

The proof of the theorem is given in Appendix. It is interesting to note that the

EBLUPs given by Theorem 1 for random effects ωi in the linear mixed model (10)

coincide with the subject-specific OLS estimator which would be calculated if ωi were

fixed parameters (more details are given in Appendix). The EBLUPs calculations are

almost instantaneous as the matrices involved in (11) are low-dimensional and do not

depend on the dimension p. This is due to the crucial link between the full model (4) and

the intrinsic model (9). Although the proof is based on the full model (4), the exact same

result can be obtained from the intrinsic model (9). Indeed, the BLUPs can be seen as a

projection and does not require distributional assumptions. Model (9) is an orthogonal

mapping of (4). Hence, the projection argument of the EBLUPs proof can be applied to

(9). In other words, the intrinsic model is fully informative for calculating the EBLUPs

of the full model (4).

Informally, the result of Theorem 2 can be obtained from the result given in Section

3.3 of Greven et al. (2010), under the assumption of no measurement noise. However, the

formal derivation in this paper is based on a projection argument of Harville (1976) (see

Appendix for more details). It is also worth mentioning that model (4) collapses to the

MFPCA model developed in Di et al. (2008) if there is no longitudinal component ΦX,1.

In that case, the EBLUPs of Theorem 2 are exactly the EBLUPs derived in Zipunnikov

et al. (2011b) for MFPCA.

3.3 The general functional mixed model

A natural way to generalize model (1) is to consider the following model

Yij(v) = η(v, Tij) + Zij,0Xi,0(v) + Zij,1Xi,1(v) + . . .+ Zij,qXi,q(v) +Wij(v), (12)

where the (q+1)-dimensional vector of covariates Zij = (Zij,0, Zij,1, . . . , Zij,q) may include,

for instance, polynomial terms of Tij and/or some other covariates of interest. This model

can be reduced to the form similar to (4) as

Ỹij = Zij,0

NX∑
k=1

ξikφ
X,0
k + Zij,1

NX∑
k=1

ξikφ
X,1
k + . . .+ Zij,q

NX∑
k=1

ξikφ
X,q
k +

NW∑
l=1

ζijlφ
W
l . (13)

10



Computationally this model can be treated in the way described above in Sections 3.1

and 3.2. Particularly, one would need to get the SVD decomposition (8) for the matrix

Ỹ. As before, the right singular vectors Uij would contain the longitudinal information

about ξi, ζi, and covariates Zij. Hence, the intrinsic model

S1/2Uij = Zij,0

NX∑
k=1

ξikA
X,0
k + Zij,1

NX∑
k=1

ξikA
X,1
k + . . .+ Zij,q

NX∑
k=1

ξikA
X,q
k +

NW∑
l=1

ζijlA
W
l (14)

can provide all necessary quantities, which coupled with V allow to calculate high-

dimensional principal components. With a small change in notations, model (14) can

be rewritten in the form (10) and the EBLUPs for principal scores can be derived using

the exact same argument as in Theorem 2.

3.4 Large sample size

The main assumption which has been made throughout this section is that the sample

size, n =
∑I

j=1 Ji, is sufficiently small to guarantee that calculations of order O(n3) are

feasible. Below we briefly describe how our framework can be adapted to settings with

many more scans - on the order of tens or hundreds of thousands.

LFPCA equation (4) models each vector Ỹij as a linear combination of columns of

matrices ΦX,0,ΦX,1,ΦW . Hence, each Ỹij belongs to an at most (2NX+NW )-dimensional

linear space L(ΦX,0,ΦX,1,ΦW ) spanned by those columns. Thus, if model (4) holds

exactly the rank of the matrix Ỹ does not exceed (2NX +NW ) and at most 2NX +NW

columns of V correspond to non-zero singular values. This implies that the intrinsic

model (9) can be obtained by projecting onto the first 2NX +NW columns of V and the

sizes of matrices AX,0,AX,1,AW in (9) will be (2NX + NW ) × NX , (2NX + NW ) × NX ,

and (2NX + NW ) × NW , respectively. Therefore, the most computationally intensive

part would require finding the first 2NX + NW left singular vectors of Ỹ. Of course,

in practice, model (4) never holds exactly. Hence, the number of columns of matrix

V should be chosen to be large enough to either reasonably exceed (2NX + NW ) or to

capture the most of variability in data. The latter can be estimated by tracking down

the sums of the squares of the corresponding first singular vectors. Thus, this provides a

constructive way to handle situations when n is too large to calculate the SVD of Ỹ.

There are a few computationally efficient ways to calculate the first k singular vectors

of a large matrix. One way is to adapt streaming algorithms (Weng et al., 2003; Zhao

et al., 2006; Budavari et al., 2009). These algorithms usually require only one pass

through the data matrix Ỹ during which information about the first k singular vectors is

accumulated sequentially. Their complexity is of order O(k3p). An alternate approach is

to use iterative power methods (see, for example, Roweis, 1997). As the dimension of the

intrinsic model, 2NX +NW , is not known in advance, the number of left singular vectors

to keep and project onto can be adaptively estimated based on the singular values of the

matrix Ỹ. The further development in this direction is beyond the scope of this paper.
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4 Simulations

In this section, two simulation studies illustrate the developed methods. In the first one,

we replicate a simulation scenario in Greven et al. (2010) for functional curves, but we

focus on using a grid that is two orders of magnitude larger than the one in the original

scenario. This increase in dimensionality could not be handled by the original LFPCA

approach. In the second simulation study, we explore how our methods recover 3D spatial

bases in a case where the approach of Greven et al. (2010) cannot be implemented. Both

studies were run on a four core i7-2.67Gz PC with 6Gb of RAM memory using Matlab

2010a. The software is available upon request.

In our first scenario we follow Greven et al. (2010) and generate data as follows
Yij(v) =

∑NX

k=1 ξikφ
X,0
k (v) + Tij

∑NX

k=1 ξikφ
X,1
k (v) +

∑NW

l=1 ζijlφ
W
l (v) + εij(v), v ∈ V

ξik
i.i.d.∼ 0.5N(−

√
λXk /2, λ

X
k /2) + 0.5N(

√
λXk /2, λ

X
k /2),

ζijl
i.i.d.∼ 0.5N(−

√
λWl /2, λ

W
l /2) + 0.5N(

√
λWl /2, λ

W
l /2),

where ξik
i.i.d.∼ 0.5N(−

√
λXk /2, λ

X
k /2) + 0.5N(

√
λXk /2, λ

X
k /2) means that scores ξik are

drawn from a mixture of two normals, N(−
√
λXk /2, λ

X
k /2) and N(

√
λXk /2, λ

X
k /2) with

equal probabilities, similarly for ζijl. Scores ξik’s and ζijl’s are mutually independent.

We set I = 100 and Ji = 4, i = 1, . . . , I, the number of eigenfunctions NX = NW = 4.

The true eigenvalues are the same, λXk = λWk = 0.5k−1, k = 1, 2, 3, 4. The non-orthogonal

bases were chosen as

φX,0
1 (v) =

√
2/3 sin(2πv), φX,1

1 (v) = 1/2, φW
1 =

√
4φX,1

1 ,

φX,0
2 (v) =

√
2/3 cos(2πv), φX,1

2 (v) =
√

3(2v − 1)/2, φW
2 =

√
4/3φX,0

1 ,

φX,0
3 (v) =

√
2/3 sin(4πv), φX,1

3 (v) =
√

5(6v2 − 6v + 1)/2, φW
3 =

√
4/3φX,0

2 ,

φX,0
4 (v) =

√
2/3 cos(4πv), φX,1

4 (v) =
√

7(20v3 − 30v2 + 12v − 1)/2, φW
4 =

√
4/3φX,0

3 ,

which are measured on a regular grid of p equidistant points in the interval [0, 1]. Com-

pared with Greven et al. (2010), we increased the sampling grid by a hundred times

and set p = 12, 000. Note that a brute-force extension of standard LFPCA would be

at the edge of feasibility for such a large p. For each i, the first time Ti1 is generated

from the uniform distribution over interval (0,1) denoted by U(0, 1). Then differences

(Tij+1 − Tij) are also generated from U(0, 1) for 1 ≤ j ≤ 3. The times Ti1, . . . , Ti4 are

normalized to have sample mean zero and variance one. Finally, εij(v) are assumed to

be i.i.d N(0, 0.012) for each i, j, v. Although, no measurement noise is assumed in (3), it

is included in this simulation scenario. The purpose of having εij(v) is twofold. First, it

is of interest to explore how the presence of measurement noise affects the performance

of our methods which ignore this possibility. Second, we want to be as close as possi-

ble to the setup in Greven et al. (2010). However, the choice of the eigenfunctions in

the original simulation scenario of Greven et al. (2010) makes the estimation problem

ill-posed if there is no measurement noise. Therefore, the measurement noise essentially

regularizes the estimation problem. In this study, we simulated 100 data sets according

to the scenario above and ran our estimating procedures. The simulation study took 2.5
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minutes, that is 1.5 seconds per data set.

Figure 3: True and estimated eigenfunctions (φX,0
k , φX,1

k ), and φWl for scenario 1 replicated
100 times. Each box shows 10 randomly chosen estimated functions (grey), the true function
(solid blue line), the pointwise median and the 5th and 95th pointwise percentile curves (dashed
black lines).

First, we display the true and estimated eigenfunctions in Figure 3. The results for

φX,0
k are displayed in the top panel, for φX,1

k in the middle panel, and for φW
k in the

bottom panel. The grid in this study is very dense and includes 12,000 points. To

make plots distinguishable, we show only 10 randomly selected estimated functions (gray

lines). The true function (solid blue line), the pointwise median of estimated eigenvectors

(indistinguishable from the true functions) and the pointwise 5th and 95th percentiles

of estimated eigenvectors (black dashed lines). As we can see, if the amount of noise is

moderate relative to the main signal, as in this scenario, then there is not any noticeable

effect on our estimation procedure. Comparing Figure 3 with Figure 2 in Greven et al.

(2010) we conclude that our estimation procedure completely reproduce the eigenfunction

results obtained using the standard LFPCA approach.

The boxplots of the estimated eigenvalues of the processes Xi(v) and Wij(v) are

displayed in Figure 4. The centered and standardized eigenvalues, (λ̂Xk − λXk )/λXk and

(λ̂Wl − λWl )/λWl , are given on the left and the right panels of Figure 4, respectively. The

amount of consistent bias coming from the presence of measurement noise is so small that

it cannot be visually detected. This is explained by a small variance of the measurement

noise relative to those of the eigenvalues of Xi(v) and Wij(v). The results are consistent

with those reported in Greven et al. (2010) and confirm the good performance of our

estimation methods.

The scores ξik and ζijl are estimated using the EBLUP given by Theorem 2. The total

number of the scores ξik estimated in the study is 10, 000 for each k, as each generated data
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Figure 4: Boxplots of the normalized estimated eigenvalues for process Xi(v), (λ̂Xk − λXk )/λXk ,

(left box) and the normalized estimated eigenvalues for process Wij(v), (λ̂Wl −λWl )/λWl , (right
box) based on scenario 1 with 100 replications. The zero is shown by the solid black line.

Figure 5: The left two panels show the distribution of the normalized estimated scores of process

Xi(v), (ξik − ξ̂ik)/
√
λXk . Boxplots are given in the left column. The right column shows the

medians (black marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% quantiles
(red markers). Similarly, the distribution of the normalized estimated scores of process Wij(v),

(ζijl − ζ̂ijl)/
√
λXl is provided at the right two panels.

set provides exactly 100 estimates of scores ξik, k = 1, 2, 3, 4. Similarly, the total number

of the estimated scores ζijl is 40, 000 for each l. Note that the estimated scores within

each replication are dependent even if their theoretical counterparts are independent.

Panels one and three of Figure 5 report the boxplots of the normalized estimated scores

(ξik − ξ̂ik)/
√
λXk and (ζijl − ζ̂ijl)/

√
λWl , respectively. The distribution of the normalized

estimated scores corresponding to the first eigenfunction of Xi(v) as well to the second

eigenfunction of Wij(v) has a wider spread around zero. This is likely due to the fact

that φW
2 (v) =

√
4/3φX,0

1 (v) and the estimation of these components is harder than the

estimation φW
1 (v) =

√
4φX,1

1 (v), which has a more strong signal due to the multiplicative

factor
√

4. Panels two and four in Figure 5 display the medians, 0.5%, 5%, 95% and 99.5%

quantiles of the distribution of the normalized estimated scores. This demonstrates that

the estimation procedures based on the theoretical results of Theorem 2 are unbiased.

Due to the presence of the measurement noise, there is probably a slightly larger variation

in the observed distributions. Some formal comparison of the results for the EBLUPs

given in Theorem 2 and those in Greven et al. (2010) can provide a better quantification

of those differences. Overall, this study demonstrated that HD-LFPCA replicates the

results given by the standard LFPCA in a highly computationally efficient manner.

In the second scenario, our methods are evaluated on 3D data. Particularly, data sets

14



in this study replicate the 3D ROI blocks which we have in MS data set. We simulated

100 data sets from the model{
Yij(v) =

∑NX

k=1 ξikφ
X,0
k (v) + Tij

∑NX

k=1 ξikφ
X,1
k (v) +

∑NW

l=1 ζijlφ
W
l (v), v ∈ V

ξik
i.i.d.∼ N(0, λXk ) and ζijl

i.i.d.∼ N(0, λWl ),

where V = [1, 38] × [1, 72] × [1, 11]. Eigenimages (φX,0
k , φX,1

k ), and φW
l are displayed

in Figure 6. The images in this scenario can be thought of as 3D images with voxel

intensities on the [0, 1] scale. The voxels within each sub-block (eigenimage) are set to

1 and outside voxels set to zero. There are four blue and red sub-blocks corresponding

to φX,0
k and φX,1

k , respectively. The closest to Anterior are φX,0
1 and φX,1

1 , which have

the strongest signal proportional to the largest eigenvalue(variance) λX1 . Coming down

to Posterior, the signal decreases. The sub-blocks closest to Posterior have the smallest

signal, which is proportional to λX4 . Eigenimages φW
k shown in green are ordered in

the same way. Note that φX,0
k are uncorrelated with φW

l . However, both φX,0
k and φW

l

are correlated with the φX,1
k ’s describing the random slope Xi,1(v). We assume that

I = 150, Ji = 6, i = 1, . . . , I, and the true eigenvalues λXk = 0.5k−1, k = 1, 2, 3, and

λWl = 0.5l−1, l = 1, 2. The times Tij were generated in the same way as in simulation

scenario 1. To apply HD-LFPCA, we unfold each image Yij and obtain vectors of size

p = 38 × 72 × 11 = 30, 096. The simulation study took 20 minutes or approximately

12 seconds per data set. Figures 14, 15, and 16 display the medians of the estimated

Figure 6: 3D eigenimages of the 2nd simulation scenario. From left to right: φX,0
k are in

blue, φX,1
k are in red, φWk are in green, the most right one shows the overlap of all eigen-

images. Views: R=Right, L=Left, S=Superior, I=Interior, A=Anterior, P=Posterior. The
3D-renderings are obtained using 3D-Slicer (2011).

eigenimages and the voxelwise 5th and 95th percentile images, respectively. All axial

slices, or z slices in a x-y-z cartesian coordinate system, are the same. It is a result of

the data generating process which has no noise and the eigenimages sharing the exact

same intensity within each sub-block. Therefore, we display only one z-slice, which is

representative of the entire 3D image. To obtain a grayscale image with voxel values

in the [0, 1] interval, each estimated eigenvector, φ̂ = (φ̂1, . . . , φ̂p), was normalized as

φ̂→ (φ̂−mins φ̂s)/(maxs φ̂s−mins φ̂s). Figure 14 in the web-appendix shows the voxel-

wise medians of the estimator. The method recovers the spatial configuration of both

bases very well. The 5-percentile and 95-percentile images are displayed in Figures 15 and
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16 in the web-appendix, respectively. Overall, the original pattern is recovered with some

small distortions from the other interacting bases (please note the light gray patches).

It is interesting to note that φW
l ’s seem not to interact with φX,0

k ’s and φX,1
k ’s. Whereas,

φX,1 seem to be affected by both φW
l and φX,0

k . Finally, φX,0
k interacts only with φW

l . We

conclude that the estimation of the 3D eigenimages is very good.

Figure 7: Boxplots of the centered estimated eigenvalues for process Xi(v), (λ̂Xk − λXk )/λXk ,

(left box) and the normalized estimated eigenvalues for process Wij(v), (λ̂Wl −λWl )/λWl , (right
box) based on scenario 2 with 100 replications. The zero is shown by the solid black line.

The boxplots of the estimated normalized eigenvalues, (λ̂Xk − λXk )/λXk and (λ̂Wl −
λWl )/λWl , are displayed in Figure 7. The eigenvalues are estimated consistently. However,

in 6 out of 100 cases (extreme values shown in red), the estimation procedure had a hard

time distinguishing between the 3rd and the 4th eigenimages, φW
3 and φW

4 . Remember,

though, that the scales for eigenscores ζij3 and ζij4 are relative to the corresponding

eigenvalues λW3 = 0.25 and λW4 = 0.125. We speculate that it is due to a relatively

low signal, which is proportional to eigenvalues λ’s. Increasing the sample size should

address this issue. Overall, the results illustrate the good and consistent performance of

the eigenvalue estimation procedure.

Figure 8: Left two panels show the distribution of the normalized estimated scores, (ξik −
ξ̂ik)/

√
λXk . Boxplots are given in the left column. The right column shows the medians (black

marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% quantiles (red markers).

Similarly, the distribution of the normalized estimated scores, (ζijl− ζ̂ijl)/
√
λWl is provided in

the right two panels.

The boxplots of the estimated eigenscores are displayed in Figure 8. In this scenario,

the total number of the estimated scores ξik is 15, 000 for each k and there are 90, 000

estimated scores ζijl for each l. The distributions of the normalized estimated scores
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Distribution of observations per subject

# observations 1 2 3 4 5 6 7 8 9 10 Total: 466

# of subjects 57 55 15 18 13 14 1 2 0 1 Total: 176

Table 1: Distribution of observations (scans) per subject

(ξik − ξ̂ik)/
√
λXk and (ζijl− ζ̂ijl)/

√
λWl are displayed in first and third panels of Figure 8,

respectively. We observe larger spreads of the distributions once a signal-to-noise ratio

goes down. The second and fourth panels of Figure 8 display the medians, 0.5%, 5%,

95% and 99.5% quantiles of the distribution of the normalized estimated scores. Results

show that the EBLUPs approximate true scores very well.

5 Application

In this section we apply HD-LFPCA to the DTI images of MS patients. The study

population included individuals with no, mild, moderate, and severe disability, and over

the follow-up period (as long as 5 years in some cases), there was little change in the

median disability level of the cohort. Most of the subjects were taking disease-modifying

therapies, but only a small fraction were being treated for acute relapses of their disease.

Table 1 shows the distribution of number of scans per subject. Cohort characteristics are

reported in Table 4 in the web-appendix. The scans have been aligned using a 12 degrees

of freedom transformation, meaning that we accounted for rotation, translation, scaling,

and shearing, but not for nonlinear deformation. As described in Section 1, the primary

region of interest is a central block of the brain of size 38 × 72 × 11 displayed in Figure

1. We weighted each voxel in the block with a probability for the voxel to be in the

corpus callosum and study longitudinal changes of weighted voxels in the blocks (Reich

et al., 2010). Probabilities less than 0.05 were set to zero. Below we model longitudinal

variability of the weighted FA at every voxel of the blocks. The entire analysis performed

in Matlab 2010a took only 3 seconds on a PC with a quad core i7-2.67Gz processor and

6Gb of RAM memory.

First, we unfolded each block into a 30, 096 dimensional vector that contained the cor-

responding weighted FA values. This gave us the data matrix Y of size 466 by 30, 096,

where each row represented a subject/visit observation. In addition to high dimension-

ality, another difficulty of analyzing this study was the unbalanced distribution of scans

across subjects (see Table 1); this is a typical problem in natural history studies.

After forming the data matrix Y, we estimated the overall mean η̂ = 1
n

∑I
i=1

∑Ji
j=1 Yij

which is shown at Figure 9. The mean image appears to recover some template form of the

corpus callosum averaged over all subjects and visits. In the analysis below, we de-mean

the data by subtracting out η̂ from Yij’s. The times Tij’s were transformed as follows.

First, Tij was set to the age of the person at the time of the jth visit minus the age of the

person at the time of the first visit. So Ti1 was set to zero for everyone. Then we followed

a procedure described in Section 3.4 in Greven et al. (2010) and demeaned Tij’s for each

subject. After that all Tij were normalized to have sample variance one. This normalizing
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procedure allows us to compare the explained variabilities of processes Xi(v) and Wij(v)

on the same scale. More details can be found in Section 3.4 of Greven et al. (2010).

Equations (7) give unbiased OLS estimators of covariance matrices K̂X and K̂W . Even

though the estimated covariance matrices estimate non-negative symmetric matrices,

they are not necessarily non-negative definite themselves. We obtained small negative

eigenvalues while calculating the spectral decompositions of the covariance operators K̂X

and K̂W . Following Hall et al. (2008) all the negative eigenvalues with corresponding

eigenvectors were trimmed to zero for the analysis. After this, the total variation was

decomposed into “subject-specific” part modeled by process Xi and “exchangeable visit-

to-visit” part modeled by process Wij. Most of the total variability, 70.8%, is explained by

Xi (subject-specific variability) with the trace of KX = 122.53, while 29.2% is explained

by Wij (exchangeable visit-to-visit variability) with the trace of KW = 50.47. Two major

contributions of our approach is to separate the processes Xi and Wij and quantify their

corresponding contributions to the total variability.

P

R L

A

Figure 9: Mean image η̂. Eleven axial slices are shown. A histogram of the voxel intensities
is on the right. The pictures are obtained using MIPAV (2011).

Table 2 provides the first 10 eigenvalues of the estimated covariances K̂X and K̂W .

Table 3 reports the percentages (rounded to two decimal points) explained by these first

10 eigenimages. The first 10 random intercept eigenimages explain roughly 55% of the

total variability. The effect of the random slope is accounting for only 0.81% of the

total variability. However, the separation of variability within Xi(v) between the random

intercept and the random slope is completely determined by a choice of the scale for

times Tij. A different normalizing scheme for Tij’s would result in a different percentage

separation of variability within Xi(v). The exchangeable variability captured by Wij(v)

accounts for 17.5% of the total variation.
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Figure 10: Eleven slices of φ̂X,0
1 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).

k λXk λWk
1 38.31 13.83

2 18.64 5.99

3 10.72 3.82

4 8.59 2.73

5 5.01 1.69

6 4.37 1.55

7 3.58 1.17

8 3.18 0.93

9 2.84 0.83

10 2.21 0.73

Table 2: The first 10 eigenval-
ues of the estimated covariance
matrices K̂X and K̂W .

k φX,0
k φX,1

k φW
k cumulative

1 22.13 0.08 7.12 29.33

2 10.66 0.11 3.20 43.29

3 5.99 0.13 2.04 51.44

4 4.84 0.08 1.44 57.80

5 2.80 0.06 0.90 61.56

6 2.39 0.07 0.83 64.85

7 1.94 0.10 0.63 67.52

8 1.72 0.08 0.50 69.82

9 1.55 0.05 0.45 71.86

10 1.20 0.05 0.39 73.50

55.20 0.80 17.50 73.50

Table 3: Cumulative variability explained by
the first 10 eigenimages.

The first three estimated random intercept and slope eigenimages are shown in pairs

in Figures 10, 11, and 12, 13, and 17, 18 in the web-appendix, respectively. Figures 19,

20, and 21 in the web-appendix display the first three eigenimages of the exchangeable

measurement error process Wij(v). Each eigenimage is accompanied with the histogram

of its voxel values. Recall that the eigenimages were obtained by folding the unit length

eigenvectors of p ≈ 3 · 104 voxels. Therefore, each voxel is represented by a small value

between the negative and positive one. For principal scores, negative and positive voxel

values correspond to opposite loadings (directions) of variation. Each histogram has

a peak at zero due to the existence of the threshold for the probability maps applied

indicating if a voxel is not in the corpus callosum. This peak is a convenient visual divider

of the color spectrum into the loading specific colors. Because of the sign invariance of the

SVD, the separation between positive and negative loadings is comparable only within

the same eigenimage. However, the loadings of the random intercept and slope within

an eigenimage of the process Xi(v) can be compared as they share the same principal

score. This allows us to contrast the time invariant random intercept with the longitudinal
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Figure 11: Eleven slices of φ̂X,1
1 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).
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Figure 12: Eleven slices of φ̂X,0
2 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).

random slope and, thus, to localize regions that exhibit the largest longitudinal variability.

This could be used to analyze the longitudinal changes of brain imaging in a particular

disease or to help generate new scientific hypotheses.

We now interpret the random intercept and slope parts of the eigenimages obtained

for the MS data. Figures 10 and 11 show the random intercept and slope parts of the

first eigenimage φX
1 , respectively. The negatively loaded voxels of the random intercept,

φX,0
1 , essentially compose the entire corpus callosum. This indicates an overall shift in

the mean FA of the corpus callosum. This is expected and is a widely observed empirical

feature of principal components. The positively loaded background voxels of φX,0
1 are not

of any practical interest. The random slope part, φX,1
1 , has both positively and negatively

loaded areas in the corpus callosum. The areas colored in blue shades of the spectrum

share the sign of the random intercept φX,0
1 whereas the areas colored in red have the

opposite sign. The extreme colors of the spectrum of φX,1
1 show a clear separation into

negative and positive loadings especially accentuated in the splenium (posterior) and

the genu (anterior) areas of the corpus callosum; please note the upper and lower areas
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Figure 13: Eleven slices of φ̂X,1
2 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).

in panels 0 through 5 of Figure 11. This implies that a subject with a positive first

component score ξi1 > 0 would tend to have a smaller mean FA over the entire corpus

callosum and the FA would tend to decrease with time in the negatively loaded parts of

the splenium. The reverse will be true for a subject with a negative score ξi1. In the

second eigenimage, the random slope part, φX,0
2 , (see Figure 12) has both the splenium

and the genu areas negatively loaded and the truncus (the part connecting the two)

positively loaded. Contrasting it with φX,1
2 (shown in Figure 13) we see that both the

splenium and the truncus are loaded positively while the genu is loaded negatively. For a

subject with a positive second component score ξi2 > 0 it would translate into a smaller

mean FA in the splenium and the genu and a larger mean FA in the truncus. With time,

the mean FA would increase in the most intensively colored parts of the splenium and

the truncus and decrease in the genu; please see panels 0 through 7 in Figure 13. Again,

the effect will be inverted for a negative score ξi2. The last eigenimage representing the

random slope and the random intercept can be analyzed similarly.

In the first eigenimage, φW
1 , representing the process of exchangeable deviations

Wij(v), the entire corpus callosum is negatively loaded; please see Figure 19 in the web-

appendix. Again, this is expected and can be seen as a shift in the mean FA of the corpus

callosum. The intense red shades displayed as an envelop of the corpus callosum arguably

aggregate both registration errors and longitudinal deviations that are not captured by

the random slope. The second eigenimage, φW
2 , shown in Figure 20 in the web-appendix,

indicates a heavier positive loading of the splenium and several spatially continuous re-

gions of the truncus. In the third one, φW
3 , shown in Figure 21 in the web-appendix, only

the splenium has some positive loading and the truncus is mostly negatively loaded.

These eigenimages could be used for group comparisons, as MS patients may have

different eigenimage-specific loadings from the controls and the difference may depend on

the disease stage. Scientific hypothesis could be tested by analyzing the scores describing

individual patients. For that, the scores can be estimated by EBLUPs from Section 3.2.

Thus, our methods make it possible to both identify and quantify the significant regions

and perform necessary follow-up testing.
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6 Discussion

The methods developed in this paper increase the scope and general applicability of LF-

PCA to very high dimensional settings. The base model decomposes the longitudinal

data into three main components: a subject-specific random intercept, a subject-specific

random slope, and reversible visit-to-visit deviation. We described and addressed com-

putational difficulties which arise with high-dimensional data in a powerful technique

refered to as HD-LFPCA. We demonstrated ways of identifying a low-dimensional space

induced by the data that contain all necessary information for estimation of the model.

This significantly extended the previous related efforts in the clustered functional princi-

pal components models, MFPCA (Di et al., 2008) and HD-MFPCA (Zipunnikov et al.,

2011b).

We applied HD-LFPCA to a novel imaging setting considering DTI and MS in a

primary white matter structure. Our investigation characterized longitudinal and cross

sectional variation in the corpus callosum. Though our research focused on fractional

anisotropy, it is immediately applicable to other DTI summary metrics. For future re-

search, it would be of interest to extend the result to multivariate image summaries, such

as simultaneously considering FA and mean diffusivity, for example. Even more ambi-

tious, would be functional PCA models on registered tensor images. However, such an

approach presents numerous scientific and mathematical obstacles. Scientifically, obtain-

ing registered tensors is difficult. Mathematically, the tensors are complex structures and

difficult to analyze without further data reduction.

There are several outstanding issues for HD-LFPCA that continue to need to be

addressed. First, a key assumption of our methods is a moderate sample size of the

study, say, not exceeding ten thousands of images. This limitation can be circumvented

by adapting methods discussed in Section 3.4. A rigorous treatment of this issue will be

a goal for future research. Secondly, we have not formally included measurement noise

in our model. A simulation study in Section 4 demonstrated that a moderate amount

of measurement noise does not have any significant effect. However, a more systematic

treatment of the related issues may be required. Smoothing techniques employed for

functional curves which aggregate information in a covariance matrix and then smooth it

can not be directly extended to images. In high-dimensional settings methods developed

in Shabalin and Nobel (2010) could be considered as a powerful and feasible alternative.

In summary, we believe that HD-LFPCA is an important conceptual and practical

step in the general applicability of functional principal component analysis to modern

high dimensional longitudinal studies.

Supplemental materials

web-appendix.pdf: The file contains some additional images for Sections 4 and 5.

hd-lfpca-simulations-scenario-01.m: Matlab code for Scenario 1 of Simulations.

hd-lfpca-simulations-scenario-02.m: Matlab code for Scenario 2 of Simulations.
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Appendix

Proof of Theorem 1: Let us denote by K̂X
U and K̂W

U matrices defined by equations

(7) with S1/2Uij1U
′
ij2

S1/2 substituted for Ỹij1Ỹ
′
ij2

. The 2n× 2n dimensional matrix K̂X
U

and the n×n dimensional matrix K̂W
U are low-dimensional counterparts of K̂X and K̂W ,

respectively. Using SVD representation Ỹij = VS1/2Uij, the estimated high dimensional

covariance matrices can be represented as K̂X = DK̂X
UD′ and K̂W = VK̂W

U V′, where

matrix D is 2p× 2n dimensional with orthonormal columns defined as

D =

(
V 0p×n

0p×n V

)
. (15)

From the constructive definition of H, it follows that matrices K̂X
U and K̂W

U are sym-

metric. Thus, we can construct their spectral decompositions, K̂X
U = ÂXΛ̂

X
ÂX′

and

K̂W
U = ÂW Λ̂

W
ÂW ′

. Hence, high dimensional covariance matrices can be represented

as K̂X = DÂXΛ̂
X

ÂX′
D′ and K̂W = VÂW Λ̂

W
ÂW ′

V′, respectively. The result of the

theorem now follows from the orthonormality of the columns of matrices D and V.

Proof of Theorem 2. The main idea of the proof is similar to that of Zipunnikov

et al. (2011b). We assume that function η(v, Tij) = 0. From equation (10) it fol-

lows that ωi ∼ (0,Λω), where Λω is a covariance matrix of ωi. When p ≤ NX +

JiNW the BLUP of ωi is given by ω̂i = Cov(ωi, vec(Ỹi))V ar(vec(Ỹi))
−1vec(Ỹi) =

ΛωB
′
i(BiΛωB

′
i)
−1vec(Ỹi) (see McCulloch and Searle, 2001, Section 9). BLUP is es-

sentially a projection and thus it does not require any distributional assumptions. It may

be defined in terms of projection matrix. If ξi and ζij are normal then BLUP is the best

predictor. When p > NX +JiNW matrix BiΛωB
′
i is not invertible and the generalized in-

verse of BiΛωB
′
i is used (Harville, 1976). In that case, ω̂i = ΛωB

′
i(BiΛωB

′
i)
−vec(Ỹi) =

Λ
1/2
ω (Λ

1/2
ω B

′
iBiΛ

1/2
ω )−1Λ

1/2
ω B

′
ivec(Ỹi) = (B

′
iBi)

−1B
′
ivec(Ỹi). Note that it coincides with

the OLS estimator for ωi if ωi were a fixed parameter. Thus, the estimated BLUPs are

given by ω̂i = (B̂
′
iB̂i)

−1B̂
′
ivec(Ỹi), where

B̂
′

iB̂i =

(
JiĈ00 + T 2

i·Ĉ11 + Ti·(Ĉ10 + Ĉ01) 1
′
Ji
⊗ Ĉ0W + T

′
i ⊗ Ĉ1W

1Ji ⊗ ĈW0 + Ti ⊗ ĈW1 INW Ji

)

and

B̂
′

ivec(Ỹi) =

(
ÂX,0S1/2U

′
i1Ji + ÂX,1S1/2U

′
iTi

vec(ÂWS1/2U
′
i)

)
.
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Web-appendix to
”Longitudinal High-Dimensional Data”

Figure 14: Voxel-wise medians of estimated φX,0
k , φX,1

k , and φWl in the 2nd scenario.

Figure 15: 5th voxel-wise quantiles of estimated φX,0
k , φX,1

k , and φWl in the 2nd scenario.
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Figure 16: 95th voxel-wise quantiles of estimated φX,0
k , φX,1

k , and φWl in the 2nd scenario.

Cohort characteristics

baseline follow-up

subjects # 176

women #(%) 120 (68%)

disease subtype # (%)

clinically isolated syndrome 9 (5%) 5 (3%)

relapsing remitting 102 (58%) 104 (59%)

secondary progressive 40 (23%) 42 (24%)

primary progressive 25 (14%) 25 (14%)

age, mean SD (range) 44+/-12 (20-69) 45+/-12 (20-70)

disease duration, mean +/-SD (range) 10+/-10(0-42) 11+/-10(0-44)

receiving disease-modifying treatment, # (%) 115 (67%) 125(71%)

received steroids for a relapse within 30 days of

the scan, # (%)

21 (12%) 12 (7%)

expanded disability status scale, median (range) 3.5 (0-8.5) 3(0-8)

Table 4: Cohort characteristics of the subjects involved in the MS study.
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Figure 17: Eleven slices of φ̂X,0
3 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).
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Figure 18: Eleven slices of φ̂X,1
3 . A histogram of the voxel intensities is on the right. The

pictures are obtained using MIPAV (2011).
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Figure 19: Eleven slices of φ̂W1 . A histogram of the voxel intensities is on the right. The
pictures are obtained using MIPAV (2011).
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Figure 20: Eleven slices of φ̂W2 . A histogram of the voxel intensities is on the right. The
pictures are obtained using MIPAV (2011).
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Figure 21: Eleven slices of φ̂W3 . A histogram of the voxel intensities is on the right. The
pictures are obtained using MIPAV (2011).
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